支持向量机入门PPT

合集下载

支持向量机SVMPPT课件

支持向量机SVMPPT课件
最后得出原空间中的二次曲线:
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介

支持向量机介绍课件

支持向量机介绍课件
04 多分类支持向量机:适用于多分类问题,将多个 二分类支持向量机组合成一个多分类支持向量机
支持向量机的应用场景
01
分类问题:支持向量机可以用于 解决二分类或多分类问题,如文 本分类、图像分类等。
03
异常检测:支持向量机可以用于 异常检测,如信用卡欺诈检测、 网络入侵检测等。
02
回归问题:支持向量机可以用于 解决回归问题,如房价预测、股 票价格预测等。
4 支持向量机的优缺点
优点
01
高度泛化:支持向量机具有 很强的泛化能力,能够有效 地处理非线性问题。
02
鲁棒性:支持向量机对异常 值和噪声具有较强的鲁棒性, 能够有效地避免过拟合。
03
计算效率:支持向量机的训 练和预测过程相对较快,能 够有效地处理大规模数据。
04
易于解释:支持向量机的决 策边界直观易懂,便于理解 和解释。
缺点
01
计算复杂度高: 支持向量机的训 练和预测都需要 较高的计算复杂 度
02
容易过拟合:支 持向量机在处理 高维数据时容易 发生过拟合现象
03
模型选择困难:支 持向量机的参数选 择和模型选择较为 困难,需要一定的 经验和技巧
04
不适用于线性不可 分问题:支持向量 机只适用于线性可 分问题,对于非线 性问题需要进行复 杂的特征转换或采 用其他算法
它通过引入松弛变量,允许某些
02
数据点在分类超平面的两侧。 软间隔分类器的目标是最大化间 03 隔,同时最小化松弛变量的数量。 软间隔分类器可以通过求解二次
04
规划问题得到。
3 支持向量机的应用
线性分类
01
支持向量机 可以用于线 性分类问题
02
线性分类器可 以找到最优的

《支持向量机SVM》课件

《支持向量机SVM》课件

多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。

支持向量机原理SVMPPT课件

支持向量机原理SVMPPT课件

回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。

支持向量机(SVM)2演示报告PPT

支持向量机(SVM)2演示报告PPT
SVM分类器
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看

支持向量机PPT课件

支持向量机PPT课件
支持向量机(SVM)
什么是支持向量机?
图A给出了一个线性可分数据集(可以在图中画一条直线将两组数据点 分开)
图B、C、D分别给出了一条分隔的直线,那么其中哪一条最好?是不是 有寻找最佳拟合直线的感觉?
支持向量机(SVM)就可以用来寻找此线性可分情形下的最优分类面。 (有人说SVM是最好的现成的分类器)
支持向量机的应用: 支持向量机已在人脸识别、文字识别、图像处理和时间序列预测等领域 获得了比较广泛的应用。
研究热点: 对支持向量机中算法的优化,包括解决SVM中二次规划求解问题 如何更好的构造基于SVM的多类分类器 如何提高SVM的归纳能力和分类速度 如何根据实际问题确定核函数
2021/6/7
27
部分资料从网络收集整 理而来,供大家参考,
第2类
第1类
m
2021/6/7
6
1、数学模型描述:
2021/6/7
7
2、支持向量机求解:
通过引入拉格朗日函数将上述最优化问题转化为其对偶问题,则可以得到
2021/6/7
8
3、解的性质
2021/6/7
9
4、几何解释
a5=0
a4=0
a9=0
第1类
第2类
a8=0.6
a10=0
a7=0 a2=0
a6=1.4
种描述, 且来自我们的先验知识 。 为了f(•) 存在, K (x,y) 需要满足 Mercer 条件。
2021/6/7
19
2021/6/7
20
非线性SVM算法
将所有的内积改为核函数 训练算法:
线性的
非线性的
2021/6/7
21
2021/6/7
22

第二讲 支持向量机技术32页PPT

第二讲 支持向量机技术32页PPT

(4)
i1
i 1, ,l
当C=∞, K(xi,xj)=(xi,xj)时对应线性可分情形; 当0<C<∞, K(xi,xj)=(xi,xj)时对应近似线性可分情 形。
支持向量机的特色
• 用间隔定量地定义了置信风险:间隔越大,置信 风险越小,间隔越小,置信风险越大
• 用参数C实现了经验风险与置信风险的折中 • 最优分类超平面只由少数支持向量决定,问题具
C
C0
(4)若 问 题 (PC )和 (Pv )的 解 是 唯 一 的 , 按 映 射 =(C )
建 立 C与 的 对 应 关 系 , 则 C-SVC与 v-SVC有 相 同 的
决策函数
( C ) 的图像
ν-SVC与平分最近点原理的关系(1)
V=2的v-svc模型
的对偶模型为:
与平分最近点原理 的模型完全一样
min
w,b,i ,
1 2
||
w ||2
2

l i1
i
S.T. yi ((w,(xi )) b) i
i 0,i 1, ,l, 0
min 1
2
l i 1
l i 1
yi y j i j K ( xi , x j )
i 0,i 1, ,l, 0
对 偶 模 型
min
1 2
l i 1
l i 1
yi y j i j K ( xi , x j )
l
l
S.T . yii 0, i
(11)
i 1
i 1
0

i

1 l
,i
1,
,l
ν-SVC性质

《支持向量机》课件

《支持向量机》课件

非线性支持向量机(SVM)
1
核函数与核技巧
深入研究核函数和核技巧,将SVM应用于非线性问题。
2
多类别分类
探索如何使用SVM解决多类别分类问题。
3
多分类问题
了解如何将SVM应用于多分类问题以及解决方法。
SVM的应用
图像识别
探索SVM在图像识别领域 的广泛应用。
金融信用评估
了解SVM在金融领域中用 于信用评估的重要作用。
其他领域
探索SVM在其他领域中的 潜在应用,如生物医学和 自然语言处理。
《支持向量机》PPT课件
探索令人兴奋的机器学习算法 - 支持向量机。了解它的定义、历史、优点和 局限性,以及基本思想、几何解释和优化问题。
支持向量机简介
定义与背景
学习支持向量机的基本概念和背景知识。
优缺点
掌握支持向量机的优点和局限性,和核心思想。
几何解释和优化问题
几何解释
优化问题
通过直观的几何解释理解支持向量机的工作原理。 研究支持向量机的优化问题和求解方法。
线性支持向量机(SVM)
1 学习算法
探索线性支持向量机的 学习算法并了解如何应 用。
2 常见核函数
介绍常用的核函数类型 和选择方法,以及它们 在SVM中的作用。
3 软间隔最大化
研究软间隔最大化方法, 提高SVM在非线性问题 上的准确性。

支持向量机简介PPT课件

支持向量机简介PPT课件

经验风险最小化思想图示
举例:神经网络的构造过程
先确定网络结构 :网络层数,每层节点数 相当于VC维确定, (n / h) 确定。
通过训练确定最优权值,相当于最小化 R emp ( w ) 。 目前存在的问题是神经网络结构的确定大多是凭经验
选取,有一定的盲目性,无法确定泛化的置信界限, 所以无法保证网络的泛化能力。 即使经验误差很小,但可能推广或泛化能力很差。这 就是神经网络中的过学习难题。
研究小样本下机器学习规律的理论。 基本思想:折衷考虑经验风险和推广的置信界
限,取得实际期望风险的最小化。 两大核心: VC维和结构风险最小化。
VC维的概念
描述函数复杂性的指标 假如存在一个由h个样本的样本集能够被一个
函数集中的函数按照所有可能的2h 种形式分 为两类,则函数集能够把样本数为h的样本集 打散(shattering)。函数集的vc维就是用这个函 数集中的函数所能够打散的最大样本集数的样 本数目。
X表示成
x
xp
r
||
w w
||
xp :x在H上的投影向量 r:是x到H的垂直距离
g (x ) w T (x p r||w w ||) b w T x p b r|w |w T w || r||w g ||(x)w wT /(|x |wp ||:r||是w w w||)方b 向 上w T 的xp单b 位 向r|w |量w Tw ||r||w ||
Support Vector Machine支持向量机简介
报告概览
系统辨识和模式识别问题一般描述及存在问题 统计学习理论基本思想 支持向量机算法
➢ 线性可分 ➢ 近似线性可分 ➢ 非线性可分
SVM软件包 故障诊断中的应用

《支持向量机》课件

《支持向量机》课件
对于非线性数据集,训练算法 通过核函数将数据映射到更高 维的特征空间,然后在特征空 间中寻找最优超平面进行分类 。常见的核函数有线性核、多 项式核、径向基函数核等。
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03

68_支持向量机课件

68_支持向量机课件
■ 先求 ai (i=1, …, 5) :
2021/3/13
29
The optimizationtoolboxofmatlab contains a quadratic programmingsolver
■ 利用 QP 求解 , 得到
■ a1=0, a2=2.5, a3=0, a4=7.333, a5=4.833 ■ 注意到确实满足约束条件
2021/3/13
39
几点说明
■ SVM 基本上是一个两分类器,修改 QP 公式, 以允许多类别分类。 ■ 常用的方法: 以不同的方式智能地将数据集分为两部分, 对每一种
分割方式用 SVM训练,多类别分类的结果, 由所有的SVM分类器的 输出经组合后得到 (多数规则) 。
■ “一对一”策略 这种方法对N 类训练数据两两组合,构建C2N = N (N - 1) /2个支持向量机。最后分类的时候采取“投票”的方式 决定分类结果。
■ 支持向量为 {x2=2, x4=5, x5=6}
■ 描述函数为
■ 确定b
当 x2, x4, x5 位于
上时, f(2)=
1 , f(5)=-1 , f(6)=1, 由此解得 b=9
2021/3/13
30Biblioteka 描述函数的值第1类
第2类
第1类
12
45 6
2021/3/13
31
§5 支持向量回归
一.最小二乘法
■ “ 一 对 其 余 ” 策 略 这种方法对N分类问题构建N个支持向量机, 每个支持向量机负责区分本类数据和非本类数据。最后结果由输 出离分界面距离w·x + b最大的那个支持向量机决定。
2021/3/13
40
软件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性判别函数和判别面
线性判别函数和判别面
广义线性判别函数
最优分类面
• SVM 是从线性可分情况下的最优分类面发 展而来的, 基本思想可用下图的两维情况说 明.
图中, 方形点和圆形点代表两类样 本, H 为分类线,H1, H2分别为过 各类中离分类线最近的样本且平行 于分类线的直线, 它们之间的距离 叫做分类间隔(margin)。
线性判别函数和判别面
广义线性判别函数
在一维空间中,没有任何一个线性函数能解决下述划分问 题(黑红各代表一类数据),可见线性判别函数有一定的局限 性。
线性判别函数和判别面
广义线性判别函数
• 如果建立一个二次判别函数g(x)=(x-a)(x-b),则可以 很好的解决上述分类问题。 • 决策规则仍是:如果g(x)>=0,则判定x属于C1,如 果g(x)<0,则判定x属于C2。
内容
• • • • • • SVM的理论基础 线性判别函数和判别面 最优分类面 支持向量机 LIBSVM简介 实验
SVM的理论基础
• 传统的统计模式识别方法只有在样本趋向无穷大时, 其性能才有理论的保证。统计学习理论(STL)研究 有限样本情况下的机器学习问题。SVM的理论基础 就是统计学习理论。 • 传统的统计模式识别方法在进行机器学习时,强调 经验风险最小化。而单纯的经验风险最小化会产生 “过学习问题”,其推广能力较差。 • 推广能力是指: 将学习机器(即预测函数,或称学习 函数、学习模型)对未来输出进行正确预测的能力。
SVM的理论基础
• “过学习问题”:某些情况下,当训练误差 过小反而会导致推广能力的下降。 例如:对一组训练样本(x,y),x分布 在实数范围内,y取值在[0,1]之间。无论 这些样本是由什么模型产生的,我们总可 以用y=sin(w*x)去拟合,使得训练误差为0.
SVM的理论基础
• 根据统计学习理论,学习机器的实际风险由经验风 险值和置信范围值两部分组成。而基于经验风险最 小化准则的学习方法只强调了训练样本的经验风险 最小误差,没有最小化置信范围值,因此其推广能 力较差。 • Vapnik 与1995年提出的支持向量机(Support Vector Machine, SVM)以训练误差作为优化问题的约束条 件,以置信范围值最小化作为优化目标,即SVM是 一种基于结构风险最小化准则的学习方法,其推广 能力明显优于一些传统的学习方法。
所谓最优分类线就是要求分类线不 但能将两类正确分开(训练错误率 为0),而且使分类间隔最大. 推广到高维空间,最优分类线就变 为最优分类面。
最优分类面
设线性可分的样本集: D维空间中的线性判别函数:
{xi, yi}, i 1,...l, yi {1,1}, xi Rd
d 维空间中的判别函数:g ( X ) w x b, 分类面方程为w x b 0. k1 k 2 设H : w x b 0; H 1 : w x b k 1; H 2 : w x b k 2 令k , 2 H 1 : w x b k 1 k k ; H 2 : w x b k 2 k k 重写H 1, H 2 : H 1 : w x b k ; H 2 : w x b k 归一化:H 1 : w x b 1; H 2 : w x b 1
w x1 b w x 2 b 或 w ( x1 x 2) 0
• 当x1和x2都在判定面上时, • 这表明w和超平面上任意向量正交, • 并称w为超平面的法向量。
线性判别函数和判别面
判别函数g(x)是特征空间中 某点x到超平面的距离的一种代 数度量.
w || w || w 将 x xp r 代入g ( x) w x b中,我们有 || w || g ( x) w x b w w (xp r )b || w || w w xp b w r ( w x p b 0, w w || w ||2 ) || w || r || w || x xp r r g ( x) || w ||
mb) 1(i 1, 2,..., l )
原问题
目标:最优分类面 w x b 0
这是一个二次凸规划问题,由于目标函数和约束条 件都是凸的,根据最优化理论,这一问题存在唯一 全局最小解.
最优分类面
• 凸集和凸函数
凸集: S R n .称S是凸集,如果对任意x1, x 2 S 和任意的 [0,1] 都有 x1+(1- ) x 2 S .
g ( x) w x b
• 两类情况:对于两类问题的决策规则为
• 如果g(x)>=0,则判定x属于C1, • 如果g(x)<0,则判定x属于C2
线性判别函数和判别面
超平面
• 方程g(x)=0定义了一个判定面,它把归类于C1的点与归类于C2 的点分开来。 • 当g(x)是线性函数时,这个平面被称为“超平面”(hyperplane)。
SVM的理论基础
• 由于SVM 的求解最后转化成二次规划问题的 求解,因此SVM 的解是全局唯一的最优解 • SVM在解决小样本、非线性及高维模式识别问 题中表现出许多特有的优势,并能够推广应 用到函数拟合等其他机器学习问题中.
线性判别函数和判别面
• 一个线性判别函数(discriminant function)是指 由x的各个分量的线性组合而成的函数
2 w 2 w
~ ~
这样分类间隔就等于 , 因此要求分类间隔最大 , 就要求 最大.而要求分类面对所有样本正确分类,就是要求满足
yi(w xi b) 1 ,i 1,..., l 使等号成立的样本点称为支持向量
最优分类面
求最优分类面(最大间隔法)
已知:{xi, yi}, i 1,...l, yi {1,1}, xi Rd 求解: 1
相关文档
最新文档