支持向量机SVM_简介PPT
合集下载
支持向量机SVMPPT课件
最后得出原空间中的二次曲线:
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介
支持向量机SVM 简介PPT
计算间隔
M = Margin
我们怎样利用 w与b 计算margin?
Plus-plane = { x : w . x + b = +1 } Minus-plane = { x : w . x + b = -1 } 注: 向量 w 与 Plus Plane 垂直. 为什么?
所以 w 也垂直于Minus Plane 设 u 和 v 是 Plus Plane上的两个向量. 则 w . ( u – v ) 是多少?
f(x,w,b) = sign(w. x - b)
具有最大间隔的线 1 性分类器叫做最大 R(ω ) ≤ Remp (α ) + Φ ( ) m arg in 间隔线性分类器。
支持向量(Support Vectors) :是那些距 离超平面最近的点。
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
现在我们知道: w . x+ + b = +1 w . x- + b = -1 x+ = x- + λ w |x+ - x- | = M 于是很容易由w 和b 得到 M
=> w . x - + b + λ w .w = 1 => -1 + λ w .w = 1
=>
2 λ= w.w
计算间隔
x+ M = Margin Width =
最大间隔
+1 -1
x
f
y
具有最大间隔的线 性分类器叫做最大 间隔线性分类器。
f(x,w,b) = sign(w. x - b)
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
《支持向量机SVM》课件
多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。
SVMPPT课件
VC维:所谓VC维是对函数类的一种度量,可
以简单的理解为问题的复杂程度,VC维越高, 一个问题就越复杂。正是因为SVM关注的是VC 维,后面我们可以看到,SVM解决问题的时候, 和样本的维数是无关的(甚至样本是上万维的 都可以,这使得SVM很适合用来解决像文本分 类这样的问题,当然,有这样的能力也因为引 入了核函数)。
11
SVM简介
置信风险:与两个量有关,一是样本数
量,显然给定的样本数量越大,我们的 学习结果越有可能正确,此时置信风险 越小;二是分类函数的VC维,显然VC维 越大,推广能力越差,置信风险会变大。
12
SVM简介
泛化误差界的公式为:
R(w)≤Remp(w)+Ф(n/h) 公式中R(w)就是真实风险,Remp(w)表示 经验风险,Ф(n/h)表示置信风险。此时 目标就从经验风险最小化变为了寻求经 验风险与置信风险的和最小,即结构风 险最小。
4
SVM简介
支持向量机方法是建立在统计学习理论 的VC 维理论和结构风险最小原理基础上 的,根据有限的样本信息在模型的复杂 性(即对特定训练样本的学习精度, Accuracy)和学习能力(即无错误地识 别任意样本的能力)之间寻求最佳折衷, 以期获得最好的推广能力(或称泛化能 力)。
5
SVM简介
10
SVM简介
泛化误差界:为了解决刚才的问题,统计学
提出了泛化误差界的概念。就是指真实风险应 该由两部分内容刻画,一是经验风险,代表了 分类器在给定样本上的误差;二是置信风险, 代表了我们在多大程度上可以信任分类器在未 知样本上分类的结果。很显然,第二部分是没 有办法精确计算的,因此只能给出一个估计的 区间,也使得整个误差只能计算上界,而无法 计算准确的值(所以叫做泛化误差界,而不叫 泛化误差)。
以简单的理解为问题的复杂程度,VC维越高, 一个问题就越复杂。正是因为SVM关注的是VC 维,后面我们可以看到,SVM解决问题的时候, 和样本的维数是无关的(甚至样本是上万维的 都可以,这使得SVM很适合用来解决像文本分 类这样的问题,当然,有这样的能力也因为引 入了核函数)。
11
SVM简介
置信风险:与两个量有关,一是样本数
量,显然给定的样本数量越大,我们的 学习结果越有可能正确,此时置信风险 越小;二是分类函数的VC维,显然VC维 越大,推广能力越差,置信风险会变大。
12
SVM简介
泛化误差界的公式为:
R(w)≤Remp(w)+Ф(n/h) 公式中R(w)就是真实风险,Remp(w)表示 经验风险,Ф(n/h)表示置信风险。此时 目标就从经验风险最小化变为了寻求经 验风险与置信风险的和最小,即结构风 险最小。
4
SVM简介
支持向量机方法是建立在统计学习理论 的VC 维理论和结构风险最小原理基础上 的,根据有限的样本信息在模型的复杂 性(即对特定训练样本的学习精度, Accuracy)和学习能力(即无错误地识 别任意样本的能力)之间寻求最佳折衷, 以期获得最好的推广能力(或称泛化能 力)。
5
SVM简介
10
SVM简介
泛化误差界:为了解决刚才的问题,统计学
提出了泛化误差界的概念。就是指真实风险应 该由两部分内容刻画,一是经验风险,代表了 分类器在给定样本上的误差;二是置信风险, 代表了我们在多大程度上可以信任分类器在未 知样本上分类的结果。很显然,第二部分是没 有办法精确计算的,因此只能给出一个估计的 区间,也使得整个误差只能计算上界,而无法 计算准确的值(所以叫做泛化误差界,而不叫 泛化误差)。
支持向量机原理SVMPPT课件
回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。
SVM支持向量机PPT
核函数的改进方向可能包括研究新的核函数形式,如高阶核函数、多核函数等,以提高SVM的分类精 度和泛化能力。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。
支持向量机(SVM)2演示报告PPT
SVM分类器
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看
支持向量机PPT课件
支持向量机(SVM)
什么是支持向量机?
图A给出了一个线性可分数据集(可以在图中画一条直线将两组数据点 分开)
图B、C、D分别给出了一条分隔的直线,那么其中哪一条最好?是不是 有寻找最佳拟合直线的感觉?
支持向量机(SVM)就可以用来寻找此线性可分情形下的最优分类面。 (有人说SVM是最好的现成的分类器)
支持向量机的应用: 支持向量机已在人脸识别、文字识别、图像处理和时间序列预测等领域 获得了比较广泛的应用。
研究热点: 对支持向量机中算法的优化,包括解决SVM中二次规划求解问题 如何更好的构造基于SVM的多类分类器 如何提高SVM的归纳能力和分类速度 如何根据实际问题确定核函数
2021/6/7
27
部分资料从网络收集整 理而来,供大家参考,
第2类
第1类
m
2021/6/7
6
1、数学模型描述:
2021/6/7
7
2、支持向量机求解:
通过引入拉格朗日函数将上述最优化问题转化为其对偶问题,则可以得到
2021/6/7
8
3、解的性质
2021/6/7
9
4、几何解释
a5=0
a4=0
a9=0
第1类
第2类
a8=0.6
a10=0
a7=0 a2=0
a6=1.4
种描述, 且来自我们的先验知识 。 为了f(•) 存在, K (x,y) 需要满足 Mercer 条件。
2021/6/7
19
2021/6/7
20
非线性SVM算法
将所有的内积改为核函数 训练算法:
线性的
非线性的
2021/6/7
21
2021/6/7
22
什么是支持向量机?
图A给出了一个线性可分数据集(可以在图中画一条直线将两组数据点 分开)
图B、C、D分别给出了一条分隔的直线,那么其中哪一条最好?是不是 有寻找最佳拟合直线的感觉?
支持向量机(SVM)就可以用来寻找此线性可分情形下的最优分类面。 (有人说SVM是最好的现成的分类器)
支持向量机的应用: 支持向量机已在人脸识别、文字识别、图像处理和时间序列预测等领域 获得了比较广泛的应用。
研究热点: 对支持向量机中算法的优化,包括解决SVM中二次规划求解问题 如何更好的构造基于SVM的多类分类器 如何提高SVM的归纳能力和分类速度 如何根据实际问题确定核函数
2021/6/7
27
部分资料从网络收集整 理而来,供大家参考,
第2类
第1类
m
2021/6/7
6
1、数学模型描述:
2021/6/7
7
2、支持向量机求解:
通过引入拉格朗日函数将上述最优化问题转化为其对偶问题,则可以得到
2021/6/7
8
3、解的性质
2021/6/7
9
4、几何解释
a5=0
a4=0
a9=0
第1类
第2类
a8=0.6
a10=0
a7=0 a2=0
a6=1.4
种描述, 且来自我们的先验知识 。 为了f(•) 存在, K (x,y) 需要满足 Mercer 条件。
2021/6/7
19
2021/6/7
20
非线性SVM算法
将所有的内积改为核函数 训练算法:
线性的
非线性的
2021/6/7
21
2021/6/7
22
6支持向量机分类精品PPT课件
Q ( )
i 1
i1 2i,n j 1 i
jyiyj(xixj)
对偶问题完全是根据训练数据来表达的。所得到的解αi只有一部分(通常是少 部分)不为零,对应的样本就是支持向量。
若
i
为最优解,则
n
w
i 1
iyixi ,
by 1 s w xs
其中,xs为任一支持向量。最后得到的最优分类函数为:
f(x ) sg w n x b sg i n 1 n i y i(x ix ) b
将二维推广到高维,最优分类线就成为最优分类超 平面。
cab H H1 H2
6.2、基于二次规划的支持向量机分类
❖ 线性可分情况(续)
设线性可分样本集为(xi,yi),i=1,2,…n,x∈Rd,y∈{+1,-1}是类别号。d维空间 中线性判别函数的一般形式为g(x)=w•x+b,则分类超平面方程为:
先考虑二维情况下的线性可分的两类样本(○,×), 如图所示,存在很多条可能的分类线能够将训练样 本分开。显然分类线a最好,因为它更远离每一类 样本,风险小。而其他的分类线离样本较近,只要 样本有较小的变化,将会导致错误的分类结果。因 此分类线a是代表一个最优的线性分类器。
所谓最优分类线就是要求分类线不但能将两类无误 地分开,而且要使两类的分类间隔最大。图中H是 最优分类线,H1和H2分别为过各类样本中离分类线 最近的点且平行于分类线的直线,H1和H2之间的距 离叫做两类的分类空隙或者分类间隔(margin)。
6.2、基于二次规划的支持向量机分类
❖ 线性不可分情况
对于线性不可分(非线性)问题:采用一个非线性变换φ(x)把输入数据映射到 一个高维特征空间,然后在高维特征空间进行线性分类,最后再映射回到原空 间就成为输入空间的非线性分类。
i 1
i1 2i,n j 1 i
jyiyj(xixj)
对偶问题完全是根据训练数据来表达的。所得到的解αi只有一部分(通常是少 部分)不为零,对应的样本就是支持向量。
若
i
为最优解,则
n
w
i 1
iyixi ,
by 1 s w xs
其中,xs为任一支持向量。最后得到的最优分类函数为:
f(x ) sg w n x b sg i n 1 n i y i(x ix ) b
将二维推广到高维,最优分类线就成为最优分类超 平面。
cab H H1 H2
6.2、基于二次规划的支持向量机分类
❖ 线性可分情况(续)
设线性可分样本集为(xi,yi),i=1,2,…n,x∈Rd,y∈{+1,-1}是类别号。d维空间 中线性判别函数的一般形式为g(x)=w•x+b,则分类超平面方程为:
先考虑二维情况下的线性可分的两类样本(○,×), 如图所示,存在很多条可能的分类线能够将训练样 本分开。显然分类线a最好,因为它更远离每一类 样本,风险小。而其他的分类线离样本较近,只要 样本有较小的变化,将会导致错误的分类结果。因 此分类线a是代表一个最优的线性分类器。
所谓最优分类线就是要求分类线不但能将两类无误 地分开,而且要使两类的分类间隔最大。图中H是 最优分类线,H1和H2分别为过各类样本中离分类线 最近的点且平行于分类线的直线,H1和H2之间的距 离叫做两类的分类空隙或者分类间隔(margin)。
6.2、基于二次规划的支持向量机分类
❖ 线性不可分情况
对于线性不可分(非线性)问题:采用一个非线性变换φ(x)把输入数据映射到 一个高维特征空间,然后在高维特征空间进行线性分类,最后再映射回到原空 间就成为输入空间的非线性分类。
支持向量机SVM PPT课件
接下来就是同样的,求解一个拉格朗日对偶问题,得到一个原问题 的对偶问题的表达式:
SVM基本原理
➢ 蓝色的部分是与线性可分的对偶问题表达式的 不同之处。在线性不可分情况下得到的对偶问 题,不同的地方就是α的范围从[0, +∞),变 为了[0, C],增加的惩罚ε没有为对偶问题增 加什么复杂度。
SVM基本原理
核函数: SVM的关键在于核函数,低维空间向量集通常难于划 分,解决的方法是将它们映射到高维的特征空间。但 这个办法带来的困难就是计算复杂度的增加,而核函 数正好巧妙地解决了这个问题。
我们可以让空间从原本的线性空间变成一个更高维的空 间,在这个高维的线性空间下,再用一个超平面进行划 分。这儿举个例子,来理解一下如何利用空间的维度变 得更高来帮助我们分类的:
SVM基本原理
➢ 回忆刚刚得到的对偶问题表达式
➢ 我们可以将红色这个部分进行改造,令: ➢ 这个式子所做的事情就是将线性的空间映射到高维的
空间, k(x, xj)有很多种,下面列举一些常见的核函数 :
SVM基本原理
常用的核函数有以下4种: (1)线性核函数K(x,y)=x·y; (2)多项式核函数K(x,y)=[(x·y)+1]d; (3)径向基函数K(x,y)=exp(-|x-y|^2/d^2) (4)二层神经网络核函数K(x,y)=tanh(a(x·y)+b).
➢ 为什么要映射到高维空间: 当维度增加到无限维的时候,一定可以让任意的两个 物体可分了。
举一个哲学例子来说:世界上本来没有两个完全一样 的物体,对于所有的两个物体,我们可以通过增加维 度来让他们最终有所区别,比如说两本书,从(颜色, 内容)两个维度来说,可能是一样的,我们可以加上作 者这个维度,实在不行我们还可以加入页码,可以加 入拥有者,可以加入购买地点,可以加入笔记内容等 等来使它们变得不同。
SVM基本原理
➢ 蓝色的部分是与线性可分的对偶问题表达式的 不同之处。在线性不可分情况下得到的对偶问 题,不同的地方就是α的范围从[0, +∞),变 为了[0, C],增加的惩罚ε没有为对偶问题增 加什么复杂度。
SVM基本原理
核函数: SVM的关键在于核函数,低维空间向量集通常难于划 分,解决的方法是将它们映射到高维的特征空间。但 这个办法带来的困难就是计算复杂度的增加,而核函 数正好巧妙地解决了这个问题。
我们可以让空间从原本的线性空间变成一个更高维的空 间,在这个高维的线性空间下,再用一个超平面进行划 分。这儿举个例子,来理解一下如何利用空间的维度变 得更高来帮助我们分类的:
SVM基本原理
➢ 回忆刚刚得到的对偶问题表达式
➢ 我们可以将红色这个部分进行改造,令: ➢ 这个式子所做的事情就是将线性的空间映射到高维的
空间, k(x, xj)有很多种,下面列举一些常见的核函数 :
SVM基本原理
常用的核函数有以下4种: (1)线性核函数K(x,y)=x·y; (2)多项式核函数K(x,y)=[(x·y)+1]d; (3)径向基函数K(x,y)=exp(-|x-y|^2/d^2) (4)二层神经网络核函数K(x,y)=tanh(a(x·y)+b).
➢ 为什么要映射到高维空间: 当维度增加到无限维的时候,一定可以让任意的两个 物体可分了。
举一个哲学例子来说:世界上本来没有两个完全一样 的物体,对于所有的两个物体,我们可以通过增加维 度来让他们最终有所区别,比如说两本书,从(颜色, 内容)两个维度来说,可能是一样的,我们可以加上作 者这个维度,实在不行我们还可以加入页码,可以加 入拥有者,可以加入购买地点,可以加入笔记内容等 等来使它们变得不同。
支持向量机SVM(ppt)-智能科学
其中,{f(x,w)}称作预测函数集,w为函数的广义 参数。{f(x,w)}可以表示任何函数集。L(y,f(x,w))为 由于用f(x,w)对y进行预测而造成的损失。不同类 型的学习问题有不同形式的损失函数。
2018/8/20 Chap8 SVM Zhongzhi Shi 11
经验风险
而对train set上产生的风险Remp(w)被称 为经验风险(学习的训练误差):
2018/8/20
统计学习方法概述
统计方法是从事物的外在数量上的表现去推断该 事物可能的规律性。科学规律性的东西一般总是 隐藏得比较深,最初总是从其数量表现上通过统 计分析看出一些线索,然后提出一定的假说或学 说,作进一步深入的理论研究。当理论研究 提出 一定的结论时,往往还需要在实践中加以验证。 就是说,观测一些自然现象或专门安排的实验所 得资料,是否与理论相符、在多大的程度上相符、 偏离可能是朝哪个方向等等问题,都需要用统计 分析的方法处理。
4. 构造学习算法的理论
How can one construct algorithms that can control the generalization ability?
2018/8/20
Chap8 SVM Zhongzhi Shi
17
结构风险最小化归纳原则 (SRM)
ERM is intended for relatively large samples (large l/h)
Let S = {Q(z,),}. An admissible structure S1S2…Sn…S:
For each k, the VC dimension hk of Sk is finite and h1≤h2≤…≤hn≤…≤hS Every Sk is either is non-negative bounded, or satisfies for some (p,k)
2018/8/20 Chap8 SVM Zhongzhi Shi 11
经验风险
而对train set上产生的风险Remp(w)被称 为经验风险(学习的训练误差):
2018/8/20
统计学习方法概述
统计方法是从事物的外在数量上的表现去推断该 事物可能的规律性。科学规律性的东西一般总是 隐藏得比较深,最初总是从其数量表现上通过统 计分析看出一些线索,然后提出一定的假说或学 说,作进一步深入的理论研究。当理论研究 提出 一定的结论时,往往还需要在实践中加以验证。 就是说,观测一些自然现象或专门安排的实验所 得资料,是否与理论相符、在多大的程度上相符、 偏离可能是朝哪个方向等等问题,都需要用统计 分析的方法处理。
4. 构造学习算法的理论
How can one construct algorithms that can control the generalization ability?
2018/8/20
Chap8 SVM Zhongzhi Shi
17
结构风险最小化归纳原则 (SRM)
ERM is intended for relatively large samples (large l/h)
Let S = {Q(z,),}. An admissible structure S1S2…Sn…S:
For each k, the VC dimension hk of Sk is finite and h1≤h2≤…≤hn≤…≤hS Every Sk is either is non-negative bounded, or satisfies for some (p,k)
《支持向量机SVM》课件
SVM的优点与应用
强大的分类器
SVM可以处理高维度和复杂数据,具有出色的分类准确度。
适用于小样本
相较于其他算法,SVM对样本数量较少的情况下仍能表现出色。
广泛的应用领域
SVM在图像识别、文本分类、生物信息学等领域都有着广泛的应用。
SVM分类器模型及原理
支持向量机模型
SVM通过在数据空间中找到 一个最大间隔的超平面来进 行分类。
最大间隔原理
最大间隔超平面使得不同类 别的数据点与超平面的间隔 最大化。
软间隔SVM
为了处理线性不可分的情况, 软间隔SVM允许一些样本出 现在超平面的错误一侧。
SVM核函数及调优方法
1
线性核函数
线性核函数在低维空间中表现良好,
多项式核函数
2
适用于线性可分的数据。
多项式核函数通过引入多项式函数
来处理非线性问题。
SVM在数据挖掘中的应用
SVM在数据挖掘中广泛应用,包括异常检测、文本和图像分类、推荐系统等。其强大的特征处理 和预测能力使其成展
随着机器学习领域的不断发展,SVM仍然是一种重要的算法。未来,我们可以期待更多关于SVM 的研究和改进,以适应不断增长的数据和复杂问题。
支持向量机SVM PPT课件
欢迎来到《支持向量机SVM》PPT课件!在本课程中,我们将深入探讨支持向 量机的原理、应用和未来发展。让我们一起开启这个引人入胜的机器学习之 旅吧!
支持向量机的介绍
支持向量机是一种强大的机器学习算法,可用于分类和回归分析。它通过寻找数据中的支持向量, 并创建一个最佳的分割超平面来进行预测和决策。
3
高斯核函数
高斯核函数能够将数据映射到高维 空间,处理复杂非线性数据。
机器学习SVMPPT课件
i 1
i, j 1
第32页/共48页
代入x,y值
W
(
)
(1
2
3
4
)
1 2
(
2 2
4
2
3
432
4
2 4
)
可调用Matlab中的二次规划程序,求得1, 2, 3, 4的值,进而求得w和b的值。
1 0Leabharlann 2 31 3/4
4 1 / 4
w
1
0
3 4
2
0
1 4
0 2
1
2
1
2
b
1 2
这是一种线性化的 SVM
Linear SVM
线性SVM
• SVM从线性可分情况下的分类面发展而来 • Margin最大化分类面不仅仅要求经验风险尽可能的小,
且使分类间隔最大 • SVM考虑寻找一个满足分类要求的分类面 • 过两类样本中离分类面最近的点且平行于分类面的训
练 样 本 就 叫 做 支 持 向 量第24页/共48页
约束的情况下,而他们理论实际基于Karush的工作。 ✓ 通过对偶理论简化约束条件即Karush-Kuhn-Tucker互补条件
解决了支持向量机的优化问题 第30页/共48页
线性SVM求解
•
L
a
g
r
a
n
g
e
函
数L(w,
b,
)
1 2
n
w 2 i ( yi ((wT xi ) b) 1)
i 1
• 上个世纪90年代,支持向量机获得全面发展,在实际 应 用 中 , 获 得 比 较 满第意3页的/共效48页果 , 成 为 机 器 学 习 领 域 的 标准工具
模式识别8-支持向量机(SVM)课件
支持向量机
• 核:
核是一个函数K ,对所有x,z X , 满足 K ( x, z ) ( x ) ( z ) 这里是从输入空间X 到到特征空间F的映射. x ( x1,...xl ) ( x) (1( x),..., n( x)) 将输入空间X 映射到一个新的空间F ={( x) | x X }
最优分类面
首先建立Lagrange函数 w J ( w, b, ) [ y ( w x b) 1] 2
2 l i i i i 1
J ( w, b, ) 条件1: 0 w J ( w, b, ) 条件2: 0 b
最终可得到
1 l l Q( ) J ( w, b, ) i i jyiyj ( xi xj ) 2 i 1 j 1 i 1 寻找最大化目标函数Q( )的Lagrange乘子{ i }li 1 , 满足约束条件 (1)
所谓最优分类线就是要求分类线不 但能将两类正确分开(训练错误率 为0),而且使分类间隔最大. 推广到高维空间,最优分类线就变 为最优分类面。
最优分类面
设线性可分的样本集: D维空间中的线性判别函数:
{xi, yi}, i 1,...l, yi {1,1}, xi Rd
d 维空间中的判别函数:g ( X ) w x b, 分类面方程为w x b 0. k1 k 2 设H : w x b 0; H 1 : w x b k 1; H 2 : w x b k 2 令k , 2 H 1 : w x b k 1 k k ; H 2 : w x b k 2 k k 重写H 1, H 2 : H 1 : w x b k ; H 2 : w x b k 归一化:H 1 : w x b 1; H 2 : w x b 1
《支持向量机》课件
对于非线性数据集,训练算法 通过核函数将数据映射到更高 维的特征空间,然后在特征空 间中寻找最优超平面进行分类 。常见的核函数有线性核、多 项式核、径向基函数核等。
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大间隔
+1
-1
x
f
y
具有最大间隔的线 性分类器叫做最大 间隔线性分类器。
f(x,w,b) = sign(w. x - b)
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
线性支持向量机
最大间隔
+1
-1
x
f
y
具有最大间隔的线 性分类器叫做最大 间隔线性分类器。
f(x,w,b) = sign(w. x - b)
yk (w . xk + b )>= 1 k=1,2,…,n
What You Should Know
• • • • 线性 SVMs 最大间隔分类器 QP 的作用 (但是, 这里, 你不必知道如何求解它) 最大间隔问题可以转化为一个二次优化(QP)问题
f(x,w,b) = sign(w. x - b)
具有最大间隔的线 1 性分类器叫做最大 ( ) ( ) m arg in 间隔线性分类器。
支持向量(Support Vectors) :是那些距 离超平面最近的点。
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
支持向量(Support Vectors) :是那些距 离超平面最近的点。
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
线性支持向量机
Why… 最大间隔?
1. 直观上感觉很好.
+1
-1
2. 学习得到的线性分类器.其对未知样本 的预测能力与分类器间隔有如t Vector Machines
线性分类器
+1
-1
x
f
y
f(x,w,b) = sign(w. x - b)
How would you classify this data?
线性分类器
+1
-1
x
f
y
f(x,w,b) = sign(w. x - b)
How would you classify this data?
x+ xM = |x+ - x- | =| l w |=
M = Margin Width =
2 w .w
现在我们知道: • w . x+ + b = +1 • w . x- + b = -1 • x+ = x- + l w • |x+ - x- | = M 2 •
λ w.w
λ | w | λ w .w
计算间隔
x+ x-
M = Margin Width
现在我们知道: • w . x+ + b = +1 • w . x- + b = -1 • x+ = x- + l w • |x+ - x- | = M 于是很容易由w 和b 得到 M
计算间隔
x+ x-
M = Margin Width
w . (x - + l w) + b = 1
Classify as.. +1
-1
if
if
w . x + b >= 1
w . x + b <= -1 -1 < w . x + b < 1
不可分情况 if
计算间隔
M = Margin
我们怎样利用 w与b 计算margin?
• Plus-plane = { x : w . x + b = +1 } • Minus-plane = { x : w . x + b = -1 }
线性支持向量机
具体化分类超平面及其间隔
Plus-Plane Classifier Boundary Minus-Plane
• 如何在数学上表示? • …在m位空间中?
具体化分类超平面及其间隔
Plus-Plane Classifier Boundary Minus-Plane
• Plus-plane = { x : w . x + b = +1 } • Minus-plane = { x : w . x + b = -1 }
计算间隔
x+ M = Margin
x-
我们怎样利用 w与b 计算margin?
• • • • • •
Plus-plane = { x : w . x + b = +1 }+ x- 与 x 的连线与planes Minus-plane = { x : w . x + b = -1 } 垂直. 向量 w 与 Plus Plane 垂直 于是x- 在w 的方向上移动 设 x- 是 minus plane上任意一点 一段距离就可与到达x+. 设 x+是plus-plane上距离 x-最近的点 注: 对于某实数l, x+ = x- + l w. 为什么?
现在我们知道: • w . x+ + b = +1 • w . x- + b = -1 • x+ = x- + l w • |x+ - x- | = M 于是很容易由w 和b 得到 M
=> w . x - + b + l w .w = 1 =>
-1 + l w .w = 1
=>
λ
2 w.w
计算间隔
线性分类器
+1
-1
x
f
y
f(x,w,b) = sign(w. x - b)
How would you classify this data?
线性分类器
+1
-1
x
f
y
f(x,w,b) = sign(w. x - b)
How would you classify this data?
线性分类器
+1
所以 w 也垂直于Minus Plane 设 u 和 v 是 Plus Plane上的两个向量. 则 w . ( u – v ) 是多少?
计算间隔
x+ M = Margin
x-
我们怎样利用 w与b 计算margin?
• • • • •
Plus-plane = { x : w . x + b = +1 } Minus-plane = { x : w . x + b = -1 } 向量 w 与 Plus Plane 垂直 设 x- 是 minus plane上任意一点 设 x+是plus-plane上距离 x-最近的点
注: 向量 w 与 Plus Plane 垂直. 为什么?
计算间隔
M = Margin
我们怎样利用 w与b 计算margin?
• Plus-plane = { x : w . x + b = +1 } • Minus-plane = { x : w . x + b = -1 }
注: 向量 w 与 Plus Plane 垂直. 为什么?
2 w .w w .w 2 w .w
学习最大间隔分类器
x+ x-
M = Margin Width =
2 w .w
我们现在需要找到一种算法,来求出w 与 b,并且 能匹配 上所有的样本点. 怎么做? 梯度下降? 退火算法? 矩阵求逆? 牛顿法?
利用二次优化求解
Minimize
1 2 w .w
subject to
-1
x
f
y
f(x,w,b) = sign(w. x - b)
Any of these would be fine..
..but which is best?
线性分类器
+1
-1
x
f
y
线性分类器的间隔 ( margin):到超 平面最近的样本与 此超平面之间的距 离。
f(x,w,b) = sign(w. x - b)
计算间隔
x+ M = Margin
x-
我们怎样利用 w与b 计算margin?
• • • • • •
Plus-plane = { x : w . x + b = +1 } Minus-plane = { x : w . x + b = -1 } 向量 w 与 Plus Plane 垂直 设 x- 是 minus plane上任意一点 设 x+是plus-plane上距离 x-最近的点 注: 对于某实数l, x+ = x- + l w. 为什么?