支持向量机SVM PPT课件
合集下载
支持向量机SVMPPT课件
最后得出原空间中的二次曲线:
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介
支持向量机SVM 简介PPT
计算间隔
M = Margin
我们怎样利用 w与b 计算margin?
Plus-plane = { x : w . x + b = +1 } Minus-plane = { x : w . x + b = -1 } 注: 向量 w 与 Plus Plane 垂直. 为什么?
所以 w 也垂直于Minus Plane 设 u 和 v 是 Plus Plane上的两个向量. 则 w . ( u – v ) 是多少?
f(x,w,b) = sign(w. x - b)
具有最大间隔的线 1 性分类器叫做最大 R(ω ) ≤ Remp (α ) + Φ ( ) m arg in 间隔线性分类器。
支持向量(Support Vectors) :是那些距 离超平面最近的点。
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
现在我们知道: w . x+ + b = +1 w . x- + b = -1 x+ = x- + λ w |x+ - x- | = M 于是很容易由w 和b 得到 M
=> w . x - + b + λ w .w = 1 => -1 + λ w .w = 1
=>
2 λ= w.w
计算间隔
x+ M = Margin Width =
最大间隔
+1 -1
x
f
y
具有最大间隔的线 性分类器叫做最大 间隔线性分类器。
f(x,w,b) = sign(w. x - b)
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
大数据十大经典算法SVM-讲解PPT
大数据十大经典算法svm-讲解
contents
目录
• 引言 • SVM基本原理 • SVM模型构建与优化 • SVM在大数据处理中的应用 • SVM算法实现与编程实践 • SVM算法性能评估与改进 • 总结与展望
01 引言
算法概述
SVM(Support Vector Machine,支持向量机)是一种监督学习模型,用于数据 分类和回归分析。
性能评估方法
01
准确率评估
通过计算模型在测试集上的准确率来评估SVM算法的性能,准确率越
高,说明模型分类效果越好。
02
混淆矩阵评估
通过构建混淆矩阵,可以计算出精确率、召回率、F1值等指标,更全面
地评估SVM算法的性能。
03
ROC曲线和AUC值评估
通过绘制ROC曲线并计算AUC值,可以评估SVM算法在不同阈值下的
核函数是SVM的重要组成部分 ,可将数据映射到更高维的空 间,使得原本线性不可分的数 据变得线性可分。常见的核函 数有线性核、多项式核、高斯 核等。
SVM的性能受参数影响较大, 如惩罚因子C、核函数参数等 。通过交叉验证、网格搜索等 方法可实现SVM参数的自动调 优,提高模型性能。
SVM在文本分类、图像识别、 生物信息学等领域有广泛应用 。通过具体案例,可深入了解 SVM的实际应用效果。
SVM算法实现步骤
模型选择
选择合适的SVM模型,如CSVM、ν-SVM或One-class SVM等。
模型训练
使用准备好的数据集对SVM模 型进行训练,得到支持向量和 决策边界。
数据准备
准备用于训练的数据集,包括 特征提取和标签分配。
参数设置
设置SVM模型的参数,如惩罚 系数C、核函数类型及其参数 等。
contents
目录
• 引言 • SVM基本原理 • SVM模型构建与优化 • SVM在大数据处理中的应用 • SVM算法实现与编程实践 • SVM算法性能评估与改进 • 总结与展望
01 引言
算法概述
SVM(Support Vector Machine,支持向量机)是一种监督学习模型,用于数据 分类和回归分析。
性能评估方法
01
准确率评估
通过计算模型在测试集上的准确率来评估SVM算法的性能,准确率越
高,说明模型分类效果越好。
02
混淆矩阵评估
通过构建混淆矩阵,可以计算出精确率、召回率、F1值等指标,更全面
地评估SVM算法的性能。
03
ROC曲线和AUC值评估
通过绘制ROC曲线并计算AUC值,可以评估SVM算法在不同阈值下的
核函数是SVM的重要组成部分 ,可将数据映射到更高维的空 间,使得原本线性不可分的数 据变得线性可分。常见的核函 数有线性核、多项式核、高斯 核等。
SVM的性能受参数影响较大, 如惩罚因子C、核函数参数等 。通过交叉验证、网格搜索等 方法可实现SVM参数的自动调 优,提高模型性能。
SVM在文本分类、图像识别、 生物信息学等领域有广泛应用 。通过具体案例,可深入了解 SVM的实际应用效果。
SVM算法实现步骤
模型选择
选择合适的SVM模型,如CSVM、ν-SVM或One-class SVM等。
模型训练
使用准备好的数据集对SVM模 型进行训练,得到支持向量和 决策边界。
数据准备
准备用于训练的数据集,包括 特征提取和标签分配。
参数设置
设置SVM模型的参数,如惩罚 系数C、核函数类型及其参数 等。
《支持向量机SVM》课件
多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。
SVMPPT课件
VC维:所谓VC维是对函数类的一种度量,可
以简单的理解为问题的复杂程度,VC维越高, 一个问题就越复杂。正是因为SVM关注的是VC 维,后面我们可以看到,SVM解决问题的时候, 和样本的维数是无关的(甚至样本是上万维的 都可以,这使得SVM很适合用来解决像文本分 类这样的问题,当然,有这样的能力也因为引 入了核函数)。
11
SVM简介
置信风险:与两个量有关,一是样本数
量,显然给定的样本数量越大,我们的 学习结果越有可能正确,此时置信风险 越小;二是分类函数的VC维,显然VC维 越大,推广能力越差,置信风险会变大。
12
SVM简介
泛化误差界的公式为:
R(w)≤Remp(w)+Ф(n/h) 公式中R(w)就是真实风险,Remp(w)表示 经验风险,Ф(n/h)表示置信风险。此时 目标就从经验风险最小化变为了寻求经 验风险与置信风险的和最小,即结构风 险最小。
4
SVM简介
支持向量机方法是建立在统计学习理论 的VC 维理论和结构风险最小原理基础上 的,根据有限的样本信息在模型的复杂 性(即对特定训练样本的学习精度, Accuracy)和学习能力(即无错误地识 别任意样本的能力)之间寻求最佳折衷, 以期获得最好的推广能力(或称泛化能 力)。
5
SVM简介
10
SVM简介
泛化误差界:为了解决刚才的问题,统计学
提出了泛化误差界的概念。就是指真实风险应 该由两部分内容刻画,一是经验风险,代表了 分类器在给定样本上的误差;二是置信风险, 代表了我们在多大程度上可以信任分类器在未 知样本上分类的结果。很显然,第二部分是没 有办法精确计算的,因此只能给出一个估计的 区间,也使得整个误差只能计算上界,而无法 计算准确的值(所以叫做泛化误差界,而不叫 泛化误差)。
以简单的理解为问题的复杂程度,VC维越高, 一个问题就越复杂。正是因为SVM关注的是VC 维,后面我们可以看到,SVM解决问题的时候, 和样本的维数是无关的(甚至样本是上万维的 都可以,这使得SVM很适合用来解决像文本分 类这样的问题,当然,有这样的能力也因为引 入了核函数)。
11
SVM简介
置信风险:与两个量有关,一是样本数
量,显然给定的样本数量越大,我们的 学习结果越有可能正确,此时置信风险 越小;二是分类函数的VC维,显然VC维 越大,推广能力越差,置信风险会变大。
12
SVM简介
泛化误差界的公式为:
R(w)≤Remp(w)+Ф(n/h) 公式中R(w)就是真实风险,Remp(w)表示 经验风险,Ф(n/h)表示置信风险。此时 目标就从经验风险最小化变为了寻求经 验风险与置信风险的和最小,即结构风 险最小。
4
SVM简介
支持向量机方法是建立在统计学习理论 的VC 维理论和结构风险最小原理基础上 的,根据有限的样本信息在模型的复杂 性(即对特定训练样本的学习精度, Accuracy)和学习能力(即无错误地识 别任意样本的能力)之间寻求最佳折衷, 以期获得最好的推广能力(或称泛化能 力)。
5
SVM简介
10
SVM简介
泛化误差界:为了解决刚才的问题,统计学
提出了泛化误差界的概念。就是指真实风险应 该由两部分内容刻画,一是经验风险,代表了 分类器在给定样本上的误差;二是置信风险, 代表了我们在多大程度上可以信任分类器在未 知样本上分类的结果。很显然,第二部分是没 有办法精确计算的,因此只能给出一个估计的 区间,也使得整个误差只能计算上界,而无法 计算准确的值(所以叫做泛化误差界,而不叫 泛化误差)。
支持向量机原理SVMPPT课件
回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。
SVM支持向量机PPT
核函数的改进方向可能包括研究新的核函数形式,如高阶核函数、多核函数等,以提高SVM的分类精 度和泛化能力。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。
支持向量机(SVM)2演示报告PPT
SVM分类器
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看
支持向量机PPT课件
2023
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。
支持向量机PPT课件
支持向量机(SVM)
什么是支持向量机?
图A给出了一个线性可分数据集(可以在图中画一条直线将两组数据点 分开)
图B、C、D分别给出了一条分隔的直线,那么其中哪一条最好?是不是 有寻找最佳拟合直线的感觉?
支持向量机(SVM)就可以用来寻找此线性可分情形下的最优分类面。 (有人说SVM是最好的现成的分类器)
支持向量机的应用: 支持向量机已在人脸识别、文字识别、图像处理和时间序列预测等领域 获得了比较广泛的应用。
研究热点: 对支持向量机中算法的优化,包括解决SVM中二次规划求解问题 如何更好的构造基于SVM的多类分类器 如何提高SVM的归纳能力和分类速度 如何根据实际问题确定核函数
2021/6/7
27
部分资料从网络收集整 理而来,供大家参考,
第2类
第1类
m
2021/6/7
6
1、数学模型描述:
2021/6/7
7
2、支持向量机求解:
通过引入拉格朗日函数将上述最优化问题转化为其对偶问题,则可以得到
2021/6/7
8
3、解的性质
2021/6/7
9
4、几何解释
a5=0
a4=0
a9=0
第1类
第2类
a8=0.6
a10=0
a7=0 a2=0
a6=1.4
种描述, 且来自我们的先验知识 。 为了f(•) 存在, K (x,y) 需要满足 Mercer 条件。
2021/6/7
19
2021/6/7
20
非线性SVM算法
将所有的内积改为核函数 训练算法:
线性的
非线性的
2021/6/7
21
2021/6/7
22
什么是支持向量机?
图A给出了一个线性可分数据集(可以在图中画一条直线将两组数据点 分开)
图B、C、D分别给出了一条分隔的直线,那么其中哪一条最好?是不是 有寻找最佳拟合直线的感觉?
支持向量机(SVM)就可以用来寻找此线性可分情形下的最优分类面。 (有人说SVM是最好的现成的分类器)
支持向量机的应用: 支持向量机已在人脸识别、文字识别、图像处理和时间序列预测等领域 获得了比较广泛的应用。
研究热点: 对支持向量机中算法的优化,包括解决SVM中二次规划求解问题 如何更好的构造基于SVM的多类分类器 如何提高SVM的归纳能力和分类速度 如何根据实际问题确定核函数
2021/6/7
27
部分资料从网络收集整 理而来,供大家参考,
第2类
第1类
m
2021/6/7
6
1、数学模型描述:
2021/6/7
7
2、支持向量机求解:
通过引入拉格朗日函数将上述最优化问题转化为其对偶问题,则可以得到
2021/6/7
8
3、解的性质
2021/6/7
9
4、几何解释
a5=0
a4=0
a9=0
第1类
第2类
a8=0.6
a10=0
a7=0 a2=0
a6=1.4
种描述, 且来自我们的先验知识 。 为了f(•) 存在, K (x,y) 需要满足 Mercer 条件。
2021/6/7
19
2021/6/7
20
非线性SVM算法
将所有的内积改为核函数 训练算法:
线性的
非线性的
2021/6/7
21
2021/6/7
22
支持向量机SVM(ppt)-智能科学
其中,{f(x,w)}称作预测函数集,w为函数的广义 参数。{f(x,w)}可以表示任何函数集。L(y,f(x,w))为 由于用f(x,w)对y进行预测而造成的损失。不同类 型的学习问题有不同形式的损失函数。
2018/8/20 Chap8 SVM Zhongzhi Shi 11
经验风险
而对train set上产生的风险Remp(w)被称 为经验风险(学习的训练误差):
2018/8/20
统计学习方法概述
统计方法是从事物的外在数量上的表现去推断该 事物可能的规律性。科学规律性的东西一般总是 隐藏得比较深,最初总是从其数量表现上通过统 计分析看出一些线索,然后提出一定的假说或学 说,作进一步深入的理论研究。当理论研究 提出 一定的结论时,往往还需要在实践中加以验证。 就是说,观测一些自然现象或专门安排的实验所 得资料,是否与理论相符、在多大的程度上相符、 偏离可能是朝哪个方向等等问题,都需要用统计 分析的方法处理。
4. 构造学习算法的理论
How can one construct algorithms that can control the generalization ability?
2018/8/20
Chap8 SVM Zhongzhi Shi
17
结构风险最小化归纳原则 (SRM)
ERM is intended for relatively large samples (large l/h)
Let S = {Q(z,),}. An admissible structure S1S2…Sn…S:
For each k, the VC dimension hk of Sk is finite and h1≤h2≤…≤hn≤…≤hS Every Sk is either is non-negative bounded, or satisfies for some (p,k)
2018/8/20 Chap8 SVM Zhongzhi Shi 11
经验风险
而对train set上产生的风险Remp(w)被称 为经验风险(学习的训练误差):
2018/8/20
统计学习方法概述
统计方法是从事物的外在数量上的表现去推断该 事物可能的规律性。科学规律性的东西一般总是 隐藏得比较深,最初总是从其数量表现上通过统 计分析看出一些线索,然后提出一定的假说或学 说,作进一步深入的理论研究。当理论研究 提出 一定的结论时,往往还需要在实践中加以验证。 就是说,观测一些自然现象或专门安排的实验所 得资料,是否与理论相符、在多大的程度上相符、 偏离可能是朝哪个方向等等问题,都需要用统计 分析的方法处理。
4. 构造学习算法的理论
How can one construct algorithms that can control the generalization ability?
2018/8/20
Chap8 SVM Zhongzhi Shi
17
结构风险最小化归纳原则 (SRM)
ERM is intended for relatively large samples (large l/h)
Let S = {Q(z,),}. An admissible structure S1S2…Sn…S:
For each k, the VC dimension hk of Sk is finite and h1≤h2≤…≤hn≤…≤hS Every Sk is either is non-negative bounded, or satisfies for some (p,k)
《支持向量机》课件
非线性支持向量机(SVM)
1
核函数与核技巧
深入研究核函数和核技巧,将SVM应用于非线性问题。
2
多类别分类
探索如何使用SVM解决多类别分类问题。
3
多分类问题
了解如何将SVM应用于多分类问题以及解决方法。
SVM的应用
图像识别
探索SVM在图像识别领域 的广泛应用。
金融信用评估
了解SVM在金融领域中用 于信用评估的重要作用。
其他领域
探索SVM在其他领域中的 潜在应用,如生物医学和 自然语言处理。
《支持向量机》PPT课件
探索令人兴奋的机器学习算法 - 支持向量机。了解它的定义、历史、优点和 局限性,以及基本思想、几何解释和优化问题。
支持向量机简介
定义与背景
学习支持向量机的基本概念和背景知识。
优缺点
掌握支持向量机的优点和局限性,和核心思想。
几何解释和优化问题
几何解释
优化问题
通过直观的几何解释理解支持向量机的工作原理。 研究支持向量机的优化问题和求解方法。
线性支持向量机(SVM)
1 学习算法
探索线性支持向量机的 学习算法并了解如何应 用。
2 常见核函数
介绍常用的核函数类型 和选择方法,以及它们 在SVM中的作用。
3 软间隔最大化
研究软间隔最大化方法, 提高SVM在非线性问题 上的准确性。
《支持向量机SVM》课件
SVM的优点与应用
强大的分类器
SVM可以处理高维度和复杂数据,具有出色的分类准确度。
适用于小样本
相较于其他算法,SVM对样本数量较少的情况下仍能表现出色。
广泛的应用领域
SVM在图像识别、文本分类、生物信息学等领域都有着广泛的应用。
SVM分类器模型及原理
支持向量机模型
SVM通过在数据空间中找到 一个最大间隔的超平面来进 行分类。
最大间隔原理
最大间隔超平面使得不同类 别的数据点与超平面的间隔 最大化。
软间隔SVM
为了处理线性不可分的情况, 软间隔SVM允许一些样本出 现在超平面的错误一侧。
SVM核函数及调优方法
1
线性核函数
线性核函数在低维空间中表现良好,
多项式核函数
2
适用于线性可分的数据。
多项式核函数通过引入多项式函数
来处理非线性问题。
SVM在数据挖掘中的应用
SVM在数据挖掘中广泛应用,包括异常检测、文本和图像分类、推荐系统等。其强大的特征处理 和预测能力使其成展
随着机器学习领域的不断发展,SVM仍然是一种重要的算法。未来,我们可以期待更多关于SVM 的研究和改进,以适应不断增长的数据和复杂问题。
支持向量机SVM PPT课件
欢迎来到《支持向量机SVM》PPT课件!在本课程中,我们将深入探讨支持向 量机的原理、应用和未来发展。让我们一起开启这个引人入胜的机器学习之 旅吧!
支持向量机的介绍
支持向量机是一种强大的机器学习算法,可用于分类和回归分析。它通过寻找数据中的支持向量, 并创建一个最佳的分割超平面来进行预测和决策。
3
高斯核函数
高斯核函数能够将数据映射到高维 空间,处理复杂非线性数据。
模式识别8-支持向量机(SVM)课件
支持向量机
• 核:
核是一个函数K ,对所有x,z X , 满足 K ( x, z ) ( x ) ( z ) 这里是从输入空间X 到到特征空间F的映射. x ( x1,...xl ) ( x) (1( x),..., n( x)) 将输入空间X 映射到一个新的空间F ={( x) | x X }
最优分类面
首先建立Lagrange函数 w J ( w, b, ) [ y ( w x b) 1] 2
2 l i i i i 1
J ( w, b, ) 条件1: 0 w J ( w, b, ) 条件2: 0 b
最终可得到
1 l l Q( ) J ( w, b, ) i i jyiyj ( xi xj ) 2 i 1 j 1 i 1 寻找最大化目标函数Q( )的Lagrange乘子{ i }li 1 , 满足约束条件 (1)
所谓最优分类线就是要求分类线不 但能将两类正确分开(训练错误率 为0),而且使分类间隔最大. 推广到高维空间,最优分类线就变 为最优分类面。
最优分类面
设线性可分的样本集: D维空间中的线性判别函数:
{xi, yi}, i 1,...l, yi {1,1}, xi Rd
d 维空间中的判别函数:g ( X ) w x b, 分类面方程为w x b 0. k1 k 2 设H : w x b 0; H 1 : w x b k 1; H 2 : w x b k 2 令k , 2 H 1 : w x b k 1 k k ; H 2 : w x b k 2 k k 重写H 1, H 2 : H 1 : w x b k ; H 2 : w x b k 归一化:H 1 : w x b 1; H 2 : w x b 1
《支持向量机》课件
对于非线性数据集,训练算法 通过核函数将数据映射到更高 维的特征空间,然后在特征空 间中寻找最优超平面进行分类 。常见的核函数有线性核、多 项式核、径向基函数核等。
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SVM基本原理
公式中蓝色的部分为在线性可分问题的基础上加上的惩罚函数 部分,当xi在正确一边的时候,ε=0,R为全部的点的数目,C 是一个由用户去指定的系数,表示对分错的点加入多少的惩罚 ,当C很大的时候,分错的点就会更少,但是过拟合的情况可能 会比较严重,当C很小的时候,分错的点可能会很多,不过可能 由此得到的模型也会不太正确,所以如何选择C是有很多学问的 ,不过在大部分情况下就是通过经验尝试得到的。
➢ 多类分类问题可以通过多个二类支持向量机的组合来解决。 主要有一对多组合模式、一对一组合模式1 vs 1 、和SVM决策树;再 就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺 点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论 结合,形成一种优势互补的多类问题的组合分类器。 一对多组合模式1 vs (N – 1) :需要训练N个分类器,第i个分 类器是看看是属于分类i还是属于分类i的补集(除去i的N-1个分类) 一对一组合模式1 vs 1 :需要训练N * (N – 1) / 2个分类器 ,分类器(i,j)能够判断某个点是属于i还是属于j,这种处理方式不仅在 SVM中会用到,在很多其他的分类中也是被广泛用到 从已有的研究来看,1 vs 1的方式要优于1 vs (N – 1)
的表达式:
||w||的意思是w的二范数,跟上面的M表达式 的分母意思相同,之前得到,M = 2 / ||w|| ,最大化这个式子等价于最小化||w||, 另外 由于||w||是一个单调函数,为了方便求导, 我们可以对其加入平方和前面的系数
SVM基本原理
➢ 上式有还有一些限制条件,完整的表达方式如下: s.t.意为subject to,即在后面这个限制条件下的意思,这个词 在svm的论文里面出现的频率很高。 这其实是一个带约束的二次规划(quadratic programming, QP)问题,是一个凸问题。凸问题就是指的不会有局部最优解, 可以想象一个漏斗,不管我们开始的时候将一个小球放在漏斗的 什么位置,这个小球最终一定可以掉出漏斗,也就是得到全局最 优解。s.t.后面的限制条件可以看做是一个凸多面体,我们要做 的就是在这个凸多面体中找到最优解。
➢ TWSVM(对支持向量机)是一种通过解决SVM相关问题确定两个 非平行平面的新的二元SVM分类器,与传统的SVM方法相比,Twin SVM不仅达到了更快的检测速度及更优的检测效果,而且大大降 低了算法的时间复杂度.
➢ Jayadeva和R.Khemchandani于2007年提出了一种该改进的 二值数据的分类器双分界面支持向量机(TwinSVMs,以下简称 TwSVMs)。它在形式上类似于传统的支持向量机,具有支持向 量机的优点,却对大规模数据具有更好的处理能力。TWSVMs模 型的目标是为两个类各自得到一个分类平面,属于每个类的数据 尽量围绕在与之相对应的分类平面周围。假设属于1类和-1类的 数据点分别由矩阵A和矩阵B来表示,1类和-1类中模型的个数分别 是m1和m2,那么TWSVMs分类器可以通过以下一对二次规划
SVM基本原理 新问题加上其限制条件是(对偶问题):
➢ 这个就是我们需要最终优化的式子。至此,得 到了线性可分问题的优化式子。
➢ 求解这个式子,有很多的方法,比如SMO等
SVM基本原理
线性不可分类型
➢ 线性可分这种假设局限性比较大,接下来谈谈线性不可分的情况 : 下图就是一个典型的线性不可分的分类图,我们没有办法用一条 直线去将其分成两个区域,使每个区域只包含一种颜色的点。
SVM基本原理
➢ 要想在这种情况下的分类器,有两种方式: ➢ 第一种:用曲线去将其完全分开
Hale Waihona Puke SVM基本原理➢ 第二种:还是用直线,不过不用去保证可分性 ,就是包容那些分错的情况,这里我们得加入 惩罚函数,使得点分错的情况越合理越好。 很多时候,不是在训练的时候分类函数越 完美越好,因为训练函数中有些数据本来就是 噪声,可能就是在人工加上分类标签的时候出 现了错误,如果在训练(学习)的时候把这些 错误的点学习到了,那么模型在下次碰到这些 错误情况的时候就难免出错。 这种学习的时候学到了“噪声”的过程就 是一个过拟合(over-fitting)
支持向量机理论及发展
李保连 2012-11-20
主要内容
SVM简介 SVM基本原理 SVM面临的一些问题 TWIN SVM介绍
支持向量机理论简介
➢ 支持向量机SVM(Support Vector Machine) 是统计机器学习的一类重要算法,它根据统计 学习理论,以结构风险最小化原则为理论基础 的一种新的机器学习方法,能有效地解决高维 数和非线性等问题,有效地进行分类、回归等 。与其它分类器相比,SVM具有更好的泛化性 。迄今为止,SVM已经在模式分类、回归分析 、函数估计等领域有广泛的应用。
SVM面临的一些问题
SVM会overfitting吗
➢ SVM避免overfitting ,一种是调整之前说的 惩罚函数中的C,另一种其实从式子上来看, min ||w||^2这个式子可以让函数更平滑, 所以SVM是一种不太容易over-fitting的方法 。
TWIN SVM介绍
什么是twin svm
SVM基本原理
➢ 怎样才能取得一个最优的划分直线f(x)呢? 下图的直线表示几条可能的f(x)
SVM基本原理
一个很直观的感受是,让这条直线到给定样本中最近的点最远
下面有两种划分方法
第一种
第二种
右图中被红色和蓝色圈中的点即所谓的支持向量(support vector)
SVM基本原理
➢ 原则:分割的间隙越大越好,把两个类别的点分得越开越好 ➢ 在SVM中,这种最大的分隔间隙称为Maximum Marginal,是
什么是svm
原始区域 svm划分后的区域
SVM基本原理
线性可分类型
问题描述:我们要用一条直线,将上图中黑色的点和白色的点 分开,很显然,图上的这条直线就是我们要求的直线之一(可 以有无数条这样的直线)
SVM基本原理
➢ 我们令深色的点 = -1, 浅色的点 = +1,直线f(x) = W ·X + b,这里的W、X是向量, 这种形式也等价于f(x) = W1X1 + W2X2 … + WnXn + b
SVM面临的一些问题
SVM处理大规模数据问题
➢ SVM算法对大规模训练样本难以实施 由于SVM是借助二次规划来求解支持向量,而求
解二次规划将涉及m阶矩阵的计算(m为样本的个数 ),当m数目很大时该矩阵的存储和计算将耗费大量 的机器内存和运算时间。
针对以上问题的主要改进有有J.Platt的SMO算法 、T.Joachims的SVM 、C.J.C.Burges等的PCGC、 张学工的CSVM以及O.L.Mangasarian等的SOR算法
接下来就是同样的,求解一个拉格朗日对偶问题,得到一个原问题 的对偶问题的表达式:
SVM基本原理
➢ 蓝色的部分是与线性可分的对偶问题表达式的 不同之处。在线性不可分情况下得到的对偶问 题,不同的地方就是α的范围从[0, +∞),变 为了[0, C],增加的惩罚ε没有为对偶问题增 加什么复杂度。
SVM基本原理
TWIN SVM介绍
twin svm与svm的区别和联系
区别:
约束条件 要解决的问题
训练时间
SVM
所有的数据都
一个二次规划问题
T
在约束条件中
其中一个类的
数据作为另一
TWSVM 个类二次规划 一对二次规划的问题
T/4
问题的约束条
件,反之亦然
联系:
除了约束条件不包含所有数据外,TWSVM中每个二次规划问题都接近 于传统的SVM形式,所以TWSVM可以看做是SVM的分解算法。同时, 对于解决大规模问题,SVM和TWSVM也都难以实施。目前,已提出一 些进一步改进的算法,如TWSTM,GTWSVM等.
SVM基本原理
➢ 下图是一个典型的线性不可分的情况
➢ 但是当我们把这两个类似于椭圆形的点映射到 一个高维空间后,映射函数为:
SVM基本原理
➢ 用这个函数可以将上图的平面中的点映射到一 个三维空间(z1,z2,z3),并且对映射后的坐 标加以旋转之后就可以得到一个线性可分的点 集了。
SVM基本原理
核函数: SVM的关键在于核函数,低维空间向量集通常难于划 分,解决的方法是将它们映射到高维的特征空间。但 这个办法带来的困难就是计算复杂度的增加,而核函 数正好巧妙地解决了这个问题。
我们可以让空间从原本的线性空间变成一个更高维的空 间,在这个高维的线性空间下,再用一个超平面进行划 分。这儿举个例子,来理解一下如何利用空间的维度变 得更高来帮助我们分类的:
➢ 为什么要映射到高维空间: 当维度增加到无限维的时候,一定可以让任意的两个 物体可分了。
举一个哲学例子来说:世界上本来没有两个完全一样 的物体,对于所有的两个物体,我们可以通过增加维 度来让他们最终有所区别,比如说两本书,从(颜色, 内容)两个维度来说,可能是一样的,我们可以加上作 者这个维度,实在不行我们还可以加入页码,可以加 入拥有者,可以加入购买地点,可以加入笔记内容等 等来使它们变得不同。
SVM基本原理
这个优化问题可以用拉格朗日乘子法去解,使 用了KKT条件的理论,这里直接给出这个式子 的拉格朗日目标函数
➢ 求解这个式子的过程需要拉格朗日对偶性的相 关知识,首先让L关于w,b最小化,分别令L 关于w,b的偏导数为0,得到关于原问题的一 个表达式
SVM基本原理
将两式带回L(w,b,a)得到对偶问题的表 达式:
小结: 1. 只要选用适当的核函数,我们就可以得到高维空间 的分类函数。 2. 在SVM理论中,采用不同的核函数将导致不同的 SVM算法
SVM面临的一些问题
SVM如何进行多分类