支持向量机原理 ppt

合集下载

支持向量机SVMPPT课件

支持向量机SVMPPT课件
最后得出原空间中的二次曲线:
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介

《支持向量机SVM》课件

《支持向量机SVM》课件

多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。

支持向量机原理SVMPPT课件

支持向量机原理SVMPPT课件

回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。

SVM支持向量机PPT

SVM支持向量机PPT
核函数的改进方向可能包括研究新的核函数形式,如高阶核函数、多核函数等,以提高SVM的分类精 度和泛化能力。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。

支持向量机(SVM)2演示报告PPT

支持向量机(SVM)2演示报告PPT
SVM分类器
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看

支持向量机PPT课件

支持向量机PPT课件
2023
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。

第二讲 支持向量机技术32页PPT

第二讲 支持向量机技术32页PPT

(4)
i1
i 1, ,l
当C=∞, K(xi,xj)=(xi,xj)时对应线性可分情形; 当0<C<∞, K(xi,xj)=(xi,xj)时对应近似线性可分情 形。
支持向量机的特色
• 用间隔定量地定义了置信风险:间隔越大,置信 风险越小,间隔越小,置信风险越大
• 用参数C实现了经验风险与置信风险的折中 • 最优分类超平面只由少数支持向量决定,问题具
C
C0
(4)若 问 题 (PC )和 (Pv )的 解 是 唯 一 的 , 按 映 射 =(C )
建 立 C与 的 对 应 关 系 , 则 C-SVC与 v-SVC有 相 同 的
决策函数
( C ) 的图像
ν-SVC与平分最近点原理的关系(1)
V=2的v-svc模型
的对偶模型为:
与平分最近点原理 的模型完全一样
min
w,b,i ,
1 2
||
w ||2
2

l i1
i
S.T. yi ((w,(xi )) b) i
i 0,i 1, ,l, 0
min 1
2
l i 1
l i 1
yi y j i j K ( xi , x j )
i 0,i 1, ,l, 0
对 偶 模 型
min
1 2
l i 1
l i 1
yi y j i j K ( xi , x j )
l
l
S.T . yii 0, i
(11)
i 1
i 1
0

i

1 l
,i
1,
,l
ν-SVC性质

支持向量机简介PPT课件

支持向量机简介PPT课件

经验风险最小化思想图示
举例:神经网络的构造过程
先确定网络结构 :网络层数,每层节点数 相当于VC维确定, (n / h) 确定。
通过训练确定最优权值,相当于最小化 R emp ( w ) 。 目前存在的问题是神经网络结构的确定大多是凭经验
选取,有一定的盲目性,无法确定泛化的置信界限, 所以无法保证网络的泛化能力。 即使经验误差很小,但可能推广或泛化能力很差。这 就是神经网络中的过学习难题。
研究小样本下机器学习规律的理论。 基本思想:折衷考虑经验风险和推广的置信界
限,取得实际期望风险的最小化。 两大核心: VC维和结构风险最小化。
VC维的概念
描述函数复杂性的指标 假如存在一个由h个样本的样本集能够被一个
函数集中的函数按照所有可能的2h 种形式分 为两类,则函数集能够把样本数为h的样本集 打散(shattering)。函数集的vc维就是用这个函 数集中的函数所能够打散的最大样本集数的样 本数目。
X表示成
x
xp
r
||
w w
||
xp :x在H上的投影向量 r:是x到H的垂直距离
g (x ) w T (x p r||w w ||) b w T x p b r|w |w T w || r||w g ||(x)w wT /(|x |wp ||:r||是w w w||)方b 向 上w T 的xp单b 位 向r|w |量w Tw ||r||w ||
Support Vector Machine支持向量机简介
报告概览
系统辨识和模式识别问题一般描述及存在问题 统计学习理论基本思想 支持向量机算法
➢ 线性可分 ➢ 近似线性可分 ➢ 非线性可分
SVM软件包 故障诊断中的应用

支持向量机课件

支持向量机课件

s.t.
yi[(.ai ) b] 1 i , i 0,i 1, l.
其中 C 0 是一个惩罚参数.其Lagrange函数如下:
L(,b, ,, )
1 2
2
l
C i
i 1
l
i i
i 1
l
- i{yi[(.ai ) b] 1 i} i 1
其中 i 0, i 0.
2012年夏
yi[(.ai ) b] 0,i 1, ,l, im1,in,l (.ai ) b 1 的超平面为训练集T 的规范超平面.
2012年夏
定理:当训练集T为线形可分时,存在唯一的规范 超平面 (.x) b 0 ,使得:
((..aaii
) )
b b
1, yi 1,
yi
1,
1.
2012年夏
yi[(.ai ) b] 1 的样本点,仍然能继续使用超平面进行划 分。只是这时要对间隔“软化”,构造软 间隔超平面。
2012年夏
构造软间隔超平面,简言之就是在两个分 类边界 (.x) b 1 之间允许出现样本点, 这类样本点称为边界支持向量。
2012年夏
软化方法是通过引入松弛变量 i 0,i 1, ,l,
当训练集T的两类样本点重合的区域很大 时,上述用来处理线性不可分问题的线性支持 向量分类机就不适用了,可分支持向量分类机 给出了解决这种问题的一种有效途径:
通过某个非线性的映射 将输入向量映
射到一个更高维的空间中,使得这些样本在 高维空间中线性可分,然后在该空间构造最 优分类超平面。
2012年夏
如图所示:
定义: M 的凸包 conv(M ) 为:
N
N
conv(M ) {a jaj j 1, j 0, j 1 N; a j M }.

支持向量机PPT

支持向量机PPT
3
1.支持向量机概述 支持向量机是基于统计学习理论一种具有严格数学理论基础和 直观集合解释的新型机器学习方法,在处理不均匀性、离散性、 稀少性等特点突出的测录井小样本数据学习问题上具有独到的优 越性。相比其他算法在以下几个方面具有更大优势: 1.支持向量机结构简单,功能强大,运算之前不需要确定隐含 层节点个数,可以根据实际问题的需要而自动调节规模。
5
1.支持向量机概述 4. 支持向量机模型通过非线性变换将样本数据转换到高维的 特征空间,通过在高维空间中构造线性判别函数来非线性判别函 数,它的这一特殊性使得支持向量机模型具有较好的推广能力, 并且其算法复杂度与样本数据维数无关,从而同时巧妙地解决了 维数问题。
6
2.线性支持向量机 线性可分的情况:
20
4.支持向量机核函数
回忆上面得到的对偶问题表达式:
将红色这个部分进行改造,令: 这个式子所做的事情就是将线性的空间映射到高维的空间,k(x, xj) 有很多种,下面是比较典型的两种:
21
4.支持向量机核函数
上面这个核称为多项式核,下面这个核称为高斯核,高斯核甚至是将原 始空间映射为无穷维空间,另外核函数有一些比较好的性质,比如说不会比 线性条件下增加多少额外的计算量,等等。一般对于一个问题,不同的核函 数可能会带来不同的结果,一般是需要尝试来得到的。
15
3.非线性支持向量机
在上图中,蓝色、红色的直线分别为支持向量所在的边界,绿色的线为 决策函数,那些紫色的线表示分错的点到其相应的决策面的距离,这样我们 可以在原函数上面加上一个惩罚函数,并且带上其限制条件为:
公式中蓝色的部分为在线性可分问题的基础上加上的惩罚函数部分,当 xi在正确一边的时候,ε=0,R为全部的点的数目,C是一个由用户去指定的 系数,表示对分错的点加入多少的惩罚,当C很大的时候,分错的点就会更 少,但是过拟合的情况可能会比较严重,当C很小的时候,分错的点可能会 很多,不过可能由此得到的模型也会不太正确,所以如何选择C是有很多学 问的,不过在大部分情况下就是通过经验尝试得到的。

《支持向量机》课件

《支持向量机》课件
对于非线性数据集,训练算法 通过核函数将数据映射到更高 维的特征空间,然后在特征空 间中寻找最优超平面进行分类 。常见的核函数有线性核、多 项式核、径向基函数核等。
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03

统计学习理论--支持向量机100页PPT

统计学习理论--支持向量机100页PPT

1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
统计学习理论--支持向量机
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
支持向量机
2014-2-21
-
1
本讲主要内容
一. 支持向量机
二. 最大间隔分类器
三. 核函数
四.软间隔优化
五.支持向量机总结
-
2
一. SVM— warming up
1.1 SVM概念简介 1.2 超平面 1.3 logistic回归 1.4 形式化表示 1.5 函数间隔与几何间隔
-
16
2.3 最大间隔分类器
重新回到SVM的优化问题:
我们将约束条件改写为:
-
17
2.3 最大间隔分类器
从KKT条件得知只有函数间隔是1(离超平面最近的
点)的线性约束式前面的系数 ,也就是说这些约
束式
,对于其他的不在线上的点( ),极值
不会在他们所在的范围内取得,因此前面的系数 .
注意每一个约束式实际就是一个训练样本。
-
6
1.3 logistic回归
形式化表示:
x 假是设n函维数特为征:向h 量(,x)函数g(gTx就) 是1leo1 giTsxtic 函数。
其图中像如g图(z)所示1:1ez 可以看到,将无穷映 射到了(0,1)
-
7
1.4 形式化表示
结果标签是y=-1,y=1,替换logistic回归中的y=0和y=1。
利用拉格朗日公式变换:


-
14
2.2拉格朗日对偶之不等式约束
原来要求的min f(w)可以转换成
求了。
利用对偶求解:
D的意思是对偶,
将问题转化为先求拉格朗日关
于w的最小值,将α和β看作是固定值。之后在
求最大值的话:
-
15
2.2拉格朗日对偶之不等式约束
下面解释在什么条件下两者会等价。假设f和g都是凸 函数,h是仿射的。并且存在w使得对于所有的i, 。在这种假设下,一定存在 使得是 原问题的解 , 是对偶问题的解。还有另外, 满足库恩-塔 克条件(Karush-Kuhn-Tucker, KKT condition),该 条件如下:
形式1: 形式2: 形式3:
-
12
2.2拉格朗日对偶之等式约束
问题:
目标函数是f(w),通常解法是引入拉格朗日算子,这 里使用来表示β算子,得到拉格朗日公式为 :
L是等式约束的个数。然后分别对w和β求偏导,使得 偏导数等于0,然后解出w和β。
-
13
2.2拉格朗日对偶之不等式约束
问题:
这就启示我们可以不必定义非线性映射Φ而直接在输 入空间中定义核函数K来完成非线性映射。
这样做的条件是:
1. 定义的核函数K能够对应于特征空间中的内积; 2. 识别方法中不需要计算特征空间中的矢量本身,而只须计算
计算R3中2个矢量的内积:
x t y x 1 2 ,2 x 1 x 2 ,x 2 2y 1 2 ,2 y 1 y 2 ,y 2 2 t x t y 2
定义核函数:Kx,yxty2,则:xtyKx,y
输入空间
特征空间
-
25
3.1 核函数简介
上个例子说明:特征空间中两个矢量之间的内积可以 通过定义输入空间中的核函数直接计算得到。
ቤተ መጻሕፍቲ ባይዱ
同时将替换成w和b。以前的
,其中认为 。现在我们替换 为b,后面
替换为
( 即 )。
我们只需考虑 的正负问题,而不用关心g(z),因此我 们这里将g(z)做一个简化,将其简单映射到y=-1和y=1上。 映射关系如下:
-
8
1.5 函数间隔与几何间隔
定义函数间隔为:
x是特征,y是结果标签。i表示第i个样本。(这是单

最小值只与w和b有关。对w和b分别求偏导数。
-
20
2.3 最大间隔分类器
得到: 代入后,结果如下:
由于最后一项是0,因此简化为
-
21
2.3 最大间隔分类器
此时的拉格朗日函数只包含了变量。然而我们求出了 才能得到w和b。
接着是极大化的过程
-
22
2.3 最大间隔分类器
前面提到过对偶问题和原问题满足的几个条件,首先 由于目标函数和线性约束都是凸函数,而且这里不存 在等式约束h。存在w使得对于所有的i, 因此,
个样本) 全局函数间隔: 在训练样本上分类正例和负例确信度最小那个函数间隔
-
9
1.5 函数间隔与几何间隔
几何间隔:
全局几何间隔:
-
10
二. 最大间隔分类器
2.1 二次规划原问题建立
2.2 拉格朗日对偶 2.2.1 等式约束 2.2.1 不等式约束
2.3 最大间隔分类器
-
11
2.1 二次规划原问题建立
-
18
2.3 最大间隔分类器
实线是最大间隔超平面,假设×号的是正例,圆圈的 是负例。在虚线上的点就是函数间隔是1的点,那么他 们前面的系数 ,其他点都是 。这三个点称作支 持向量。构造拉格朗日函数如下:
-
19
2.3 最大间隔分类器
下面我们按照对偶问题的求解步骤来一步步进行,
首先求解
的最小值,对于固定的 ,
一定存在 使得 是原问题的解,是对偶问题的解。
在这里,求 就是 求了。
如果求出了 , 原问题的解)。然后
根据即可求出w(也是 ,
即可求出b。即离超平面最近的正的函数间隔要等
于离超平面最近的负的函数间隔。
-
23
三. 核函数
3.1 核函数简介 3.2 核函数有效性判定
-
24
3.1 核函数简介
建立一个R2R3的非线性映射 :x1,x2t x1 2, 2x1x2,x2 2t
-
4
1.2 超平面
超平面H是从n维空间到n-1维空间的一 个映射子空间。
设d是n维欧式空间R中的一个非零向量, a是实数,则R中满足条件dX=a的点X所 组成的集合称为R中的一张超平面。
-
5
1.3 logistic回归
Logistic 回归目的是从特征学习出一个 0/1 分类模型,而这个模型是将特性的线 性组合作为自变量,由于自变量的取值 范围是负无穷到正无穷。因此,使用 logistic 函数(或称作 sigmoid 函数)将 自变量映射到(0,1)上,映射后的值被认 为是属于 y=1 的概率。
-
3
1.1 SVM概念简介
支持向量机(SVM)是 90 年代中期发展起来的基于统 计学习理论的一种机器学习方法,通过寻求结构化风 险最小来提高学习机泛化能力,实现经验风险和置信 范围的最小化,从而达到在统计样本量较少的情况下, 亦能获得良好统计规律的目的。
通俗来讲,它是一种二类分类模型,其基本模型定义 为特征空间上的间隔最大的线性分类器,即支持向量 机的学习策略便是间隔最大化,最终可转化为一个凸 二次规划问题的求解。
相关文档
最新文档