支持向量机(SVM)的详细推导

合集下载

SVM支持向量机算法的详细推导(详细到每个步骤,值得推荐)

SVM支持向量机算法的详细推导(详细到每个步骤,值得推荐)

建立非线性可分数据的最优超平面可以采用与线性可 分情况类似的方法,即对于给定的训练样本 {(X1,d1), (X2,d2),…,(Xp,dp),…(XP,dP)} ,寻找权值W和 阈值B的最优值,使其在式(8.19)的约束下,最小化关 于权值W和松弛变量 ξp 的代价函数
C是选定的正参数。 与前述方法相似,采用Laglange系数方法解决约束最 优问题。需要注意的是,在引入Lagrange函数时,使 e函数变为
WT XP+b<0
dp =-1
超平面与最近的样本点之间的间隔称为分离边缘,用ρ表示。 支持向量机的目标是找到一个分离边缘最大的超平面,即最优 超平面。也就是要确定使ρ最大时的W和b。 图8.1给出二维平面中最优超平面的示意图。可以看出,最优 超平面能提供两类之间最大可能的分离,因此确定最优超平面 的权值W0和偏置b0应是唯一的。在式(8.1)定义的一簇超平面中, 最优超平面的方程应为: WT X0+b0=0(应该是W0 X + b0 = 0吧? ) 直接求W0和b0基本上不太可能,除了训练集无别的信息可用, 如何办? 一种方法:使求得的预测函数 y = f(x) = sgn(W· + b)对原有 X 样本的分类错误率最小。 如何使分类错误率最小?下面慢慢分 析。
αp>0 以上为不等式约束的二次函数极值问题(Quadratic Programming,QP)。由Kuhn Tucker定理知,式 (8.14)的最优解必须满足以下最优化条件(KKT条件)
上式等号成立的两种情况:一是αp为零;另一种是 (WT XP+b) dp=1 。第二种情况仅对应于样本为支持向量。 设Q(α)的最优解为{α01, α02,......, α0p} ,可通过式(8.12) 计算最优权值向量,其中多数样本的Lagrange系数为零, 因此

svm算法公式

svm算法公式

svm算法公式摘要:1.简介2.SVM 算法基本思想3.SVM 算法公式推导4.SVM 算法应用场景与优缺点5.总结正文:1.简介支持向量机(Support Vector Machine,SVM)是一种经典的二分类机器学习算法。

它通过划分超平面,使得不同类别的数据点到超平面的距离最大,从而实现分类。

SVM 算法具有良好的泛化能力,广泛应用于文本分类、图像分类、生物信息学等领域。

2.SVM 算法基本思想SVM 算法的基本思想是找到一个最佳超平面,使得两个类别之间的距离(即几何间隔)最大化。

为了找到这个最佳超平面,SVM 算法需要解决一个优化问题,即求解一个凸二次规划问题。

3.SVM 算法公式推导设训练样本集为X = {x1, x2, ..., xn},标签为Y = {y1, y2, ..., yn},其中yi∈{-1, 1}。

SVM 算法的优化目标是最小化误分类点到超平面的几何间隔之和,即:min ∑(yi - ∑αi * yi * kernel(xi, xj))^2其中,αi 表示第i 个支持向量对应的拉格朗日乘子,kernel(xi, xj) 表示核函数,用于计算两个向量之间的相似度。

对于线性核函数,kernel(xi, xj) = xi·xj;对于多项式核函数,kernel(xi, xj) = (xi·xj + 1)^d。

4.SVM 算法应用场景与优缺点SVM 算法在以下场景中表现良好:- 数据集具有较高维度,但线性可分;- 数据集中存在噪声或异常值;- 需要对类别进行细分的场景。

SVM 算法的优点包括:- 具有较好的泛化能力,能有效处理过拟合问题;- 对于线性可分数据集,能够实现最优分类效果;- 支持多种核函数,可处理非线性问题。

SVM 算法的缺点包括:- 对于非线性数据集,需要选择合适的核函数,否则可能无法获得好的分类效果;- 计算复杂度较高,尤其是当数据量较大时。

5.总结支持向量机(SVM)是一种经典的二分类机器学习算法,通过寻找最佳超平面来实现分类。

支持向量机的基本原理

支持向量机的基本原理

支持向量机的基本原理
支持向量机(Support Vector Machine, SVM)是一种二分类模型,其基本原理是找到一个最优的超平面来进行数据的划分。

其基本思想是将样本空间映射到高维特征空间,找到一个超平面使得正负样本之间的间隔最大化,从而实现分类。

具体来说,SVM的基本原理包括以下几个步骤:
1. 寻找最优超平面:将样本空间映射到高维特征空间,使得样本在特征空间中线性可分。

然后寻找一个超平面来最大化两个不同类别样本的间隔(也称为“分类间隔”)。

2. 构建优化问题:SVM通过解决一个凸二次规划问题来求解最优超平面。

该优化问题的目标是最大化分类间隔,同时限制样本的分类正确性。

3. 核函数技巧:在实际应用中,数据通常是非线性可分的。

通过引入核函数的技巧,可以将非线性问题转化为高维或无限维的线性问题。

常用的核函数有线性核、多项式核、高斯核等。

4. 寻找支持向量:在求解优化问题时,只有一部分样本点对于最优超平面的确定起到决定性作用,这些样本点被称为“支持向量”。

支持向量决定了超平面的位置。

5. 分类决策函数:在得到最优超平面后,可以通过计算样本点到超平面的距离来进行分类。

对于新的样本点,根据其距离超平面的远近来判断其所属类别。

支持向量机的基本原理可以简单概括为在高维特征空间中找到一个最优超平面,使得样本的分类间隔最大化。

通过引入核函数的技巧,SVM也可以处理非线性可分的问题。

支持向量机具有理论基础牢固、分类效果好等优点,在实际应用中得到了广泛的应用。

SVM的原理和代码实现

SVM的原理和代码实现

SVM的原理和代码实现SVM(Support Vector Machine,支持向量机)是一种常用的机器学习算法,用于二分类和回归问题。

SVM的核心思想是找到一个最优的超平面,将不同类别的数据样本分开。

这个超平面由支持向量(样本)确定,使得支持向量到超平面的距离最大化。

本文将介绍SVM的原理及其代码实现。

一、SVM原理:1.线性可分情况:对于线性可分的数据集,SVM的目标是找到一个超平面,使得所有正例样本都位于超平面的一侧,负例样本都位于另一侧。

超平面的方程可以表示为:w^T*x+b=0,其中w是一个向量,表示法向量,b是偏置。

2.间隔最大化:SVM的关键是最大化两个不同类别样本之间的几何间隔。

间隔是沿着超平面的宽度,因此离分类超平面最近的实例点,即两个最靠近超平面的支持向量(x1和x2),满足w^T*x1+b=1和w^T*x2+b=-1、它们满足w^T*(x1-x2)=2/(,w,)。

因此,SVM的优化问题转化为求解最大化2/(,w,)的最小化问题。

也就是求解以下优化问题:minimize ,w,^2/2,其中y_i*(w^T*x_i + b) >= 13.引入松弛变量:当数据不是完全线性可分时,引入松弛变量xi,使得一些样本可以处于错误的一侧。

此时优化问题转化为:minimize ,w,^2/2 + C*Σξ_i,其中y_i*(w^T*x_i + b) >= 1 - ξ_i,ξ_i >= 0。

C是一个超参数,用于控制错误样本的惩罚程度。

当C越大,对错误样本的惩罚越重;C越小,则对错误样本的惩罚越轻。

4.对偶问题:为了方便求解SVM的优化问题,引入拉格朗日乘子,将SVM的原始问题转化为对偶问题。

通过求解对偶问题,可以得到最优解。

对偶问题如下:maximize Σα_i - 1/2*ΣΣ α_i*α_j*y_i*y_j*x_i*x_j,其中Σα_i*y_i = 0,0 <= α_i <= C。

机器学习--支持向量机(SVM)算法的原理及优缺点

机器学习--支持向量机(SVM)算法的原理及优缺点

机器学习--⽀持向量机(SVM)算法的原理及优缺点⼀、⽀持向量机(SVM)算法的原理 ⽀持向量机(Support Vector Machine,常简称为SVM)是⼀种监督式学习的⽅法,可⼴泛地应⽤于统计分类以及回归分析。

它是将向量映射到⼀个更⾼维的空间⾥,在这个空间⾥建⽴有⼀个最⼤间隔超平⾯。

在分开数据的超平⾯的两边建有两个互相平⾏的超平⾯,分隔超平⾯使两个平⾏超平⾯的距离最⼤化。

假定平⾏超平⾯间的距离或差距越⼤,分类器的总误差越⼩。

1.⽀持向量机的基本思想 对于线性可分的任务,找到⼀个具有最⼤间隔超平⾯,如图所⽰, (1)⽀持向量机的基本型为: (2)软间隔的优化⽬标: 其中,0-1函数为错分样本的个数。

(3)核⽅法: 其中为特征映射函数。

2、实验⼀般步骤: (1)导⼊数据; (2)数据归⼀化; (3)执⾏svm寻找最优的超平⾯; (4)绘制分类超平⾯核⽀持向量; (5)利⽤多项式特征在⾼维空间中执⾏线性svm (6)选择合适的核函数,执⾏⾮线性svm; 3、算法优缺点: 算法优点: (1)使⽤核函数可以向⾼维空间进⾏映射 (2)使⽤核函数可以解决⾮线性的分类 (3)分类思想很简单,就是将样本与决策⾯的间隔最⼤化 (4)分类效果较好 算法缺点: (1)SVM算法对⼤规模训练样本难以实施 (2)⽤SVM解决多分类问题存在困难 (3)对缺失数据敏感,对参数和核函数的选择敏感 ⼆、数学推导过程 对于线性可分的⽀持向量机求解问题实际上可转化为⼀个带约束条件的最优化求解问题: 推理过程: 结果: 对于线性不可分的⽀持向量机求解问题实际上可转化为⼀个带约束条件的soft-margin最优化求解问题:三、代码实现1、线性svmimport numpy as npfrom sklearn.datasets import load_irisimport matplotlib.pyplot as pltfrom sklearn.preprocessing import StandardScalerfrom sklearn.svm import LinearSVCfrom matplotlib.colors import ListedColormapimport warningsdef plot_decision_boundary(model,axis):x0,x1=np.meshgrid(np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1))x_new=np.c_[x0.ravel(),x1.ravel()]y_predict=model.predict(x_new)zz=y_predict.reshape(x0.shape)custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)w = model.coef_[0]b = model.intercept_[0]plot_x = np.linspace(axis[0],axis[1],200)up_y = -w[0]/w[1]*plot_x - b/w[1] + 1/w[1]down_y = -w[0]/w[1]*plot_x - b/w[1] - 1/w[1]up_index = (up_y>=axis[2]) & (up_y<=axis[3])down_index = (down_y>=axis[2]) & (down_y<=axis[3])plt.plot(plot_x[up_index],up_y[up_index],c='black')plt.plot(plot_x[down_index],down_y[down_index],c='black')warnings.filterwarnings("ignore")data = load_iris()x = data.datay = data.targetx = x[y<2,:2]y = y[y<2]scaler = StandardScaler()scaler.fit(x)x = scaler.transform(x)svc = LinearSVC(C=1e9)svc.fit(x,y)plot_decision_boundary(svc,axis=[-3,3,-3,3])plt.scatter(x[y==0,0],x[y==0,1],c='r')plt.scatter(x[y==1,0],x[y==1,1],c='b')plt.show()输出结果:2、⾮线性-多项式特征import numpy as npfrom sklearn import datasetsimport matplotlib.pyplot as pltfrom sklearn.preprocessing import PolynomialFeatures,StandardScaler from sklearn.svm import LinearSVCfrom sklearn.pipeline import Pipelinefrom matplotlib.colors import ListedColormapimport warningsdef plot_decision_boundary(model,axis):x0,x1=np.meshgrid(np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1), np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1) )x_new=np.c_[x0.ravel(),x1.ravel()]y_predict=model.predict(x_new)zz=y_predict.reshape(x0.shape)custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)def PolynomialSVC(degree,C=1.0):return Pipeline([('poly',PolynomialFeatures(degree=degree)),('std_scaler',StandardScaler()),('linearSVC',LinearSVC(C=1e9))])warnings.filterwarnings("ignore")poly_svc = PolynomialSVC(degree=3)X,y = datasets.make_moons(noise=0.15,random_state=666)poly_svc.fit(X,y)plot_decision_boundary(poly_svc,axis=[-1.5,2.5,-1.0,1.5])plt.scatter(X[y==0,0],X[y==0,1],c='red')plt.scatter(X[y==1,0],X[y==1,1],c='blue')plt.show()输出结果:3、⾮线性-核⽅法from sklearn.preprocessing import StandardScalerfrom sklearn.svm import SVCfrom sklearn.pipeline import Pipelinefrom sklearn import datasetsfrom matplotlib.colors import ListedColormapimport numpy as npimport matplotlib.pyplot as pltimport warningsdef plot_decision_boundary(model,axis):x0,x1=np.meshgrid(np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1), np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1) )x_new=np.c_[x0.ravel(),x1.ravel()]y_predict=model.predict(x_new)zz=y_predict.reshape(x0.shape)custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)def RBFKernelSVC(gamma=1.0):return Pipeline([('std_scaler',StandardScaler()),('svc',SVC(kernel='rbf',gamma=gamma))])warnings.filterwarnings("ignore")X,y = datasets.make_moons(noise=0.15,random_state=666)svc = RBFKernelSVC(gamma=100)svc.fit(X,y)plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])plt.scatter(X[y==0,0],X[y==0,1],c='red')plt.scatter(X[y==1,0],X[y==1,1],c='blue')plt.show()输出结果:。

支持向量机原理

支持向量机原理

支持向量机原理支持向量机(Support Vector Machine,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器。

支持向量机的学习策略是间隔最大化,可形式化为一个求解凸二次规划问题。

SVM是一种分类算法,它的基本原理是找到一个超平面,将不同类别的数据分隔开来,使得两个类别的数据点到超平面的距离最大化。

支持向量机的原理主要包括间隔、支持向量、对偶问题和核函数等几个方面。

首先,我们来看支持向量机的间隔。

在支持向量机中,间隔是指两个异类样本最近的距离,而支持向量机的目标就是要找到一个超平面,使得所有样本点到这个超平面的距离最大化。

这个距离就是间隔,而支持向量机的学习策略就是要最大化这个间隔。

其次,支持向量机的支持向量。

支持向量是指离超平面最近的那些点,它们对超平面的位置有影响。

支持向量决定了最终的超平面的位置,而其他的点对超平面的位置没有影响。

因此,支持向量是支持向量机模型的关键。

然后,我们来看支持向量机的对偶问题。

支持向量机的原始问题是一个凸二次规划问题,可以通过求解对偶问题来得到最终的分类超平面。

通过对偶问题,我们可以得到支持向量的系数,从而得到最终的分类超平面。

最后,我们来看支持向量机的核函数。

在实际应用中,很多时候样本不是线性可分的,这时就需要用到核函数。

核函数可以将原始特征空间映射到一个更高维的特征空间,使得样本在这个高维特征空间中线性可分。

常用的核函数有线性核、多项式核和高斯核等。

综上所述,支持向量机是一种非常强大的分类算法,它通过最大化间隔来得到最优的分类超平面,支持向量决定了最终的超平面的位置,对偶问题可以通过求解对偶问题来得到最终的分类超平面,而核函数可以处理非线性可分的情况。

支持向量机在实际应用中有着广泛的应用,是一种非常重要的机器学习算法。

希望本文对支持向量机的原理有所帮助,让读者对支持向量机有更深入的理解。

支持向量机作为一种经典的机器学习算法,有着重要的理论意义和实际应用价值。

支持向量机算法的原理

支持向量机算法的原理

支持向量机算法的原理支持向量机(Support Vector Machine,SVM)是一种广泛应用于分类和回归问题的机器学习算法。

它的原理基于统计学习理论中的结构风险最小化原则,通过寻找一个最优的超平面来实现数据的分类。

在SVM中,数据被看作是高维空间中的点,每个点都有一个与之对应的特征向量。

这些特征向量的维度取决于特征的数量。

SVM的目标是找到一个超平面,使得其能够尽可能地将不同类别的数据点分隔开。

超平面是一个d维空间中的d-1维子空间,其中d为特征向量的维度。

在二维空间中,超平面即为一条直线,可以完全将两类数据点分开。

在更高维的空间中,超平面可以是一个曲面或者是一个超平面的组合。

为了找到最优的超平面,SVM引入了支持向量的概念。

支持向量是离超平面最近的数据点,它们决定了超平面的位置和方向。

通过最大化支持向量到超平面的距离,SVM能够找到一个最优的超平面,使得分类误差最小化。

SVM的核心思想是将低维空间中的数据映射到高维空间中,使得原本线性不可分的数据变得线性可分。

这一映射是通过核函数实现的。

核函数能够计算两个数据点在高维空间中的内积,从而避免了显式地进行高维空间的计算。

常用的核函数有线性核、多项式核和高斯核等。

SVM的训练过程可以简化为一个凸优化问题。

通过最小化结构风险函数,SVM能够找到一个最优的超平面,使得分类误差最小化。

结构风险函数由经验风险项和正则化项组成。

经验风险项衡量了分类器在训练集上的错误率,正则化项则防止过拟合。

SVM的优点是具有较好的泛化性能和较强的鲁棒性。

由于最大化支持向量到超平面的距离,SVM对异常值不敏感,能够有效地处理噪声数据。

此外,SVM还可以通过引入松弛变量来处理非线性可分的问题。

然而,SVM也存在一些限制。

首先,SVM对于大规模数据集的训练时间较长,且对内存消耗较大。

其次,选择合适的核函数和参数是一个挑战性的问题,不同的核函数和参数可能会导致不同的分类结果。

支持向量机分类原理

支持向量机分类原理

支持向量机分类原理支持向量机(Support Vector Machine, SVM)是一种常用的监督学习方法,用于进行分类和回归分析。

其原理基于统计学习理论和结构风险最小化原则,具有较强的泛化能力和较高的准确性。

在分类问题中,支持向量机的目标是找到一个最优的超平面,将不同类别的样本点有效地分开,并且使得到超平面的距离最近的样本点到超平面的距离最大。

支持向量机分类原理的核心思想是找到一个最优的超平面,将不同类别的样本点分隔开来。

在二维空间中,这个超平面就是一条直线,而在多维空间中,则是一个超平面。

支持向量机的目标是找到这样一个超平面,使得两个类别的样本点能够被最大化地分开。

支持向量机的训练过程可以简单描述为以下几个步骤:首先,通过训练数据集找到最优的超平面;然后,根据找到的超平面对新的样本进行分类;最后,评估分类器的性能并进行调优。

支持向量机在实际应用中具有许多优点。

首先,支持向量机能够处理高维数据,即使样本空间的维度非常高,支持向量机也能够有效地进行分类。

其次,支持向量机在处理非线性问题时,可以通过核函数将数据映射到高维空间,在高维空间中找到一个线性可分的超平面,从而实现非线性分类。

此外,支持向量机还具有较好的鲁棒性,对于一定程度上的噪声和异常点具有一定的容忍度。

在支持向量机分类原理中,支持向量起着至关重要的作用。

支持向量是离超平面最近的样本点,它们决定了最终的分类结果。

支持向量机的训练过程实际上就是找到这些支持向量,以及找到最优的超平面,使得这些支持向量到超平面的距离最大化。

总的来说,支持向量机分类原理是一种强大的分类方法,具有较强的泛化能力和较高的准确性。

通过找到最优的超平面,将样本点分隔开来,支持向量机能够有效地处理高维数据和非线性问题,具有较好的鲁棒性和稳定性。

支持向量机在模式识别、数据挖掘等领域有着广泛的应用,是一种非常值得深入学习和研究的机器学习方法。

支持向量机算法原理

支持向量机算法原理

支持向量机算法原理支持向量机(SupportVectorMachine,SVM)是一种经典的机器学习算法,是指对二类分类问题,它可以确定一个最佳的线性决策边界,以最大限度地提高分类的准确率。

它将分类任务转换为一个凸二次规划问题,然后使用核函数扩展到非线性情况。

它被广泛应用于许多类型的学习任务,包括分类和回归。

1.持向量机的概念所谓支持向量机,是指一种经典的机器学习算法,用于解决二分类问题。

该算法总是朝着最大限度地改善结果的方向迭代,并将给定的数据集呈现为一个映射,以实现最佳的分类结果。

支持向量机算法的主要思想是,在样本空间中,将数据用线性分割法分为两个独立的子空间,从而获得较高的分类准确率。

2.持向量机的数学原理支持向量机的数学基础乃在于凸优化,它是在线性可分的情况下,使分类器的准确率最大化。

支持向量机算法可以将分类问题转换为一个凸二次规划问题,以求得最优解。

在这个规划问题中,我们要求最小化一个函数,使得能够将样本以最佳方式分开,以确定决策边界。

它需要求解最优化问题中的最大间隔,故而也被称之为最大间隔分类器,把这个问题的最优解称为支持向量(Support Vector)。

3.持向量机的分类a.性可分支持向量机:是用于解决线性可分的二分类问题的支持向量机,其中只有两个分类器,我们可以使用给定的数据集来找到一个线性分类器,这样就可以将样本点映射到不同的类。

b.性不可分支持向量机:是针对线性不可分的二分类问题的支持向量机,我们可以使用核函数将线性不可分的问题扩展到高维来获得线性可分的形式,这种类型的支持向量机也是使用类似的求解方法来构建的,但是通过将线性不可分的问题扩展到高维,它可以更好地描述数据。

c.分类支持向量机:是一种多类支持向量机,它可以用于解决多个分类问题,它可以用于分类要素的多分类以及多个分类分量的情况,这是一种非常有用的技术,在主机器学习任务中得到了广泛应用。

4.持向量机的优势a.持向量机算法不仅可以实现高准确率,而且运行时间短。

svm 原理

svm 原理

svm 原理
SVM(支持向量机)是一种用于分类和回归分析的机器学习方法,其基本原理是寻找一个最优的超平面(在二维情况下是一条直线,多维情况下是一个高维平面),将不同类别的样本点有效地分开。

其思想是将样本点映射到高维空间中,使得样本点在高维空间中可以线性可分。

SVM的目标是找到一个最优的超平面,使得最靠近超平面的
样本点到该超平面的距离最大。

这些最靠近超平面的样本点被称为支持向量,因为它们对于决策超平面的位置起到了关键作用。

SVM通过最大化支持向量到决策边界的间隔,使得分类
边界更加稳健。

在学习阶段,SVM通过构建一个约束最优化问题来寻找最优
的超平面。

这个问题的目标是最小化模型误差和最大化间隔。

其中,模型误差基于不同类别样本点到超平面的距离计算,间隔则是支持向量到超平面的距离。

通过求解这个优化问题,可以得到一个优秀的分类超平面。

SVM的优点是可以处理高维度的数据和非线性的决策边界。

它在解决小样本、非线性和高维度的分类问题上表现出色。

然而,SVM也有一些缺点,例如对于大规模数据集的训练需要
较长的时间,并且对于噪声和异常值比较敏感。

总结来说,SVM基于找到一个最优的超平面,通过最大化支
持向量到决策边界的间隔来实现分类。

它是一种非常强大的机器学习方法,在不同领域的分类和回归问题中都有广泛的应用。

请简述 SVM(支持向量机)的原理以及如何处理非线性问题。

请简述 SVM(支持向量机)的原理以及如何处理非线性问题。

请简述 SVM(支持向量机)的原理以及如何处理非线性问题。

支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,常用于分类和回归问题。

它的原理是基于统计学习理论和结构风险最小化原则,通过寻找最优超平面来实现分类。

SVM在处理非线性问题时,可以通过核函数的引入来将数据映射到高维空间,从而实现非线性分类。

一、SVM原理支持向量机是一种二分类模型,它的基本思想是在特征空间中找到一个超平面来将不同类别的样本分开。

具体而言,SVM通过寻找一个最优超平面来最大化样本间的间隔,并将样本分为两个不同类别。

1.1 线性可分情况在特征空间中,假设有两个不同类别的样本点,并且这两个类别可以被一个超平面完全分开。

这时候我们可以找到无数个满足条件的超平面,但我们要寻找具有最大间隔(Margin)的超平面。

Margin是指离超平面最近的训练样本点到该超平面之间距离之和。

我们要选择具有最大Margin值(即支持向量)对应的决策函数作为我们模型中使用。

1.2 线性不可分情况在实际问题中,很多情况下样本不是线性可分的,这时候我们需要引入松弛变量(Slack Variable)来处理这种情况。

松弛变量允许样本点处于超平面错误的一侧,通过引入惩罚项来平衡Margin和错误分类的数量。

通过引入松弛变量,我们可以将线性不可分问题转化为线性可分问题。

同时,为了防止过拟合现象的发生,我们可以在目标函数中加入正则化项。

1.3 目标函数在SVM中,目标函数是一个凸二次规划问题。

我们需要最小化目标函数,并找到最优解。

二、处理非线性问题SVM最初是用于处理线性可分或近似线性可分的数据集。

然而,在实际应用中,很多数据集是非线性的。

为了解决这个问题,SVM引入了核函数(Kernel Function)。

核函数可以将数据从低维空间映射到高维空间,在高维空间中找到一个超平面来实现非线性分类。

通过核技巧(Kernel Trick),SVM 可以在低维空间中计算高维空间中样本点之间的内积。

支持向量机支持向量机回归原理简述及其MATLAB实例

支持向量机支持向量机回归原理简述及其MATLAB实例

支持向量机支持向量机回归原理简述及其MATLAB实例支持向量机 (Support Vector Machine, SVM) 是一种在监督学习中应用广泛的机器学习算法。

它既可以用于分类问题(SVM),又可以用于回归问题(SVR)。

本文将分别简要介绍 SVM 和 SVR 的原理,并提供MATLAB 实例来展示其应用。

SVM的核心思想是找到一个最优的超平面,使得正样本和负样本之间的间隔最大化,同时保证误分类的样本最少。

这个最优化问题可以转化为一个凸二次规划问题进行求解。

具体的求解方法是通过拉格朗日乘子法,将约束优化问题转化为一个拉格朗日函数的无约束极小化问题,并使用庞加莱对偶性将原问题转化为对偶问题,最终求解出法向量和偏差项。

SVR的目标是找到一个回归函数f(x),使得预测值f(x)和实际值y之间的损失函数最小化。

常用的损失函数包括平方损失函数、绝对损失函数等。

与SVM类似,SVR也可以使用核函数将问题转化为非线性回归问题。

MATLAB实例:下面以一个简单的数据集为例,展示如何使用MATLAB实现SVM和SVR。

1.SVM实例:假设我们有一个二分类问题,数据集包含两个特征和两类样本。

首先加载数据集,划分数据集为训练集和测试集。

```matlabload fisheririsX = meas(51:end, 1:2);Y=(1:100)';Y(1:50)=-1;Y(51:100)=1;randn('seed', 1);I = randperm(100);X=X(I,:);Y=Y(I);X_train = X(1:80, :);Y_train = Y(1:80, :);X_test = X(81:end, :);Y_test = Y(81:end, :);```然后,使用 fitcsvm 函数来训练 SVM 模型,并用 predict 函数来进行预测。

```matlabSVMModel = fitcsvm(X_train, Y_train);Y_predict = predict(SVMModel, X_test);```最后,可以计算分类准确度来评估模型的性能。

支持向量机(SVM)简述

支持向量机(SVM)简述

第1 2章12.1 案例背景12.1.1 SVM概述支持向量机(Support Vector Machine,SVM)由Vapnik首先提出,像多层感知器网络和径向基函数网络一样,支持向量机可用于模式分类和非线性回归。

支持向量机的主要思想是建立一个分类超平面作为决策曲面,使得正例和反例之间的隔离边缘被最大化;支持向量机的理论基础是统计学习理论,更精确地说,支持向量机是结构风险最小化的近似实现。

这个原理基于这样的事实:学习机器在测试数据上的误差率(即泛化误差率)以训练误差率和一个依赖于VC维数(Vapnik - Chervonenkis dimension)的项的和为界,在可分模式情况下,支持向量机对于前一项的值为零,并且使第二项最小化。

因此,尽管它不利用问题的领域内部问题,但在模式分类问题上支持向量机能提供好的泛化性能,这个属性是支持向量机特有的。

支持向量机具有以下的优点:①通用性:能够在很广的各种函数集中构造函数;②鲁棒性:不需要微调;③有效性:在解决实际问题中总是属于最好的方法之一;④计算简单:方法的实现只需要利用简单的优化技术;⑤理论上完善:基于VC推广性理论的框架。

在“支持向量”x(i)和输入空间抽取的向量x之间的内积核这一概念是构造支持向量机学习算法的关键。

支持向量机是由算法从训练数据中抽取的小的子集构成。

支持向量机的体系结构如图12 -1所示。

图12-1 支持向量机的体系结构其中K为核函数,其种类主要有:线性核函数:K(x,x i)=x T x i;多项式核函数:K(x,x i)=(γx T x i+r)p,γ>0;径向基核函数:K(x,x i )=exp(-γ∥x −x i ∥2), γ>0;两层感知器核函数:K(x,x i )=tanh(γx T x i+r )。

1.二分类支持向量机C - SVC 模型是比较常见的二分类支持向量机模型,其具体形式如下:1)设已知训练集:T ={(x 1,y 1),…,(x i ,y i )}∈(X ×Y )ι其中,x i ∈X =R n ,y i ∈Y ={1,-1}( i =1,2,…,ι);x i 为特征向量。

svm的基本原理

svm的基本原理

svm的基本原理
SVM(支持向量机)是一种机器学习算法,其基本原理如下:
1. SVM的目标是找到一个超平面,将不同类别的样本分隔开。

超平面可以视为一个n维空间中的一个(n-1)维子空间,其中n
是特征的数量。

2. SVM通过最大化两个类别之间的间隔来确定这个超平面。

间隔是指超平面到最近的样本距离的两倍。

这个间隔可以被视为控制模型的容忍度,即越大的间隔意味着模型对于噪声和变化的容忍度较低。

3. SVM的核心思想是将高维空间中的样本映射到一个更高维
空间中,以便更容易分隔不同的类别。

这个映射通常是非线性的,核函数被用来计算两个样本在高维空间中的相似度。

4. SVM算法通常基于二分类问题,但也可以通过多次训练和
组合来解决多分类问题。

5. SVM不仅能够在线性可分的情况下进行分类,还可以通过
使用软间隔(即允许一些样本在超平面的错误一侧)来处理一定程度的线性不可分性。

6. SVM还可以通过引入惩罚参数来平衡间隔的大小和分类错
误的容忍度。

这样可以调整模型的复杂度和泛化能力。

7. SVM算法的训练过程可以通过求解一个凸优化问题进行,
这个问题可以被转化为一个二次规划问题并使用现有的优化算法进行求解。

总而言之,SVM是一种通过找到一个超平面来实现数据分类的机器学习算法,它利用最大间隔的原理进行分类,并通过核函数来处理线性不可分性。

支持向量机的距离推导

支持向量机的距离推导

支持向量机的距离推导支持向量机(Support Vector Machine, SVM)是一种常用的监督学习算法,主要用于分类和回归问题。

在支持向量机中,我们通常使用核函数来处理非线性问题,从而将数据映射到高维空间中进行分类。

在支持向量机的训练过程中,我们需要求解最优超平面,使得分隔两类样本的间隔最大化。

支持向量机的距离推导是指在最大化间隔的过程中,我们需要推导出支持向量到最优超平面的距离。

这个距离对应着支持向量机的边界间隔,也称为几何间隔。

通过推导这个距离,我们可以得到支持向量机的优化问题,进而求解出最优的超平面参数。

在支持向量机中,我们通常使用线性核函数或者高斯核函数来处理线性或者非线性问题。

对于线性可分的情况,支持向量机的距离推导比较直观。

假设我们有一个线性可分的二分类问题,数据集为\( \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ...,(x^{(m)}, y^{(m)})\} \),其中\(x^{(i)} \in \mathbb{R}^n\)是输入特征向量,\(y^{(i)}\in \{-1, 1\}\)是类别标签。

我们的目标是找到最优的超平面参数\(w\)和\(b\),使得对于所有的\(i\),有\(y^{(i)}(w^Tx^{(i)} + b) \geq 1\)。

这里的\(w\)和\(b\)是支持向量机的参数,\(w\)是超平面的法向量,\(b\)是偏置。

支持向量到超平面的距离可以通过几何间隔的概念来推导。

几何间隔是指样本点到超平面的有向距离,对于正类样本和负类样本,它们的几何间隔分别为\( \frac{w^Tx^{(i)} + b}{\|w\|} \)和\( \frac{-w^Tx^{(i)} - b}{\|w\|} \)。

支持向量机的距离推导的关键是要最大化这两类样本的最小几何间隔,即最大化\( \frac{1}{\|w\|} \)。

这个问题可以转化为最小化\( \frac{1}{2}\|w\|^2 \),同时满足\(y^{(i)}(w^Tx^{(i)} + b) \geq 1\)。

svm 原理

svm 原理

svm 原理支持向量机(Support Vector Machine,简称SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器。

SVM的基本原理是找到一个超平面,使得离该平面最近的样本点到该平面的距离尽可能远,从而实现对样本的最优分类。

在SVM中,我们首先要了解的是什么是支持向量。

支持向量是指离超平面最近的那些点,这些点在SVM中起着决定性作用。

因为超平面是由支持向量完全决定的,所以SVM的训练过程可以看作是求解支持向量的过程。

SVM的原理可以通过以下几个关键步骤来解释:1. 构建超平面,在SVM中,我们的目标是找到一个超平面,可以将不同类别的样本点分开。

这个超平面可以用一个线性方程来表示,即wx + b = 0,其中w是法向量,b是位移项,x是样本点的特征向量。

通过不断调整w和b的数值,我们可以找到一个最优的超平面,使得不同类别的样本点能够被最大化地分开。

2. 最大间隔,在构建超平面的过程中,SVM的目标是找到一个最大间隔超平面,即使得支持向量到超平面的距离最大化。

这样做的好处是可以使得模型对噪声数据具有很强的鲁棒性,同时也可以提高模型的泛化能力。

3. 引入核函数,在实际应用中,很多样本点并不是线性可分的,这时我们就需要引入核函数来将样本点映射到高维空间中,从而使得样本点在高维空间中线性可分。

常用的核函数有线性核、多项式核、高斯核等,通过选择不同的核函数,可以使得SVM模型适用于不同的数据集。

4. 求解最优化问题,在SVM中,我们需要求解一个凸优化问题来得到最优的超平面。

这个问题可以通过拉格朗日乘子法来进行求解,最终得到超平面的法向量w和位移项b。

总的来说,SVM的原理是基于最大间隔超平面的构建,通过求解最优化问题来得到最优的超平面参数,从而实现对样本的最优分类。

同时,通过引入核函数,SVM可以处理非线性可分的数据集,具有很强的泛化能力和鲁棒性。

在实际应用中,SVM作为一种强大的分类器被广泛应用于文本分类、图像识别、生物信息学等领域,取得了很好的效果。

支持向量机svm的基本原理

支持向量机svm的基本原理

支持向量机svm的基本原理支持向量机(Support Vector Machine),简称“SVM”,是一种二分类、多分类和回归分析的有效机器学习方法。

SVM算法可以得到最优(精准)的超平面,将给定的数据正确的分类。

一、支持向量机的基本原理:1、构建最优超平面:SVM通过构建最优超平面来解决分类问题,其中最优超平面是给定数据集中“支持向量”到超平面的距离最大的超平面。

2、支持向量:支持向量是隐含在超平面中的最关键的样本点,它们与超平面的距离最大。

3、确定决策边界:在SVM中,根据支持向量确定的超平面即为最优决策边界(decision boundary),也就是样本空间中的一条分割线。

4、求解最优化方程:支持向量机就是要求解支持向量到超平面的距离最大,也就是要求解一个最优化问题。

二、SVM应用原理1、线性可分:SVM适用于线性可分的数据,其可以通过构建最优超平面来分割给定数据,使得不同类别数据落在不同的区域中。

2、核函数:SVM可以使用核函数(kernel function)来处理非线性可分的数据,可以将非线性可分的数据映射到更高维空间,使得数据可以在更高维空间中线性可分。

3、正则化:正则化是一种用来处理模型复杂度的方法,特别是在使用SVM时,正则化起到了控制模型复杂度,避免过拟合的作用。

4、泛化能力:SVM算法具有良好的泛化能力,即便在训练样本数量小的情况下也能得到较好的预测效果。

三、SVM参数调整原理1、核函数的选择:核函数作为SVM的一个重要参数,它决定着可用的数据表示和分类性能。

选择合适的核函数可以提升SVM的精度。

2、正则化参数的选择:正则化是SVM的一个重要参数,调整正则化参数可以调节模型的复杂度,在避免过拟合的同时,使得模型具有良好的泛化能力。

3、惩罚参数C的调整:惩罚参数C决定着数据集中类别内部数据点紧凑性的程度,它也可以调节过拟合与欠拟合的问题。

4、支持向量中各参数调整:SVM通过支持向量确定最优超平面,引入各参数调整可以解决非线性可分的问题,并调节拟合精度。

svm算法原理

svm算法原理

svm算法原理
支持向量机(Support Vector Machine,SVM)是一种二分类模型,其核心思想是找到一个最优超平面,将不同类别的样本分隔开来,并使得两类样本之间的间隔最大化。

SVM的基本原理和思想如下:
1. 数据特征转换:将输入数据映射到一个高维空间,使得数据在新空间中能够线性可分。

这种映射通常使用核函数来实现,常见的核函数包括线性核、多项式核和高斯核。

2. 寻找最优超平面:在新的高维空间中,SVM算法通过在样本中寻找能够最大化间隔的超平面来分类数据。

最优超平面是离支持向量(距离最近的样本点)最远的超平面,并且能够使得两个类别的样本点都正确分类。

3. 求解最优化问题:SVM的求解过程是一个凸优化问题。

采用拉格朗日乘子法将求解最优超平面的问题转化为求解一组线性方程的问题。

这些线性方程的解即为最优化问题的解,也即最优超平面的参数。

4. 核函数的选择:核函数的选择对于SVM的性能和效果非常重要。

不同的核函数可以导致不同维度的数据特征转换,从而影响分类结果。

5. 延伸:除了二分类问题,SVM也可以应用于多分类问题。

一种常用的方法是使用“一对其余”(one-vs-rest)的策略,将
多分类问题转化为多个二分类问题,最后根据分类的置信度进行集成判断。

总结来说,SVM通过将样本映射到高维空间,并在其中寻找最优超平面,从而实现对数据进行分类。

其优点是能够处理高维数据和非线性数据,并在模型参数训练过程中更加稳定,但其计算复杂度较高,对数据量和样本类别均衡性要求较高。

支持向量机基本原理

支持向量机基本原理

支持向量机基本原理支持向量机基本原理支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的分类器,广泛应用于模式识别、图像处理、生物信息学等领域。

SVM在处理高维数据和小样本问题时表现出色,具有较强的泛化能力和鲁棒性。

一、线性可分支持向量机1.1 概念定义给定一个训练数据集$D=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}$,其中$x_i\in R^n$为输入样本,$y_i\in\{-1,1\}$为输出标记。

线性可分支持向量机的目标是找到一个超平面将不同类别的样本分开,并使得该超平面到最近的样本点距离最大。

设超平面为$x^Tw+b=0$,其中$w\in R^n$为法向量,$b\in R$为截距,则样本点$x_i$到超平面的距离为:$$r_i=\frac{|x_i^Tw+b|}{||w||}$$对于任意一个超平面,其分类效果可以用间隔来度量。

间隔指的是两个异类样本点到超平面之间的距离。

因此,最大化间隔可以转化为以下优化问题:$$\max_{w,b}\quad \frac{2}{||w||}\\s.t.\quad y_i(x_i^Tw+b)\geq1,\quad i=1,2,...,N$$其中,$y_i(x_i^Tw+b)-1$为样本点$x_i$到超平面的函数间隔。

因为函数间隔不唯一,因此我们需要将其转化为几何间隔。

1.2 函数间隔与几何间隔对于一个给定的超平面,其函数间隔定义为:$$\hat{\gamma}_i=y_i(x_i^Tw+b)$$而几何间隔定义为:$$\gamma_i=\frac{\hat{\gamma}_i}{||w||}$$可以证明,对于任意一个样本点$x_i$,其几何间隔$\gamma_i$都是该点到超平面的最短距离。

因此,我们可以将最大化几何间隔转化为以下优化问题:$$\max_{w,b}\quad \frac{2}{||w||}\\s.t.\quad y_i(x_i^Tw+b)\geq\gamma,\quad i=1,2,...,N$$其中$\gamma$是任意正数。

支持向量机算法公式

支持向量机算法公式

支持向量机算法公式支持向量机(Support Vector Machine,SVM)是一种分类和回归分析的机器学习算法。

其目标是将不同的类别分开,以最大限度地提高分类的准确性。

SVM通过构建一个决策边界(决策平面)来实现分类。

决策边界是在将两个或多个不同的类别分开的空间中绘制的一条线或面。

SVM算法选择最大边缘(Margin)的边际超平面作为决策边界。

Margin是指分类器边界与分类器最近样本点之间的距离。

SVM算法的数学公式如下:对于样本 $(x_i, y_i), i = 1,2,...,n$,其中 $x_i$ 为样本特征向量, $y_i$ 为样本类别,其中 $y_i \in \{-1, +1\}$。

我们要找到如下形式的超平面:$$w^Tx + b = 0$$其中 $w$ 为超平面的法向量, $b$ 为超平面截距。

超平面将所有 $\{(x_i, y_i)\}$ 划分为两个部分,用 $\haty_i$ 来表示样本被分类之后的类别,那么:$$\hat y_i = \begin{cases} +1, & w^Tx_i+b > 0\\ -1, &w^Tx_i+b < 0 \end{cases} $$那么超平面分类器的分类结果可以表示为:$$f(x) = sign(w^Tx+b)$$其中 $sign$ 表示符号函数。

接下来,我们对 SVM 策略进行数学描述:1. 限制 $\{x_i\}$ 到超平面两侧,确保分类正确,即:$$\begin{cases}w^Tx_i+b \geq 1, & y_i = +1\\w^Tx_i+b \leq -1, & y_i = -1 \end{cases} $$2. 使 Margin 最大,即:$$Margin = \frac{2}{||w||}$$最终的目标优化问题可以表示为:$$\max_{w,b} \frac{2}{||w||}$$ $$s.t. \quad y_i(w^Tx_i+b) \geq 1, i=1,2,...,n$$由于最大化 $\frac{2}{||w||}$ 等价于最小化$\frac{1}{2}||w||^2$,因此可以用二次规划来求解该问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得:
再把(9)代入(6)式有: 考虑到(8)式,我们的对偶问题就变为:
(9) (10)
(11) 上式这个规划问题可以直接从数值方法计算求解。
需要指出的一点是,(2)式的条件极值问题能够转化为(5)式的凸规划问题,其中隐 含着一个约束,即:
(12) 这个约束是这样得来的,如果(2)和(5)等效,必有:
把(3)式代入上式中,得到:
化简得到:
(13) 又因为约束(1)式和(4)式,有:
所以要使(13)式成立,只有令
由此得到(12)式的约束。该约束的意义是:如果一个样本是支持向量,则其对应的拉格朗 日系数非零;如果一个样本不是支持向量,则其对应的拉格朗日系数一定为 0。由此可知大 多数拉格朗日系数都是 0。
支持向量机(SVM)的详细推导过程及注解(一)
谢宏 seamusmore@
支持向量机的原理很简单,就是 VC 维理论和最小化结构风险。在阅读相关论文的时候, 发现很多文章都语焉不详,就连《A Tutorial on Support Vector Machines for Pattern Recognition》这篇文章对拉格朗日条件极值问题的对偶变换都只是一笔带过,让很多人觉 得很困惑。下面我将对线性可分的情况作详尽的推导。
其中:
(4) 那么我们要处理的规划问题就变为:
(3)
(5) 上式才是严格的不等式约束的拉格朗日条件极值的表达式。对于这一步的变换,很多文章都 没有多做表述,或者理解有偏差,从而影响了读者后续的推演。在此我将详细地一步步推导, 以解困惑。
(5)式是一个凸规划问题,其意义是先对α 求偏导,令其等于 0 消掉α ,然后再对 w 和 b 求 L 的最小值。要直接求解(5)式是有难度的,通过消去拉格朗日系数来化简方程, 对我们的问题无济于事。所幸这个问题可以通过拉格朗日对偶问题来解决,为此我们把(5) 式做一个等价变换:
写成统一的式子就是:
(1) 而超平面 H1 和 H2 的距离可知为:
SVM 的任务就是寻找这样一个超平面 H 把样本无误地分割成两部分,并且使 H1 和 H2 的距离
最大。要找到这样的超平面,只需最大化间隔 Margin,也就是最小化 如下的条件极值问题:
。于是可以构造
(2) 对于不等式约束的条件极值问题,可以用拉格朗日方法求解。而拉格朗日方程的构造规 则是:用约束方程乘以非负的拉格朗日系数,然后再从目标函数中减去。于是得到拉格朗日 方程如下:
一旦我们从(11)式求解出所有拉格朗日系数,就可以通过(8)式的
计算得到最优分割面 H 的法向量 w。而分割阈值 b 也可以通过(12)式的约束用支持向量计 算出来。
如上图所示,有一堆训练数据的正负样本,标记为:
假设有一个超平面 H: 可以把这些样本正确无误地分割开来,同时存在两个平行于 H 的超平面 H1 和 H2:
使离 H 最近的正负样本刚好分别落在 H1 和 H2 上,这样的样本就是支持向量。那么其他所有 的训练样本都将位于 H1 和 H2 之外,也就是满足如下约束:
上式即为对偶变换,这样就把这个凸规划问题转换成了对偶问题:
(6) 其意义是:原凸规划问题可以转化为先对 w 和 b 求偏导,令其等于 0 消掉 w 和 b,然后再对 α 求 L 的最大值。下面我们就来求解(6)式,为此我们先计算 w 和 b 的偏导数。由(3)式 有:
(7) 为了让 L 在 w 和 b 上取到最小值,令(7)式的两个偏导数分别为 0,于是得到:
相关文档
最新文档