支持向量机SVMPPT课件
合集下载
支持向量机SVMPPT课件
最后得出原空间中的二次曲线:
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介
支持向量机SVM 简介PPT
计算间隔
M = Margin
我们怎样利用 w与b 计算margin?
Plus-plane = { x : w . x + b = +1 } Minus-plane = { x : w . x + b = -1 } 注: 向量 w 与 Plus Plane 垂直. 为什么?
所以 w 也垂直于Minus Plane 设 u 和 v 是 Plus Plane上的两个向量. 则 w . ( u – v ) 是多少?
f(x,w,b) = sign(w. x - b)
具有最大间隔的线 1 性分类器叫做最大 R(ω ) ≤ Remp (α ) + Φ ( ) m arg in 间隔线性分类器。
支持向量(Support Vectors) :是那些距 离超平面最近的点。
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
现在我们知道: w . x+ + b = +1 w . x- + b = -1 x+ = x- + λ w |x+ - x- | = M 于是很容易由w 和b 得到 M
=> w . x - + b + λ w .w = 1 => -1 + λ w .w = 1
=>
2 λ= w.w
计算间隔
x+ M = Margin Width =
最大间隔
+1 -1
x
f
y
具有最大间隔的线 性分类器叫做最大 间隔线性分类器。
f(x,w,b) = sign(w. x - b)
其就是一种最简单 的支持向量机(SVM) (称为线性支持向量 机,即LSVM)
《支持向量机SVM》课件
多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。
支持向量机原理SVMPPT课件
回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。
SVM支持向量机PPT
核函数的改进方向可能包括研究新的核函数形式,如高阶核函数、多核函数等,以提高SVM的分类精 度和泛化能力。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。
增量学习与在线学习
增量学习是指模型能够随着新数据的不断加入而进行自我更 新和调整的能力。在线学习则是增量学习的一种特殊形式, 它允许模型在实时数据流上进行学习和更新。
随着大数据时代的到来,增量学习和在线学习在许多领域中 变得越来越重要。未来的SVM研究将更加注重增量学习和在 线学习方面的研究,以提高SVM在处理大规模、高维数据集 时的效率和准确性。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。 SVM具有较弱的表示能力和学习能力,但具有较好的泛化能力。
比较
神经网络和SVM在分类问题上有不同的优势和局限性。神经网络适合处理复杂和高度非 线性问题,而SVM在处理大规模和线性可分数据集时表现更佳。选择哪种算法取决于具 体问题和数据特性。
与贝叶斯分类器比较
贝叶斯分类器
贝叶斯分类器是一种基于概率的分类方法。它通过计算每个类别的概率来对新的输入数据进行分类。贝叶斯分类器具 有简单和高效的特点,但需要较大的训练样本。
SVM
如前所述,SVM通过找到能够将不同类别的数据点最大化分隔的决策边界来实现分类。SVM具有较好的泛化能力和 处理大规模数据集的能力,但计算复杂度较高。
svm支持向量机
contents
目录
• SVM基本概念 • SVM分类器 • SVM优化问题 • SVM应用领域 • SVM与其他机器学习算法的比较 • SVM未来发展方向
01 SVM基本概念
定义
定义
SVM(Support Vector Machine) 是一种监督学习模型,用于分类和 回归分析。
支持向量机(SVM)2演示报告PPT
SVM分类器
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看
目录
Contents
1.线性SVM分类器原理 2.非线性SVM和核函数 3.SVM手动推导 4.SVM分类器上机演示 5.总结
大小
假设在一个二维线性可分的数据集中,我们要 找到一条线把两组数据分开。但哪条直线是最 佳的?也就是说哪条直线能够达到最好的分类 效果?
苹果
梨 颜色
PART 01
2 非线性SVM的引入
将数据从低维空间投影到高维空间,使其线性可分; 如果数据在原始输入空间不能线性可分,那么我们
可以应用映射函数φ(•),将数据从2D投影到3D(或 者一个高维)空间。在这个更高维的空间,我们可 能找到一条线性决策边界(在3D中是一个平面)来 拆分数据。 SVM 通过选择一个核函数,将低维非线性数据映射 到高维空间中。
1 理解SVM的工作原理
在训练初期,分类器只看到很少的数据点,它试着画出分隔两个类的最佳决策边界。 随着训练的进行,分类器会看到越来越多的数据样本,因此在每一步中不断更新决策 边界。
随着训练的进行,分类器可以看到越来越多的数据样本,因此越来越清楚地知道最优 决策边界应该在哪里。在这种场景下,如果决策边界的绘制方式是“–”样本位于决 策边界的左边,或者“+”样本位于决策边界的右边,那么就会出现一个误分类错误。
2 核函数
简单地说,核函数是计算两个向量在隐式 映射后空间中的内积的函数。核函数通过 先对特征向量做内积,然后用函数 K 进行 变换,这有利于避开直接在高维空间中计 算,大大简化问题求解。并且这等价于先 对向量做核映射然后再做内积。
在实际应用中,通常会根据问题和数据的 不同,选择不同的核函数。当没有更多先 验知识时,一般使用高斯核函数。
THANKS
感谢观看
支持向量机PPT课件
2023
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。
支持向量机PPT课件
支持向量机(SVM)
什么是支持向量机?
图A给出了一个线性可分数据集(可以在图中画一条直线将两组数据点 分开)
图B、C、D分别给出了一条分隔的直线,那么其中哪一条最好?是不是 有寻找最佳拟合直线的感觉?
支持向量机(SVM)就可以用来寻找此线性可分情形下的最优分类面。 (有人说SVM是最好的现成的分类器)
支持向量机的应用: 支持向量机已在人脸识别、文字识别、图像处理和时间序列预测等领域 获得了比较广泛的应用。
研究热点: 对支持向量机中算法的优化,包括解决SVM中二次规划求解问题 如何更好的构造基于SVM的多类分类器 如何提高SVM的归纳能力和分类速度 如何根据实际问题确定核函数
2021/6/7
27
部分资料从网络收集整 理而来,供大家参考,
第2类
第1类
m
2021/6/7
6
1、数学模型描述:
2021/6/7
7
2、支持向量机求解:
通过引入拉格朗日函数将上述最优化问题转化为其对偶问题,则可以得到
2021/6/7
8
3、解的性质
2021/6/7
9
4、几何解释
a5=0
a4=0
a9=0
第1类
第2类
a8=0.6
a10=0
a7=0 a2=0
a6=1.4
种描述, 且来自我们的先验知识 。 为了f(•) 存在, K (x,y) 需要满足 Mercer 条件。
2021/6/7
19
2021/6/7
20
非线性SVM算法
将所有的内积改为核函数 训练算法:
线性的
非线性的
2021/6/7
21
2021/6/7
22
什么是支持向量机?
图A给出了一个线性可分数据集(可以在图中画一条直线将两组数据点 分开)
图B、C、D分别给出了一条分隔的直线,那么其中哪一条最好?是不是 有寻找最佳拟合直线的感觉?
支持向量机(SVM)就可以用来寻找此线性可分情形下的最优分类面。 (有人说SVM是最好的现成的分类器)
支持向量机的应用: 支持向量机已在人脸识别、文字识别、图像处理和时间序列预测等领域 获得了比较广泛的应用。
研究热点: 对支持向量机中算法的优化,包括解决SVM中二次规划求解问题 如何更好的构造基于SVM的多类分类器 如何提高SVM的归纳能力和分类速度 如何根据实际问题确定核函数
2021/6/7
27
部分资料从网络收集整 理而来,供大家参考,
第2类
第1类
m
2021/6/7
6
1、数学模型描述:
2021/6/7
7
2、支持向量机求解:
通过引入拉格朗日函数将上述最优化问题转化为其对偶问题,则可以得到
2021/6/7
8
3、解的性质
2021/6/7
9
4、几何解释
a5=0
a4=0
a9=0
第1类
第2类
a8=0.6
a10=0
a7=0 a2=0
a6=1.4
种描述, 且来自我们的先验知识 。 为了f(•) 存在, K (x,y) 需要满足 Mercer 条件。
2021/6/7
19
2021/6/7
20
非线性SVM算法
将所有的内积改为核函数 训练算法:
线性的
非线性的
2021/6/7
21
2021/6/7
22
支持向量机SVM(ppt)-智能科学
其中,{f(x,w)}称作预测函数集,w为函数的广义 参数。{f(x,w)}可以表示任何函数集。L(y,f(x,w))为 由于用f(x,w)对y进行预测而造成的损失。不同类 型的学习问题有不同形式的损失函数。
2018/8/20 Chap8 SVM Zhongzhi Shi 11
经验风险
而对train set上产生的风险Remp(w)被称 为经验风险(学习的训练误差):
2018/8/20
统计学习方法概述
统计方法是从事物的外在数量上的表现去推断该 事物可能的规律性。科学规律性的东西一般总是 隐藏得比较深,最初总是从其数量表现上通过统 计分析看出一些线索,然后提出一定的假说或学 说,作进一步深入的理论研究。当理论研究 提出 一定的结论时,往往还需要在实践中加以验证。 就是说,观测一些自然现象或专门安排的实验所 得资料,是否与理论相符、在多大的程度上相符、 偏离可能是朝哪个方向等等问题,都需要用统计 分析的方法处理。
4. 构造学习算法的理论
How can one construct algorithms that can control the generalization ability?
2018/8/20
Chap8 SVM Zhongzhi Shi
17
结构风险最小化归纳原则 (SRM)
ERM is intended for relatively large samples (large l/h)
Let S = {Q(z,),}. An admissible structure S1S2…Sn…S:
For each k, the VC dimension hk of Sk is finite and h1≤h2≤…≤hn≤…≤hS Every Sk is either is non-negative bounded, or satisfies for some (p,k)
2018/8/20 Chap8 SVM Zhongzhi Shi 11
经验风险
而对train set上产生的风险Remp(w)被称 为经验风险(学习的训练误差):
2018/8/20
统计学习方法概述
统计方法是从事物的外在数量上的表现去推断该 事物可能的规律性。科学规律性的东西一般总是 隐藏得比较深,最初总是从其数量表现上通过统 计分析看出一些线索,然后提出一定的假说或学 说,作进一步深入的理论研究。当理论研究 提出 一定的结论时,往往还需要在实践中加以验证。 就是说,观测一些自然现象或专门安排的实验所 得资料,是否与理论相符、在多大的程度上相符、 偏离可能是朝哪个方向等等问题,都需要用统计 分析的方法处理。
4. 构造学习算法的理论
How can one construct algorithms that can control the generalization ability?
2018/8/20
Chap8 SVM Zhongzhi Shi
17
结构风险最小化归纳原则 (SRM)
ERM is intended for relatively large samples (large l/h)
Let S = {Q(z,),}. An admissible structure S1S2…Sn…S:
For each k, the VC dimension hk of Sk is finite and h1≤h2≤…≤hn≤…≤hS Every Sk is either is non-negative bounded, or satisfies for some (p,k)
《支持向量机引导》课件
7. 模型选择与参数调优
通过交叉验证和网格搜索方法,选择最优的SVM模型和参数组合,以提高预 测性能。
8. SVM的模型训练及优化方法
模型训练
基于训练数据,利用数学优化算法求解SVM模型参数。
正则化技术
通过引入正则化项,控制模型的复杂度,防止过拟合。
核函数优化
选择合适的核函数和参数,提高模型的非线性拟合能力。
《支持向量机引导》PPT 课件
本课件旨在介绍支持向量机(SVM)的原理、应用和优化策略,为您打开深 度学习的大门,探索这一强大的机器学习算法。
1. 什么是支持向量机
支持向量机是一种机器学习算法,用于分类和回归分析。它的核心思想是找到能够最好地分隔不同类别 数据点的超平面,以实现精确的预测。
2. SVM的优势与不足
9. SVM的结果评估与解读
• 准确性:计算模型的分类准确率。 • 精确度和召回率:评估模型的分类质量。 • 特征重要性:确定不同特征对预测结果的贡献程度。
5. 核函数及其作用
1 线性核函数
处理线性可分问题。
3 多项式核函数
处理多项式特征空间的问题。
2 高斯核函数
处理非线性可分问题。
6. SVM的数据准备与预处理
1
数据收集
收集有标签的训练数据和未标签的测试数据。
2
数据清洗
处理缺失值和异常值,规范化数据的格式。
3
特征选择
选择与预测任务相关的特征子集。
1 优势
高精度,适用于各种数据类型,能够处理高维数据。
2 不足
对大规模数据处理较慢,需要对数据进行归一化处理。
3. 硬间隔与软间隔SVM
硬间隔SVM要求数据能够完全线性分隔,而软间隔SVM允许存在一定程度的 误差,提高了模型的鲁棒性和泛化能力。
《支持向量机》课件
非线性支持向量机(SVM)
1
核函数与核技巧
深入研究核函数和核技巧,将SVM应用于非线性问题。
2
多类别分类
探索如何使用SVM解决多类别分类问题。
3
多分类问题
了解如何将SVM应用于多分类问题以及解决方法。
SVM的应用
图像识别
探索SVM在图像识别领域 的广泛应用。
金融信用评估
了解SVM在金融领域中用 于信用评估的重要作用。
其他领域
探索SVM在其他领域中的 潜在应用,如生物医学和 自然语言处理。
《支持向量机》PPT课件
探索令人兴奋的机器学习算法 - 支持向量机。了解它的定义、历史、优点和 局限性,以及基本思想、几何解释和优化问题。
支持向量机简介
定义与背景
学习支持向量机的基本概念和背景知识。
优缺点
掌握支持向量机的优点和局限性,和核心思想。
几何解释和优化问题
几何解释
优化问题
通过直观的几何解释理解支持向量机的工作原理。 研究支持向量机的优化问题和求解方法。
线性支持向量机(SVM)
1 学习算法
探索线性支持向量机的 学习算法并了解如何应 用。
2 常见核函数
介绍常用的核函数类型 和选择方法,以及它们 在SVM中的作用。
3 软间隔最大化
研究软间隔最大化方法, 提高SVM在非线性问题 上的准确性。
《支持向量机SVM》课件
SVM的优点与应用
强大的分类器
SVM可以处理高维度和复杂数据,具有出色的分类准确度。
适用于小样本
相较于其他算法,SVM对样本数量较少的情况下仍能表现出色。
广泛的应用领域
SVM在图像识别、文本分类、生物信息学等领域都有着广泛的应用。
SVM分类器模型及原理
支持向量机模型
SVM通过在数据空间中找到 一个最大间隔的超平面来进 行分类。
最大间隔原理
最大间隔超平面使得不同类 别的数据点与超平面的间隔 最大化。
软间隔SVM
为了处理线性不可分的情况, 软间隔SVM允许一些样本出 现在超平面的错误一侧。
SVM核函数及调优方法
1
线性核函数
线性核函数在低维空间中表现良好,
多项式核函数
2
适用于线性可分的数据。
多项式核函数通过引入多项式函数
来处理非线性问题。
SVM在数据挖掘中的应用
SVM在数据挖掘中广泛应用,包括异常检测、文本和图像分类、推荐系统等。其强大的特征处理 和预测能力使其成展
随着机器学习领域的不断发展,SVM仍然是一种重要的算法。未来,我们可以期待更多关于SVM 的研究和改进,以适应不断增长的数据和复杂问题。
支持向量机SVM PPT课件
欢迎来到《支持向量机SVM》PPT课件!在本课程中,我们将深入探讨支持向 量机的原理、应用和未来发展。让我们一起开启这个引人入胜的机器学习之 旅吧!
支持向量机的介绍
支持向量机是一种强大的机器学习算法,可用于分类和回归分析。它通过寻找数据中的支持向量, 并创建一个最佳的分割超平面来进行预测和决策。
3
高斯核函数
高斯核函数能够将数据映射到高维 空间,处理复杂非线性数据。
模式识别8-支持向量机(SVM)课件
支持向量机
• 核:
核是一个函数K ,对所有x,z X , 满足 K ( x, z ) ( x ) ( z ) 这里是从输入空间X 到到特征空间F的映射. x ( x1,...xl ) ( x) (1( x),..., n( x)) 将输入空间X 映射到一个新的空间F ={( x) | x X }
最优分类面
首先建立Lagrange函数 w J ( w, b, ) [ y ( w x b) 1] 2
2 l i i i i 1
J ( w, b, ) 条件1: 0 w J ( w, b, ) 条件2: 0 b
最终可得到
1 l l Q( ) J ( w, b, ) i i jyiyj ( xi xj ) 2 i 1 j 1 i 1 寻找最大化目标函数Q( )的Lagrange乘子{ i }li 1 , 满足约束条件 (1)
所谓最优分类线就是要求分类线不 但能将两类正确分开(训练错误率 为0),而且使分类间隔最大. 推广到高维空间,最优分类线就变 为最优分类面。
最优分类面
设线性可分的样本集: D维空间中的线性判别函数:
{xi, yi}, i 1,...l, yi {1,1}, xi Rd
d 维空间中的判别函数:g ( X ) w x b, 分类面方程为w x b 0. k1 k 2 设H : w x b 0; H 1 : w x b k 1; H 2 : w x b k 2 令k , 2 H 1 : w x b k 1 k k ; H 2 : w x b k 2 k k 重写H 1, H 2 : H 1 : w x b k ; H 2 : w x b k 归一化:H 1 : w x b 1; H 2 : w x b 1
《支持向量机》课件
对于非线性数据集,训练算法 通过核函数将数据映射到更高 维的特征空间,然后在特征空 间中寻找最优超平面进行分类 。常见的核函数有线性核、多 项式核、径向基函数核等。
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b + w1 x1 + w2 x2 = 0 这样,位于分离超平面下方的点满足
b + w1 x1 + w2 x2 < 0 位于分离超平面上方的点满足
b + w1 x1 + w2 x2 > 0 调整权重使得定义边缘侧面的超平面记为 H1 :b+ w1 x1 + w2 x2 ≥ 1 , 对于所有yi = +1 H2 :b+ w1 x1 + w2 x2 ≤ -1 , 对于所有yi = -1
这种线性分类函数在一维空间里就是一个点,在二维空间里 就是一条直线,三维空间里就是一个平面,可以如此想象下 去,如果不关注空间的维数,这种线性函数还有一个统一的 名称——超平面(Hyper Plane)!
最优超平面
10
-
就是分割的间隙越大越 好,把两个类别的点分 得越开越好。具有最大 边缘超平面
11
圈代表0; 点代表1;
5
-
SVM相关概念解释
• 经验风险:使用分类器在样本数据上的分类的结果与真实 结果(因为样本是已经标注过的数据,是准确的数据)之 间的差值。
• 根据统计学习理论,学习机器的实际风险由经验风险值和 置信范围值两部分组成。而基于经验风险最小化准则的学 习方法只强调了训练样本的经验风险最小误差,没有最小 化置信范围值,因此其推广能力较差。
L 0 w
L 0 b
N
w i yi xi i 1
N
i yi 0
i 1
• 这实际上是寻找极值条件下L函数满足的等 式约束
14
-
15
-
16
•
将得到的约束条件
得到: N W ( ) i 1
w
i
N
1i1
2
i
N
i
yi
xi
N
j
N
i yi
i 1
i j yi y j
- 0 带入原L函数, xi , x j
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
-
如何求最优超平面
• 分离超平面可以记作: WX+b=0
其中,W是权重向量,即W ={w1, w2 ,..., wn },n是属性数,b是标 量,通常称做偏倚。 训练组是二维的,如X =( x1, x2),其中 x1, x2 分别是X的属性A、B的值。 我们将b看作附加的权重w0 ,则将分离超平面改写成
调用Matlab中的二次规划程 序,求得1, 2, 3, 4的值,
进而求得w和b的值。
1 0 2 1 3 3 / 4 4 1 / 4
17
-
w1 03 4 Nhomakorabea2
0
1 4
0
2
• 一是经验风险,代表了分类器在给定样本上的误差; • 二是置信风险,代表了我们在多大程度上可以信任分类
器在未知样本上分类的结果。 • 置信风险与两个量有关,一是样本数量,显然给定的样
本数量越大,我们的学习结果越有可能正确,此时置信 风险越小;二是分类函数的VC维(分类函数的复杂度), 显然VC维越大,推广能力越差,置信风险会变大.
两个边界平面的距离:m=2/||w||
12
-
如何求最优超平面
现在,原问题转化为下面这样一个优化问题 求解w和b,使得对于所有的样本{(xi,yi)},能有 m=2/||w||最大,其中满足当yi=1时,wTxi+b≥1,当 yi=-1时,wTxi+b≤-1,所以有: yi (wTxi+b) ≥1
• 求解最优超平面问题可以表示成约束优化问题
支持向量机方法是建立在统计学习理论的VC 维理论和结 构风险最小原理基础上的,根据有限的样本信息在模型的复 杂性(即对特定训练样本的学习精度)和学习能力(即无错 误地识别任意样本的能力)之间寻求最佳折衷,以期获得最 好的推广能力 。
4
-
SVM相关概念解释
• VC维:对于一个指示函数(即只有0和1两种取值的函数) 集,如果存在h个样本能够被函数集里的函数按照所有可 能的2h种形式分开,则称函数集能够把h个样本打散,函 数集的VC维就是能够打散的最大样本数目。
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介
支持向量机(Support Vector Machine)是Vapnik等人在 1995年首先提出的,它在解决小样本、非线性及高维模式识 别中表现出许多特有的优势。
– Minimize – Subject to
(w) 1 w 2 1 (w w)
2
2
yi ((w xi ) b) 1, i 1,..., l
• 定义Lagrange函数
L(w, b, )
1 2
w
2
l
i ( yi
(( xi
w) b) 1)
i1
13
-
如何求最优超平面
• 分别对w和b求偏导,并令其为0,可得
• 缺点: 1.经验风险主要反映的是样本数据与真实结果的差距,
而样本数据在实际项目中只是总体的一小部分; 2.过度地强调经验风险最小化容易造成过学习问题。
6
SVM相关概念解释
-
过学习问题
underfitting
推广能力:将学习机器 (即预测函数,或称学习 函数、学习模型)对未来 输出进行正确预测的能 力。
Good fit
overfitting
选择了一个足够复杂的分类函数,能 够精确的记住每一个样本,但对样本 之外的数据可能一律分类错误。
7
-
SVM相关概念解释
• 结构风险最小化即SRM准则:统计学习理论提出了一种 新的策略,即把函数集构造为一个函数子集序列,使各个 子集按照VC维的大小排列;在每个子集中寻找最小经验 风险,在子集间折衷考虑经验风险和置信范围,取得实际 风险的最小。
• 该式称为L函数的对偶式,由对偶理论可知,最小化L式等于
最大化以L式的约束的拉格朗日乘子为变量的上式
x1 =(0, 0), y1 = +1
x2 =(1, 0), y2 = +1
W ()
N i 1
i
1 2
N i
N
i j yi y j
j
x3 =(2, 0), y3 = -1
xi , x j x4 =(0, 2), y4 = -1
b + w1 x1 + w2 x2 < 0 位于分离超平面上方的点满足
b + w1 x1 + w2 x2 > 0 调整权重使得定义边缘侧面的超平面记为 H1 :b+ w1 x1 + w2 x2 ≥ 1 , 对于所有yi = +1 H2 :b+ w1 x1 + w2 x2 ≤ -1 , 对于所有yi = -1
这种线性分类函数在一维空间里就是一个点,在二维空间里 就是一条直线,三维空间里就是一个平面,可以如此想象下 去,如果不关注空间的维数,这种线性函数还有一个统一的 名称——超平面(Hyper Plane)!
最优超平面
10
-
就是分割的间隙越大越 好,把两个类别的点分 得越开越好。具有最大 边缘超平面
11
圈代表0; 点代表1;
5
-
SVM相关概念解释
• 经验风险:使用分类器在样本数据上的分类的结果与真实 结果(因为样本是已经标注过的数据,是准确的数据)之 间的差值。
• 根据统计学习理论,学习机器的实际风险由经验风险值和 置信范围值两部分组成。而基于经验风险最小化准则的学 习方法只强调了训练样本的经验风险最小误差,没有最小 化置信范围值,因此其推广能力较差。
L 0 w
L 0 b
N
w i yi xi i 1
N
i yi 0
i 1
• 这实际上是寻找极值条件下L函数满足的等 式约束
14
-
15
-
16
•
将得到的约束条件
得到: N W ( ) i 1
w
i
N
1i1
2
i
N
i
yi
xi
N
j
N
i yi
i 1
i j yi y j
- 0 带入原L函数, xi , x j
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
-
如何求最优超平面
• 分离超平面可以记作: WX+b=0
其中,W是权重向量,即W ={w1, w2 ,..., wn },n是属性数,b是标 量,通常称做偏倚。 训练组是二维的,如X =( x1, x2),其中 x1, x2 分别是X的属性A、B的值。 我们将b看作附加的权重w0 ,则将分离超平面改写成
调用Matlab中的二次规划程 序,求得1, 2, 3, 4的值,
进而求得w和b的值。
1 0 2 1 3 3 / 4 4 1 / 4
17
-
w1 03 4 Nhomakorabea2
0
1 4
0
2
• 一是经验风险,代表了分类器在给定样本上的误差; • 二是置信风险,代表了我们在多大程度上可以信任分类
器在未知样本上分类的结果。 • 置信风险与两个量有关,一是样本数量,显然给定的样
本数量越大,我们的学习结果越有可能正确,此时置信 风险越小;二是分类函数的VC维(分类函数的复杂度), 显然VC维越大,推广能力越差,置信风险会变大.
两个边界平面的距离:m=2/||w||
12
-
如何求最优超平面
现在,原问题转化为下面这样一个优化问题 求解w和b,使得对于所有的样本{(xi,yi)},能有 m=2/||w||最大,其中满足当yi=1时,wTxi+b≥1,当 yi=-1时,wTxi+b≤-1,所以有: yi (wTxi+b) ≥1
• 求解最优超平面问题可以表示成约束优化问题
支持向量机方法是建立在统计学习理论的VC 维理论和结 构风险最小原理基础上的,根据有限的样本信息在模型的复 杂性(即对特定训练样本的学习精度)和学习能力(即无错 误地识别任意样本的能力)之间寻求最佳折衷,以期获得最 好的推广能力 。
4
-
SVM相关概念解释
• VC维:对于一个指示函数(即只有0和1两种取值的函数) 集,如果存在h个样本能够被函数集里的函数按照所有可 能的2h种形式分开,则称函数集能够把h个样本打散,函 数集的VC维就是能够打散的最大样本数目。
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介
支持向量机(Support Vector Machine)是Vapnik等人在 1995年首先提出的,它在解决小样本、非线性及高维模式识 别中表现出许多特有的优势。
– Minimize – Subject to
(w) 1 w 2 1 (w w)
2
2
yi ((w xi ) b) 1, i 1,..., l
• 定义Lagrange函数
L(w, b, )
1 2
w
2
l
i ( yi
(( xi
w) b) 1)
i1
13
-
如何求最优超平面
• 分别对w和b求偏导,并令其为0,可得
• 缺点: 1.经验风险主要反映的是样本数据与真实结果的差距,
而样本数据在实际项目中只是总体的一小部分; 2.过度地强调经验风险最小化容易造成过学习问题。
6
SVM相关概念解释
-
过学习问题
underfitting
推广能力:将学习机器 (即预测函数,或称学习 函数、学习模型)对未来 输出进行正确预测的能 力。
Good fit
overfitting
选择了一个足够复杂的分类函数,能 够精确的记住每一个样本,但对样本 之外的数据可能一律分类错误。
7
-
SVM相关概念解释
• 结构风险最小化即SRM准则:统计学习理论提出了一种 新的策略,即把函数集构造为一个函数子集序列,使各个 子集按照VC维的大小排列;在每个子集中寻找最小经验 风险,在子集间折衷考虑经验风险和置信范围,取得实际 风险的最小。
• 该式称为L函数的对偶式,由对偶理论可知,最小化L式等于
最大化以L式的约束的拉格朗日乘子为变量的上式
x1 =(0, 0), y1 = +1
x2 =(1, 0), y2 = +1
W ()
N i 1
i
1 2
N i
N
i j yi y j
j
x3 =(2, 0), y3 = -1
xi , x j x4 =(0, 2), y4 = -1