误差MATLAB实验报告
误差理论与数据处理实验报告
误差理论与数据处理实验报告姓名:小叶9101学号:小叶9101班级:小叶9101指导老师:小叶目录实验一误差的基本概念实验二误差的基本性质与处理实验三误差的合成与分配实验四线性参数的最小二乘法处理实验五回归分析实验心得体会实验一误差的基本概念一、实验目的通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。
二、实验原理1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示误差=测得值-真值1、绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。
绝对误差=测得值-真值2、相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。
相对误差=绝对误差/真值≈绝对误差/测得值2、精度反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。
3、有效数字与数据运算含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
数字舍入规则如下:①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。
②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加1。
③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。
即当末位为偶数时则末位不变,当末位为奇数时则末位加1。
三、实验内容1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有四、实验数据整理(一)用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
1、分析:绝对误差:绝对误差=测得值-真值相对误差:相对误差=绝对误差/真值≈绝对误差/测得值2、程序%绝对误差和相对误差的求解x=1897.64 %已知数据真值x1=1897.57 %已知测量值d=x1-x %绝对误差l=(d/x)%相对误差3、在matlab中的编译及运行结果(二)按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。
MATLAB实验报告
v1.0 可编辑可修改实验一 MATLAB 环境的熟悉与基本运算一、实验目的及要求1.熟悉MATLAB 的开发环境; 2.掌握MATLAB 的一些常用命令;3.掌握矩阵、变量、表达式的输入方法及各种基本运算。
二、实验内容1.熟悉MATLAB 的开发环境: ① MATLAB 的各种窗口:命令窗口、命令历史窗口、工作空间窗口、当前路径窗口。
②路径的设置:建立自己的文件夹,加入到MATLAB 路径中,并保存。
设置当前路径,以方便文件管理。
2.学习使用clc 、clear ,了解其功能和作用。
3.矩阵运算:已知:A=[1 2;3 4]; B=[5 5;7 8]; 求:A*B 、A.*B ,并比较结果。
4.使用冒号选出指定元素:已知:A=[1 2 3;4 5 6;7 8 9]; 求:A 中第3列前2个元素;A 中所有列第2,3行的元素; 5.在MATLAB 的命令窗口计算: 1) )2sin(π2) 5.4)4.05589(÷⨯+ 6.关系及逻辑运算1)已知:a=[5:1:15]; b=[1 2 8 8 7 10 12 11 13 14 15],求: y=a==b ,并分析结果 2)已知:X=[0 1;1 0]; Y=[0 0;1 0],求: x&y+x>y ,并分析结果 7.文件操作1)将0到1000的所有整数,写入到D 盘下的文件 2)读入D 盘下的文件,并赋给变量num8.符号运算1)对表达式f=x 3-1 进行因式分解2)对表达式f=(2x 2*(x+3)-10)*t ,分别将自变量x 和t 的同类项合并 3)求3(1)xdz z +⎰三、实验报告要求完成实验内容的3、4、5、6、7、8,写出相应的程序、结果实验二 MATLAB 语言的程序设计一、实验目的1、熟悉 MATLAB 程序编辑与设计环境2、掌握各种编程语句语法规则及程序设计方法3、函数文件的编写和设计4、了解和熟悉变量传递和赋值二、实验内容1.编写程序,计算1+3+5+7+…+(2n+1)的值(用input 语句输入n 值)。
matlab实验报告
实验一1.设x=-74°,y=-27°,求22的值。
√tan|x+y|+π2.当a取-3.0,-2.9,-2.8,…,2.8,2.9,3.0时,求e−0.3a sin(a+0.3)在各点的函数值。
3. 设x=24−0.455,求12In(x+√1+x ²)的值,并分析结果矩阵中各元素的含义。
4. 已知A=354234−457879015,B=1−2672874930求下面的表达式的值。
(1)A*B和A.*B。
(2)A^3和A.^3.。
(3)A/B和A\B。
(4)[A,B]和[A([1,3],:);B^2]。
实验二一、实验步骤:1)新建脚本2)在编辑器中输入相应程序3)在命令窗口执行文件,得到结果1. 根据π²6=11²+12²+13²+…+1n ²,求π的近似值。
当n 分别取100、1000、10000时,结果是多少?要求:分别用循环结构和向量运算(使用sum 函数)来实现。
1)循环结构一、实验步骤二、1)新建脚本2)在编辑器中输入相应程序3)保存文件,将文件命名为PI.m4)在命令窗口输入PI执行文件,得到结果三、实验代码四、实验结果2.根据y=1+13+15+⋯+12n−1,求(1)y<3时的最大n值(2)与(1)的n值对应的y值一、实验步骤1)打开matlab,新建脚本2)在脚本文件中输入实验代码3)保存文件,存名字为value.m4)在命令窗口中输入value,得到实验结果二、实验代码三、实验结果。
matlab实验报告总结
matlab实验报告总结
《利用Matlab进行实验的总结与分析》
在科学研究和工程领域中,Matlab是一个非常强大的工具,可以用于数据分析、图像处理、信号处理等多种应用。
本文将总结利用Matlab进行实验的经验,并分析实验结果。
首先,我们使用Matlab进行了数据分析实验。
通过Matlab的统计工具箱,我
们能够快速地对大量数据进行处理和分析,包括数据的描述统计、回归分析、
假设检验等。
通过实验,我们发现Matlab的数据分析功能非常强大,可以帮助我们更好地理解数据的特征和规律。
其次,我们进行了图像处理实验。
Matlab提供了丰富的图像处理函数和工具,
可以对图像进行滤波、边缘检测、分割等操作。
通过实验,我们发现Matlab能够快速地对图像进行处理,并且可以通过编写自定义的算法来实现更复杂的图
像处理任务。
此外,我们还进行了信号处理实验。
Matlab提供了丰富的信号处理函数和工具,可以对信号进行滤波、频谱分析、时频分析等操作。
通过实验,我们发现
Matlab在信号处理领域也有着非常强大的功能,可以帮助我们更好地理解和处
理各种类型的信号数据。
综上所述,利用Matlab进行实验可以帮助我们更好地理解和分析数据、图像和信号。
Matlab提供了丰富的工具和函数,可以帮助我们快速地完成各种实验任务,并且可以通过编写自定义的算法来实现更复杂的任务。
因此,Matlab是一
个非常强大的实验工具,可以在科学研究和工程领域中得到广泛的应用。
MATLAB实验报告(1-4)
信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。
2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。
4.学会运用MATLAB进行连续信号时移、反折和尺度变换。
5.学会运用MATLAB进行连续时间微分、积分运算。
6.学会运用MATLAB进行连续信号相加、相乘运算。
7.学会运用MATLAB进行连续信号的奇偶分解。
二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。
三、实验内容1.MATLAB软件基本运算入门。
1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。
2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn为结束值。
矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。
2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。
3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。
举例:计算一个函数并绘制出在对应区间上对应的值。
2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。
matlab实验报告
matlab实验报告实验1 熟悉matlab 的开发环境及矩阵操作⼀、实验的教学⽬标通过本次实验使学⽣熟悉MATLAB7.0的开发环境,熟悉MA TLAB ⼯作界⾯的多个常⽤窗⼝包括命令窗⼝、历史命令窗⼝、当前⼯作⽬录窗⼝、⼯作空间浏览器窗⼝等。
掌握建⽴表达式书写规则及常⽤函数的使⽤,建⽴矩阵的⼏种⽅法。
⼆、实验环境计算机、MATLAB7.0集成环境三、实验内容1、熟悉命令窗⼝的使⽤,⼯作空间窗⼝的使⽤,⼯作⽬录、搜索路径的设置。
命令历史记录窗⼝的使⽤,帮助系统的使⽤。
2、在当前命令窗⼝中输⼊以下命令:x=0:2:10 y=sqrt(x),并理解其含义。
3、求下列表达式的值(1)w=)1034245.01(26-?+?(2)x=ac b e abc cb a ++-+++)tan(22ππ,其中a=3.5,b=5,c=-9.8 四、实验总结1、熟悉了命令窗⼝的使⽤,⼯作空间窗⼝的使⽤。
2、了解了⼯作⽬录、搜索路径的设置⽅法。
---5317383399351542实验2 MATLAB 基本运算⼀、实验的教学⽬标通过本次实验使学⽣掌握向量和矩阵的创建⽅法;掌握矩阵和数组的算术运算、逻辑运算和关系运算;掌握字符数组的创建和运算;了解创建元胞数组和结构体的⽅法。
⼆、实验环境计算机、MATLAB7.0集成环境三、实验内容1、要求在闭区间]2,0[π上产⽣具有10个等距采样点的⼀维数组。
试⽤两种不同的指令实现。
(提⽰:冒号⽣成法,定点⽣成法)2、由指令rng('default'),A=rand(3,5)⽣成⼆维数组A ,试求该数组中所有⼤于0.5的元素的位置,分别求出它们的“全下标”和“单下标”。
(提⽰:find 和sub2ind )3、创建3阶魔⽅矩阵a 和3阶对⾓阵b ,c=a(1:3,1:3)(1)计算矩阵a,b 和c 的⾏列式、逆矩阵并进⾏最⼤值的统计。
(2)⽐较矩阵和数组的算术运算:b 和c 的*、/、^和.*、./、.^。
MATLAB实验报告
MATLAB实验报告实验⼀ MATLAB 环境的熟悉与基本运算⼀、实验⽬的及要求1.熟悉MATLAB 的开发环境;2.掌握MATLAB 的⼀些常⽤命令;3.掌握矩阵、变量、表达式的输⼊⽅法及各种基本运算。
⼆、实验内容1、熟悉MATLAB 的开发环境: ① MATLAB 的各种窗⼝:命令窗⼝、命令历史窗⼝、⼯作空间窗⼝、当前路径窗⼝。
②路径的设置:建⽴⾃⼰的⽂件夹,加⼊到MATLAB 路径中,并保存。
? 设置当前路径,以⽅便⽂件管理。
2、学习使⽤clc 、clear,了解其功能与作⽤。
3、矩阵运算:已知:A=[1 2;3 4]; B=[5 5;7 8]; 求:A*B 、A 、*B,并⽐较结果。
4、使⽤冒号选出指定元素:已知:A=[1 2 3;4 5 6;7 8 9]; 求:A 中第3列前2个元素;A 中所有列第2,3⾏的元素; 5、在MATLAB 的命令窗⼝计算: 1))2sin(π2) 5.4)4.05589(÷?+ 6、关系及逻辑运算1)已知:a=[5:1:15]; b=[1 2 8 8 7 10 12 11 13 14 15],求: y=a==b ,并分析结果 2)已知:X=[0 1;1 0]; Y=[0 0;1 0],求: x&y+x>y ,并分析结果 7、⽂件操作1)将0到1000的所有整数,写⼊到D 盘下的data 、txt ⽂件 2)读⼊D 盘下的data 、txt ⽂件,并赋给变量num 8、符号运算1)对表达式f=x 3-1 进⾏因式分解2)对表达式f=(2x 2*(x+3)-10)*t ,分别将⾃变量x 与t 的同类项合并 3)求3(1)xdz z +?三、实验报告要求完成实验内容的3、4、5、6、7、8,写出相应的程序、结果实验⼆ MATLAB 语⾔的程序设计⼀、实验⽬的1、熟悉 MATLAB 程序编辑与设计环境2、掌握各种编程语句语法规则及程序设计⽅法3、函数⽂件的编写与设计4、了解与熟悉变量传递与赋值⼆、实验内容1.编写程序,计算1+3+5+7+…+(2n+1)的值(⽤input 语句输⼊n 值)。
matlab程序设计实验报告
matlab程序设计实验报告《MATLAB程序设计实验报告》摘要:本实验报告旨在介绍MATLAB程序设计的基本原理和实践操作,通过实验演示和分析,展示了MATLAB在工程领域的应用和重要性。
本报告详细介绍了MATLAB程序设计的基本语法和常用函数,以及如何利用MATLAB进行数据处理、图像处理、信号处理等工程应用。
通过本报告的学习,读者将能够掌握MATLAB程序设计的基本技能,为工程实践提供有力的支持。
1. 引言MATLAB是一种用于算法开发、数据可视化、数据分析和数值计算的高级技术计算语言和交互式环境。
它具有强大的数学计算功能和丰富的绘图工具,广泛应用于工程、科学和金融等领域。
本实验报告将介绍MATLAB程序设计的基本原理和实践操作,帮助读者快速掌握MATLAB的基本技能。
2. 实验目的本实验的主要目的是让读者了解MATLAB程序设计的基本语法和常用函数,掌握MATLAB在工程领域的应用和重要性。
通过实验演示和分析,展示MATLAB 在数据处理、图像处理、信号处理等方面的应用。
3. 实验内容(1)MATLAB程序设计的基本语法和常用函数(2)利用MATLAB进行数据处理的实验演示(3)利用MATLAB进行图像处理的实验演示(4)利用MATLAB进行信号处理的实验演示4. 实验步骤(1)学习MATLAB程序设计的基本语法和常用函数(2)编写MATLAB程序,实现数据处理、图像处理、信号处理等功能(3)进行实验演示和分析,展示MATLAB在工程领域的应用和重要性5. 实验结果与分析通过本实验的学习,读者将能够掌握MATLAB程序设计的基本技能,包括数据处理、图像处理、信号处理等方面的应用。
通过实验演示和分析,读者将了解MATLAB在工程领域的重要性,为工程实践提供有力的支持。
6. 结论MATLAB程序设计是一种强大的工程工具,具有广泛的应用前景。
通过本实验报告的学习,读者将能够掌握MATLAB程序设计的基本技能,为工程实践提供有力的支持。
matlab 实验报告
matlab 实验报告Matlab 实验报告引言:Matlab(Matrix Laboratory)是一种强大的科学计算软件,它为科学家、工程师和研究人员提供了一个强大的计算环境。
本实验报告旨在介绍我对Matlab的实验结果和使用体验,以及对其优点和局限性的思考。
一、Matlab的基本功能和特点Matlab是一种高级编程语言和开发环境,它具有广泛的数学和工程计算功能。
通过Matlab,我可以进行矩阵运算、数值计算、数据可视化、算法开发等一系列操作。
Matlab的语法简洁易懂,可以快速实现复杂的计算任务。
此外,Matlab还提供了大量的工具箱,如信号处理、控制系统、图像处理等,使得各种领域的科学研究和工程应用变得更加便捷。
二、实验结果与应用案例在本次实验中,我选择了一个经典的数值计算问题——求解非线性方程。
通过Matlab的数值计算能力,我可以使用不同的迭代方法来求解方程的根。
在实验中,我使用了牛顿迭代法、二分法和割线法来求解方程。
通过对比这些方法的收敛速度和精度,我得出了不同方法的优缺点。
在实际应用中,Matlab可以广泛应用于信号处理、图像处理、数据分析等领域。
例如,在信号处理中,我可以使用Matlab的信号处理工具箱来进行滤波、频谱分析等操作。
在图像处理中,我可以利用Matlab的图像处理工具箱进行图像增强、边缘检测等操作。
这些应用案例充分展示了Matlab在科学计算和工程应用中的重要性和灵活性。
三、Matlab的优点1. 强大的计算功能:Matlab提供了丰富的数学和工程计算函数,可以高效地进行复杂的计算任务。
2. 简洁的语法:Matlab的语法简洁易懂,使得编程变得更加高效和便捷。
3. 丰富的工具箱:Matlab提供了大量的工具箱,覆盖了各种领域的科学计算和工程应用需求。
4. 可视化能力强:Matlab提供了丰富的绘图函数,可以直观地展示数据和计算结果。
四、Matlab的局限性1. 高昂的价格:Matlab是一款商业软件,其价格较高,对于个人用户而言可能不太容易承受。
matlab实验报告
matlab实验报告Matlab实验报告实验题目:利用Matlab进行数据处理与分析实验目的:通过使用Matlab进行数据处理与分析的实践,掌握Matlab的基本操作和数据处理的方法。
实验内容:1. 数据读取:从文件中读取原始数据,并进行初步的观察和分析。
2. 数据清洗:对原始数据进行清洗,包括去除空值、异常值等。
3. 数据可视化:利用Matlab的绘图函数,将数据可视化呈现,以方便对数据进行进一步的分析和理解。
4. 数据分析:对清洗后的数据进行统计分析,包括求平均值、方差、相关系数等。
5. 模型建立:根据数据分析的结果,建立合适的数学模型,并使用Matlab进行参数估计和模型验证。
6. 结果验证:利用实验数据和模型进行实验结果的对比,验证模型的准确性和可靠性。
实验步骤:1. 准备实验数据:从实验样本中获得原始数据,并将其存储为文本文件。
2. 使用Matlab导入数据:使用Matlab的数据导入函数,将文本文件中的数据导入到Matlab的工作空间中。
3. 数据分析与处理:使用Matlab的数据处理函数,对导入的数据进行清洗和处理,去除异常值和空值,并进行初步的数据观察和分析。
4. 数据可视化:利用Matlab的绘图函数,绘制数据的直方图、散点图、折线图等,以展示数据的分布和趋势。
5. 数据统计分析:使用Matlab的统计分析函数,对处理后的数据进行统计分析,包括计算平均值、方差、相关系数等。
6. 模型建立与验证:根据数据分析的结果,建立合适的数学模型,并使用Matlab进行参数估计和模型验证。
7. 结果对比和讨论:将实验结果与模型预测结果进行对比,并进行结果的讨论和分析。
8. 实验结论:总结实验结果并给出结论。
实验结果:根据实验数据的分析和处理,得出如下结论:1. 数据呈现正态分布,符合正态性假设。
2. 数据之间存在显著的正相关关系,相关系数为0.8,结果具有统计学意义。
3. 建立的数学模型与实验数据拟合良好,模型预测结果与实验结果吻合度高。
基于MATLAB的误差数据处理实验报告
基于MATLAB的误差数据处理实验报告《误差理论与数据处理》实验20121138晋美扎巴·测控三班实验⼀:MATLAB软件基础(⼀)实验⽬的:熟悉MATLAB软件的⽤户环境;了解MATLAB软件的⼀般⽬的命令;掌握MATLAB教组操作与运算函数;掌握MATLAB软件的基本绘图命令;掌握MATLAB语⾔的⼏种循环、条件和开关选择结构。
(⼆)实验内容:1.MATLAB软件的数组处理及运算操作E=eye(3,3);R=rand(3,2);O=zeros(2,3);S=[2,0;0,4];A=[E,R;O,S]B=[E,R+R*S;O,S^2]C=A*A所以B=C,原结论成⽴。
2.直接使⽤MATLAB软件进⾏作图练习(1)t=-1:0.01:1;x=sin(2*pi*t);y=cos(2*pi*10*t);plot(t,x,t,y)xlabel('t');ylabel('函数值')legend('正弦函数','余弦函数')(2)1) x=-10:0.01:10; y=normpdf(x,0,1); plot(x,y)(3)[x,y]=meshgrid(-10:0.05:10);z=sin(pi*sqrt(x.^2+y.^2));mesh(x,y,z);3.⽤MATLAB语⾔编写命令M-⽂件和函数M-⽂件a=input('请输⼊a的值')x0=a./2x1=(x0+a./x0)./2while(abs((x0-x1)>1e-5))x0=x1;x1=(x0+a./x0)./2;enddigits(8)vpa(x1)实验⼆:测量数据的统计分析(⼀)实验⽬的:通过对测量数据进⾏统计分析,学习掌握测量数据统计分析的基本⽅法。
(⼆)实验内容:1.>> x=normrnd(10,5,500,1);>> mu=mean(x)mu =9.7672>> sigma=std(x)sigma =4.8754>> va=var(x)va =23.7697>> hist(x)>> y=normpdf(x,mu,sigma); >> plot(x,y)2. x=-15:0.01:15; y1=normpdf(x,0,1); y2=normpdf(x,0,4); y3=normpdf(x,10,1); plot(x,y1,y2,y3);3.>> x=randn(500,1);>> mu=mean(x);>> va=var(x);>> cs=skewness(x);>> ck=kurtosis(x);>> hist(x);>> sigma=std(x);>> y=normpdf(x,mu,sigma); >> plot(x,y) >> cscs =0.1117>> ckck =3.0089>> mumu =0.0730>> vava=0.99814. >> x=-5:0.1:5; >> y1=tpdf(x,5); >> y2=tpdf(x,10); >> y3=tpdf(x,20); >> z=normpdf(x,0,1); >>plot(x,y1,x,y2,x,y3,x,z)5.>> x=0:0.2:30; >> y1=chi2pdf(x,5); >> y2=chi2pdf(x,10); >> y3=chi2pdf(x,20); >>plot(x,y1,x,y2,x,y3)6.x=0:0.01:10;y1=fpdf(x,4,5);y2=fpdf(x,10,20);y3=fpdf(x,50,50); plot(x,y1,x,y2,x,y3)实验三:等精度和⾮等精度直接测量数据处理(⼀)实验⽬的:通过本实验使学⽣掌握等精度和⾮等精度直接测量数据的基本处理⽅法;学习如何发现和处理测量列中的随机误差、系统误差和粗⼤误差,如何科学地表达测量结果。
MATLAB实验报告
MATLAB实验报告MATLAB 实验报告姓名:专业:学号:实验⼀ MATLAB环境的熟悉与基本运算⼀、实验⽬的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算⼆、实验基本知识:1.熟悉MATLAB环境:MATLAB桌⾯和命令窗⼝、命令历史窗⼝、帮助信息浏览器、⼯作空间浏览器⽂件和搜索路径浏览器。
2.掌握MATLAB常⽤命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英⽂字母开头(3)长度不⼤于31个(4)区分⼤⼩写MATLAB中设置了⼀些特殊的变量与常量,列于下表。
MATLAB运算符,通过下⾯⼏个表来说明MATLAB的各种常⽤运算符表2 MATLAB算术运算符表3 MATLAB关系运算符表4 MATLAB逻辑运算符表5 MATLAB特殊运算4.MATLAB的⼀维、⼆维数组的寻访表6 ⼦数组访问与赋值常⽤的相关指令格式5.MATLAB的基本运算表7 两种运算指令形式和实质内涵的异同表6.MATLAB的常⽤函数表8 标准数组⽣成函数表9 数组操作函数三、实验内容1、学习安装MATLAB软件。
2、学习使⽤help命令,例如在命令窗⼝输⼊help eye,然后根据帮助说明,学习使⽤指令eye(其它不会⽤的指令,依照此⽅法类推)3、学习使⽤clc、clear,观察command window、command history和workspace 等窗⼝的变化结果。
4、初步程序的编写练习,新建M-file,保存(⾃⼰设定⽂件名,例如exerc1、exerc2、exerc3……),学习使⽤MATLAB的基本运算符、数组寻访指令、标准数组⽣成函数和数组操作函数。
注意:每⼀次M-file的修改后,都要存盘。
四、实验结果练习A:(1)help rand,然后随机⽣成⼀个2×6的数组,观察command window、command history和workspace等窗⼝的变化结果。
实验报告误差
实验报告误差篇一:误差分析实验报告实验一误差的基本性质与处理(一) 问题与解题思路:假定该测量列不存在固定的系统误差,则可按下列步骤求测量结果1、算术平均值2、求残余误差3、校核算术平均值及其残余误差4、判断系统误差5、求测量列单次测量的标准差6、判别粗大误差7、求算术平均值的标准差8、求算术平均值的极限误差9、写出最后测量结果(二) 在matlab中求解过程:a =[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674] ;%试验测得数据x1 = mean(a) %算术平均值b = a -x1 %残差c = sum(b) %残差和c1 = abs(c) %残差和的绝对值bd = (8/2) *0.0001 %校核算术平均值及其误差,利用c1(残差和的绝对值)% 3.5527e-015(c1) xt = sum(b(1:4)) - sum(b(5:8)) %判断系统误差,算的xt= 0.0030.由于xt较小,不存在系统误差dc = sqrt(sum(b.^2)/(8-1)) %求测量列单次的标准差dc = 0.0022sx = sort(a) %根据格罗布斯判断准则,先将测得数据按大小排序,进而判断粗大误差。
g0 = 2.03 %查表g(8,0.05)的值g1 = (x1 - sx(1))/dc %解得g1 = 1.4000g8 = (sx(8) - x1)/dc %解得g8 = 1.7361 由于g1和g8都小于g0,故判断暂不存在粗大误差 sc = dc/sqrt(8) %算术平均值得标准差 sc = 7.8916e-004t=2.36; %查表t(7,0.05)值jx = t*sc %算术平均值的极限误差 jx = 0.0019l1 = x1 - jx %测量的极限误差 l1 = 24.6723l2 = x1 + jx %测量的极限误差 l2 = 24.6760(三)在matlab中的运行结果实验二测量不确定度一、测量不确定度计算步骤:1. 分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量;2. 评定标准不确定度分量,并给出其数值和自由度;3. 分析所有不确定度分量的相关性,确定各相关系数;4. 求测量结果的合成标准不确定度及自由度;5. 若需要给出伸展不确定度,则将合成标准不确定度乘以包含因子k,得伸展不确定度;二、求解过程:用matlab编辑以下程序并运行clcclear allclose allD=[8.075 8.085 8.095 8.085 8.080 8.060];h=[8.105 8.115 8.115 8.110 8.115 8.110];D1=sum(D)/length(D);%直径的平均数h1=sum(h)/length(D);%高度的平均数V=pi*D1^2*h1/4; %体积fprintf('体积V的测量结果的估计值=%.1fmm^3',V);fprintf('不确定度评定: ');fprintf('对体积V的测量不确定度影响显著的因素主要有:\n');fprintf('直径和高度的测量重复性引起的不确定度u1、u2,采用A类评定\n');fprintf('测微仪示值误差引起的不确定度u3,采用B类评定\n');%%下面计算各主要因素引起的不确定度分量fprintf('直径D的测量重复性引起的标准不确定度分量u1,自由度v1\n');M=std(D)/sqrt(length(D));%直径D 的平均值的标准差u1=pi*D1*h1*M/2v1=6-1fprintf('高度h的测量重复性引起的标准不确定度分量u2,自由度v2\n');N=std(h)/sqrt(length(h));%高度h 的平均值的标准差u2=pi*D1^2*N/4v2=6-1fprintf('测微仪示值误差引起的不确定度u3,自由度v3\n');u3=sqrt((pi*D1*h1/2)^2+(pi*D1^2/4)^2)*(0.01/sqrt(3) )v3=round(1/(2*0.35*0.35))fprintf('不确定度合成:\n');fprintf('不确定度分量u1,u2,u3是相互独立的\n');uc=round(sqrt(u1^2+u2^2+u3^2)*10)/10%标准不确定度v=round(uc^4/(u1^4/v1+u2^4/v2+u3^4/v3))%自由度fprintf('展伸不确定度:\n');fprintf('取置信概率P=0.95,可查表得t=2.31,即包含因子k=2.31\n');fprintf('体积测量的展伸不确定度:\n');P=0.95k=2.31U=round(k*uc*10)/10fprintf('不确定度报告:\n');fprintf('用合成标准不确定度评定体积测量的不确定度,其测量结果为:\n V=%.1fmm^3 uc=%.1fmm^3 v=%1.f\n',V,uc,v);fprintf('用展伸不确定度评定体积测量的不确定度,其测量结果为:\n V=(%.1f ±%.1f)mm^3 P=%.2f v=%1.f\n',V,U,P,v);fprintf('其中±后的数值是展伸不确定度U=k*uc=%.1fmm^3,是有合成标准不确定度uc=%.1fmm^3及包含因子k=%.2f\n',U,uc,k);三、在matlab中运行结果如下:篇二:物理实验误差分析与数据处理目录实验误差分析与数据处理 ................................................ (2)1 测量与误差 ................................................ ................................................... (2)2 误差的处理 ................................................ ................................................... (6)3 不确定度与测量结果的表示 ................................................ (10)4 实验中的错误与错误数据的剔除 ................................................ . (13)5 有效数字及其运算规则 ................................................ ..................................................... 156 实验数据的处理方法 ................................................ ................................................... (17)习题 ................................................ ................................................... .. (25)实验误差分析与数据处理1 测量与误差1.1 测量及测量的分类物理实验是以测量为基础的。
matlab实验报告
实验仿真一:控制系统中的MATLAB编程应用已知单位负反馈的开环传递函数为:G(s)=ωξω(1)假设自然频率ω给定,取五个不同的阻尼比ξ。
试用MATLAB编程,在同一张图中绘制其单位阶跃响应曲线,并分析阻尼比对二阶动态系统的影响。
取ω=2,ξ=0.25, 0.5, 1,2,4由开环传递函数求出闭环传递函数:G(s)=ωξωω将数据带入闭环传递函数得:G(s)=,ξ则随着ξ的值变化,绘制的曲线将不同。
写入MATLAB程序如下:clearclcnum=4;den1=[1 1 4];sys1=tf(num,den1);den2=[1 2 4];sys2=tf(num,den2);den3=[1 4 4];sys3=tf(num,den3);den4=[1 8 4];sys4=tf(num,den4);den5=[1 16 4];sys5=tf(num,den5);step(sys1,'b-',sys2,'g-',sys3,'r-',sys4,'c-',sys5,'y-',20);图1-1 阻尼比不同的单位阶跃响应曲线图阻尼比对二阶动态系统的影响:随着阻尼比ξ的增大,系统超调量逐渐减小。
当阻尼比大于1时,系统响应曲线为单调曲线,已经没有振荡了。
(2)假设阻尼比ξ给定,取五个不同的自然频率ω。
试用MATLAB编程,在同一张图中绘制其单位阶跃响应曲线,并分析自然频率对二阶动态系统的影响。
取ξ=0.5,ω=0.5,1,2,3, 4将数据带入闭环传递函数得:G(s)=ω,ωω则随着ω的值变化,绘制的曲线将不同写入MATLAB程序如下:clearclcnum1=0.25;den1=[1 0.5 0.25];sys1=tf(num1,den1);num2=1;den2=[1 1 1];sys2=tf(num2,den2);num3=4;den3=[1 2 4];sys3=tf(num3,den3);num4=9;den4=[1 3 9];sys4=tf(num4,den4);num5=16;den5=[1 4 16];sys5=tf(num5,den5);step(sys1,'b-',sys2,'g-',sys3,'r-',sys4,'c-',sys5,'y-',20);图1-2 自然频率不同的单位阶跃响应曲线图自然频率对二阶动态系统的影响:随着自然频率的增加,系统的响应速度加快,而响应曲线的峰值保持不变。
MATLAB实验报告
MATLAB实验报告MATLAB实验报告姓名:学号:专业班级:指导⽼师:地点:⽇期:2012.12.17⽬录实验⼋............................................... - 3 -⼀、实验内容...................................... - 3 -⼆.实验结果:.................................... - 3 - 三.实验代码:.................................... - 4 - 实验九............................................... - 5 - 实验⼗⼀............................................. - 7 - ⼀.实验内容...................................... - 7 - ⼆.实验结果...................................... - 7 - 三.实验代码...................................... - 7 - 实验⼗⼆............................................. - 7 - ⼀.实验内容...................................... - 7 - ⼆.实验结果...................................... - 8 - 三.实验代码:................................... - 11 -实验⼋⼀、实验内容2、将100个学⽣5门功课的成绩存⼊矩阵P中,进⾏如下处理:(1)分别求每门课的最⾼分、最低分及相应学⽣序号。
(2)分别求没门功课的平均分和标准⽅差。
数值分析matlab实验报告
数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。
本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。
二、实验内容(一)误差分析在数值计算中,误差是不可避免的。
通过对给定函数进行计算,分析截断误差和舍入误差的影响。
例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。
(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。
2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。
(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。
2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。
(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。
三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。
```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。
(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。
MATLAB实验报告3
3.6 基于Simulink 控制系统的稳态误差分析1.实验目的1)掌握使用Simulink 仿真环境进行控制系统稳态误差分析的方法。
2)了解稳态误差分析的前提条件是系统处于稳定状态。
3)研究系统在不同典型信号输入作用下,稳态误差的变化。
2.实验内容(1)研究系统在不同典型输入信号作用下,稳态误差的变化。
【例3-11】 已知一个单位负反馈系统开环传递函数为G(s)=)11.0(10 s s K ,分别K=10和K=1时,系统单位阶跃响应曲线并求出单位阶跃响应稳态误差。
【解】 首先对闭环系统判稳。
该系统为零极点模型,用函数roots()命令判断系统闭环全部特征根的实部都是负值,说明闭环系统稳定。
这样进行稳态误差分析才有意义。
K=10时的判稳程序如下:>> n1=100;d1=conv([1,0],[0.1,1]);G=tf(n1,d1);sys=feedback(G ,1);roots(sys.den{1})ans =-5.0000 +31.2250i-5.0000 -31.2250i然后在Simulink 环境下,建立系统数学模型,如图3-21所示。
设置仿真参数并运行,观察示波器Scope 中系统的单位阶跃响应曲线,如图3-22所示,并读出单位阶跃响应稳态误差。
图3-21 基于Simulink Ⅰ型控制系统单位阶跃响应(K=10)结构图图3-22 基于Simulink Ⅰ型控制系统单位阶跃响应稳态误差曲线【分析】实验曲线表明,Ⅰ型单位反馈系统在单位阶跃输入作用下,稳态误差e ssr=0,即Ⅰ型单位反馈系统稳态时能完全跟踪阶跃输入,是一阶无静差系统。
K=1时的判稳程序如下:>> n1=10;d1=conv([1,0],[0.1,1]);G=tf(n1,d1);sys=feedback(G,1);roots(sys.den{1})ans =-5.0000 + 8.6603i-5.0000 - 8.6603i在Simulink环境下建立的数学模型及仿真参数运行后示波器Scope中系统的单位阶跃响应曲线如下图所示。
matlab实验一实验报告
matlab实验一实验报告实验一:Matlab实验报告引言:Matlab是一种强大的数学软件工具,广泛应用于科学计算、数据分析和工程设计等领域。
本实验旨在通过使用Matlab解决实际问题,探索其功能和应用。
一、实验目的本次实验的主要目的是熟悉Matlab的基本操作和常用函数,了解其在科学计算中的应用。
二、实验内容1. 数值计算在Matlab中,我们可以进行各种数值计算,包括基本的加减乘除运算,以及更复杂的矩阵运算和方程求解。
通过编写相应的代码,我们可以实现这些功能。
例如,我们可以使用Matlab计算两个矩阵的乘积,并输出结果。
代码如下:```matlabA = [1 2; 3 4];B = [5 6; 7 8];C = A * B;disp(C);```2. 数据可视化Matlab还提供了强大的数据可视化功能,可以将数据以图表的形式展示出来,更直观地观察数据的规律和趋势。
例如,我们可以使用Matlab绘制一个简单的折线图,来展示某个物体在不同时间下的位置变化。
代码如下:```matlabt = 0:0.1:10;x = sin(t);plot(t, x);xlabel('Time');ylabel('Position');title('Position vs. Time');```3. 图像处理Matlab还可以进行图像处理,包括图像的读取、处理和保存等操作。
我们可以通过Matlab对图像进行增强、滤波、分割等处理,以及进行图像的压缩和重建。
例如,我们可以使用Matlab读取一张图片,并对其进行灰度化处理。
代码如下:```matlabimg = imread('image.jpg');gray_img = rgb2gray(img);imshow(gray_img);```三、实验结果与分析在本次实验中,我们成功完成了数值计算、数据可视化和图像处理等任务。
matlab实验报告
matlab实验报告引言:Matlab(矩阵实验室)是一款功能强大的数值计算和科学计算软件,广泛应用于工程、科学和经济等领域。
本实验报告将探讨我在使用Matlab进行实验过程中的心得体会和实验结果。
实验一:图像处理在这个实验中,我使用Matlab对一张图像进行了处理,并应用了各种图像处理算法。
这包括图像增强、边缘检测和图像分割等技术。
通过Matlab的图像处理工具箱,我能够轻松调用各种算法函数,并对图像进行快速处理。
实验结果表明,Matlab图像处理工具箱提供了丰富的函数和算法,极大地方便了我们的图像处理工作。
实验二:模拟信号处理模拟信号处理是Matlab中的一个重要应用领域。
在这个实验中,我模拟了一个带噪声的正弦信号,并使用Matlab进行了噪声滤波和频谱分析。
通过使用Matlab的滤波函数,我能够有效地去除信号中的噪声,并还原出原始信号。
同时,Matlab提供了功能强大的频谱分析工具,我可以轻松地对信号的频率特性进行分析和可视化。
实验三:数据分析与统计数据分析与统计是Matlab的另一个重要应用领域。
在这个实验中,我使用Matlab对一组实验数据进行了分析和统计。
通过使用Matlab的统计函数和工具,我能够计算出数据的均值、方差、标准差等统计指标,并绘制出数据的直方图和散点图。
这些统计分析结果对我的实验研究提供了有力的支持,并帮助我更好地理解实验数据。
实验四:数值计算与优化数值计算与优化是Matlab的核心功能之一。
在这个实验中,我使用Matlab进行了一组数值计算和优化实验。
通过使用Matlab的数值计算函数和优化工具箱,我能够快速计算出复杂的数学问题,并找到最优解。
同时,在进行优化实验时,我可以设置各种约束条件和目标函数,从而得到最优解的参数值。
这些数值计算和优化工具极大地提高了我的研究效率和准确度。
结论:通过这些实验,我深刻认识到Matlab的强大功能和广泛应用领域。
无论是图像处理、信号处理、数据分析还是数值计算与优化,Matlab都提供了丰富的函数和工具,让我们能够快速高效地完成实验和研究工作。