论步进电机与开关磁阻电机

合集下载

开关磁阻电机的工作原理

开关磁阻电机的工作原理

开关磁阻电机的工作原理
开关磁阻电机是一种能够快速启停和反转的电动机,它的工作原理基于磁阻的变化。

下面是开关磁阻电机的工作原理的详细解释:
1. 结构:开关磁阻电机由定子和转子组成。

定子上有多个绕组,每个绕组之间通过磁阻作为连接。

转子上也有绕组,与定子的绕组相连。

2. 动作原理:当电流通过定子的绕组时,会在绕组中产生一个磁场。

当转子中的绕组与定子绕组的磁场相互作用时,转子会受到一个力矩的作用,使其转动。

3. 磁场调节:开关磁阻电机通过改变传感器绕组中的电流方向来改变磁场的方向。

改变磁场的方向可以改变转子所受到的力矩的方向,从而实现电机的启动、停止和反转。

4. 工作过程:当需要启动电机时,通过改变传感器绕组中的电流方向,改变磁场的方向,使转子受到力矩的作用开始转动。

当需要停止电机时,改变电流方向,使磁场的方向与转动方向相反,转子受到的力矩变为阻碍转动的力矩,从而停止电机的转动。

当需要反转电机时,改变电流方向,使磁场的方向与原来相反,从而改变转子受到的力矩方向,使电机反向转动。

总之,开关磁阻电机的工作原理是通过改变磁场的方向来实现电机的启动、停止和反转,从而能够快速调节和控制电机的运转状态。

控制电机:开关磁阻电机

控制电机:开关磁阻电机

题目:开关磁阻电机开关磁阻电机学习《特种电机及其控制》这门课程,这要介绍了无刷直流电机及其控制、开关磁阻电机及其控制系统、步进电机及其控制,其中我最感兴趣的开关磁阻电机。

下面我将对我所了解的开关磁阻电机做一总结。

一、发展背景开关磁阻电机是80年代初随着电力电子、微电脑和控制技术的猛烈发展而发展起来的一种新型调速驱动系统,具有结构简单、运行可靠及效率高等突出优点,成为直流电机调速系统、交流电机调速系统和无刷直流电机调速系统强有力的竞争者,引起各国学者和企业界的广泛关注,目前开关磁阻电机已开始应用于工业、航空业和家用电器等各个领域。

开关磁阻电机的基本概念可追溯到19世纪40年代,1842年,英国的Aberdeen和Dafidson用两个U型电磁铁制造了由蓄电池供电的机车电动机。

20世纪60年代,大功率晶闸管的出现为SR电机的研究发展提供了重要的物质条件。

1967年,英国的Leeds大学开始对SR电机进行深入研究;直到1970年左右,研究结果表明:SR电机可以在单相电流下四象限运行,功率变换器无论是用晶体管还是用普通晶闸管,所需开关数都是最少的;电动机成本也明显低于同容量的感应电动机。

20年代70年代初,美国福特公司研制出最早开关磁阻电机的调速系统,其结构为轴向气隙电动机,具有电动机和发电机运行状态和较宽范围调速的能力,适合于蓄电池供电的电动车辆的转动。

1980年Leeds大学的Lawrenson教授及其同事总结出了自己的研究成果,发表了题为“Variable--Speed Switched Reluctance Motors”的论文,系统阐述了开关磁阻电机的基本原理与设计特点,并得出了新型磁阻电机的单位出力可以与交流感应电机相媲美甚至还略占优势的结论。

1983年英国TASC公司推出了Oulton系列通用SRD调速产品,问世不久便受到了各国电气传动界的广泛重视。

从1984年开始,我国许多单位先后开展了SRD研究,在借鉴国外经验的基础上,我国SR电机的研究发展很快。

开关磁阻电机的基本了解

开关磁阻电机的基本了解

开关磁阻电机的基本学习内容1 开关磁阻电机的基本原理以及结构开关磁阻电动机(Switched Reluctance Motor ,简称SRM) 定转子为双凸极结构,铁心均由普通硅钢片叠压而成,其定子极上有集中绕组,径向相对的两个绕组串联构成一相,转子非永磁体,其上也无绕组[1,3]。

SRM 的定转子极数必须满足如下约束关系:s r s N =2kmN = N + 2k (1-1) 其中,Ns ,Nr 分别为电机定、转子数;m 为电机相数值减1;k 为一常数。

以下图1-1所示一个典型四相8/6极SRM 为例,相数为4,因而m=3,取k=1,则Ns=6,Nr=8。

m 及k 值越高,越利于高控制性能控制,但相应成本越高,结构越复杂。

目前技术较为成熟,发展较为迅速的产品多为三、四相SRM [2]。

图1-1即为一典型四相8/6结构的SRM电机本体及其不对称功率变换器主电路的示意图(图1-1在末尾手画)。

为表述清晰,图中仅画出不对称半桥电路的一相,其他各相均与该相相同,并省略了相应的驱动及检测电路。

完整的开关磁阻电机调速系统(Switched Reluctance Motor Drive,简称SRD)则由SRM、功率变换器、控制器、位置检测器等四大部分组成,如下图1-2示。

SRM可以认为是同步电机的一个分支,它运行时遵循磁阻最小原理,同步进电机较为类似[2,30]。

其具体运行原理如下:首先要保证励磁相的定子凸极和最近的转子凹极中心线不重合,也即初始位移不能位于磁阻最小位置。

通以交流电后,经过一个整流桥变为直流电源,当开关S1和S2开通时,AA’相通电励磁,产生一个磁拉力。

在该电磁力的轴向分量作用下,产生电磁转矩,凸极转子铁心趋向于旋转到定转子极轴线B-B’与A-A’重合的位置;而电磁力的径向力分量则造成定子的“变形”,这也是产生转矩脉动和电机噪声的根本原因之一。

在该过程中电机吸收电能。

关断S1和S2,开通BB’相,此时AA’相经续流二极管VD1、VD2将电能回馈给电源,同时BB’相趋向运行到定转子极轴线C-C’与B-B’重合的位置。

磁阻电机与步进电机

磁阻电机与步进电机

开关磁阻电机开关磁阻电动机驱动系统(SRD)是较为复杂的机电一体化装置,SRD的运行需要在线实时检测的反馈量一般有转子位置、速度及电流等,然后根据控制目标综合这些信息给出控制指令,实现运行控制及保护等功能。

转子位置检测环节是SRD的重要组成部分,检测到的转子位置信号是各相主开关器件正确进行逻辑切换的根据,也为速度控制环节提供了速度反馈信号。

开关磁阻电机具有再生的能力,系统效率高:对开关磁阻电机的理论研究和实践证明,该系统具有许多显著的优点:(1)电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境。

(2)损耗主要产生在定子,电机易于冷却;转子无永磁体,可允许有较高的温升。

(3)转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本。

(4)功率变换器不会出现直通故障,可靠性高。

(5)起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象。

(6)调速范围宽,控制灵活,易于实现各种特殊要求的转矩-速度特性。

(7)在宽广的转速和功率范围内都具有高效率(8)能四象限运行,具有较强的再生制动能力。

(9)容错能力强。

开关磁阻电机的容错体现在电机某一相损坏,电机照样可以运行。

开关磁阻电机的应用:近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100000 r/min。

开关磁阻电机电动车应用开关磁阻电机最初的应用领域就是电动车。

目前电动摩托车和电动自行车的驱动电机主要有永磁无刷及永磁有刷两种,然而采用开关磁阻电机驱动有其独特的优势。

当高能量密度和系统效率为关键指标时,开关磁阻电机变为首选对象。

SRD开关磁阻电机驱动系统的电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。

开关磁阻电机

开关磁阻电机

CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
开关磁阻电机的工作原理
SRM的工作原理
• 电磁感应原理:转子绕组切割磁力线产生感应电动势 • 磁阻变化原理:定子凸极与转子凸极相对位置变化导致 磁阻变化 • 扭矩产生:磁阻变化产生电磁扭矩,驱动转子旋转
SRM的运转过程
• 启动阶段:电流通过定子绕组产生磁场,转子开始旋转 • 运行阶段:转子转速增加,磁阻变化减小,电流逐渐减 小 • 停止阶段:转子停止旋转,磁阻变化消失,电流降至零
应用领域的拓展
• 新能源汽车:提高电动汽车性能,降低能耗 • 家用电器:提高家用电器性能,降低能耗 • 工业自动化:提高生产效率,降低能耗
技术水平的提升
• 高性能电机的研究与应用:提高电机性能 • 新型控制策略的研究与应用:提高控制精度和响应速度 • 高性能驱动电路的研究与应用:提高驱动效率和可靠性
开关磁阻电机的技术发展趋势
高性能材料的应用
• 高磁能永磁材料:提高电机磁能密度 • 高强度绝缘材料:提高电机绝缘性能 • 高导热材料:提高电机散热性能
高性能电机设计
• 优化磁路设计:提高电机效率和扭矩 • 优化绕组设计:降低铜损,提高效率 • 优化轴承设计:提高电机运行稳定性
开关磁阻电机的研究热点与挑战
研究热点
• 新型控制策略:提高控制精度和响应速度 • 高性能驱动电路:提高驱动效率和可靠性 • 高性能材料的研究与应用:提高电机性能
挑战
• 高效率与高性能的平衡:提高电机效率,同时保持高性能 • 控制策略的优化:实现精确控制,提高系统性能 • 制造工艺的改进:提高电机制造工艺水平,降低成本
开关磁阻电机的未来展望

开关磁阻电机的运行原理

开关磁阻电机的运行原理

开关磁阻电机的运行原理
开关磁阻电机是一种新型的电动机,它的运行原理主要是利用磁
场变化来实现转动。

下面就来详细介绍一下开关磁阻电机的运行原理。

第一步,通过控制器来改变磁场的方向。

开关磁阻电机是一种复
杂的电动机系统,其控制器是一个核心部件,它能够通过反馈机制来
实现磁场的正确方向。

第二步,通过驱动系统来实现磁场变化。

当磁场的方向变化时,
它会产生一个磁动势,这个磁动势可以驱动转子实现转动。

第三步,通过传感器来检测转子的位置,并及时反馈给控制器。

在转子转动的过程中,传感器能够检测到转子的具体位置,从而让控
制器能够调整磁场的方向,驱动转子继续转动。

第四步,通过电源来给电机供电。

开关磁阻电机需要电源来提供
能量,从而让驱动系统、传感器、控制器等部件能够正常工作。

电源
的质量和电量会直接影响电机的运行效率和寿命。

第五步,通过转子和定子之间的相互作用来实现机械能的转换。

当驱动系统驱动转子旋转时,转子和定子之间的互相作用就会让电能
转化为机械能,从而实现机械的转动。

综上所述,开关磁阻电机的运行原理主要是通过控制器来调整磁
场的方向,从而驱动转子实现转动,并通过传感器实时监测转子的位置,以保证电机的稳定性和高效性。

同时,电源的质量和电量也会影
响电机的运行效果,因此,在使用电机的过程中要注意这些细节问题,以确保电机能够长时间高效运行。

开关磁阻电机的九大优势、三大缺点、应用领域全面解析

开关磁阻电机的九大优势、三大缺点、应用领域全面解析

开关磁阻电机的九大优势、三大缺点、应用领域全面解析近年来,开关磁阻电机逐渐走进了市场,因为该电机具有其他电机没有的优势,所以逐渐成为了市场未来发展的主要方向,目前已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域。

那么开关磁阻电机的优势到底是什么呢?让我们一起来了解一下吧!开关磁阻电机调速系统是以现代电力电子与微机控制技术为基础的机电一体化产品。

它是由开关磁阻电动机和微机智能控制器两部分组成,其特点是效率高、节能效果好、调速范围广,无冲击起动电流,起动转矩大,控制灵活等特点。

1998年,我国把发展电动机调速节能和电力电子节电技术纳入《中华人民共和国节能法》中,国家发改委“电动机节能计划”明确提出:提高电动机15-20%的效率,实现节电1000亿kWh/年。

因此,该种电机被广泛用于运输车辆驱动、龙门刨、锻压设备等需要重载起动,频繁启动,正反转的场合。

近几年,随着电机节能理念的逐渐深入,开关磁阻电机由于具有以下的特点,其正在应用于各种场合。

开关磁阻电机调速系统的特点:一、效率高,节能效果好。

经过测试,其整体效率比交流异步电动机变频调速系统至少高3%以上,低速下能提高至少10%,与直流调速、串级调速、电磁调速等比较,节电效果更明显。

二、起动转矩大,适合重载起动和负载变化明显且频繁启动的场合。

测试发现其启动转矩达额定转矩的150%时,起动电流仅为额定电流的30%,优势非常明显三、调速范围广。

开关磁阻电机可以在低速下长期运行,由于效率高,在低速下的温升程度比额定工况时要低,解决了变频调速电机低速运行时电动机发热问题,还可以根据实际灵活设置最高转速。

四、可频繁正、反转起动停止,系统调控性好,制动性好,能实现再生制动,节电效果显著。

五、起动电流小,避免对电网的冲击。

开关磁阻电机具有软启动特性,没有普通交流电动机起动电流大于5-7倍额定电流的现象。

六、功率因数高,不需增加无功补偿装置,测试发现,开关磁阻电机系统在空载和满载时的功率因数均大于0.98 。

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。

具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。

一、开关磁阻电机的工作原理开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。

因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。

所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。

开关磁阻电机的定子和转子都是凸极式齿槽结构。

定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。

电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。

电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。

当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。

通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。

当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。

自启动永磁同步电机与开关磁阻电机对比

自启动永磁同步电机与开关磁阻电机对比

自启动永磁同步电机与开关磁阻电机对比1、自启动永磁同步电机1.1 工作原理起步过程与异步电机一样,定子绕组三相旋转磁场与转子鼠笼条(铜条)感应电流产生的磁场作用,让电机启动起来,此时永磁体不起作用,当转速起来后,由永磁体与定子旋转磁场作用带动转子旋转。

当同步转速稳定后,由于定子磁场转速与转子转速一致,及没有相对运动,不会产生感应电流,鼠笼条(铜条)也就不起作用。

1.2 基本结构主要由定子铁芯、绕组、机座、端盖、接线盒、转子铁芯、转轴、磁钢等组成。

定子结构转子结构2、开关磁阻电机2.1 工作原理开关磁阻电机磁路始终以“磁阻最小”为转动原则,及当绕组通交流时,会在气隙形成交流磁场,该磁场从定子流动转子,再留回定子形成回路,该回路始终从最小磁阻的路径流过。

然后通过控制器依次给三相绕组通电形成旋转磁场,从而带动转子旋转起来。

2.2 基本结构除转子上没有磁钢外,其余构建与永磁同步电机一致,只是转子形状和绕组排布有差异而已。

3、性能对比3.1 由于开关磁阻电机定子和转子都有齿槽,气隙磁场畸变比较严重,相比永磁同步电机只有定子开有槽,开关磁阻转矩脉动和电磁噪音大很多。

3.2 自启动永磁同步电机转子有启动绕组,可以直接启动,而开关磁阻电机必须通过控制器才能启动,成本增加,而且需增加控制器安装空间。

3.3 开关磁阻电机由于转子没有安装永磁体,出力全靠定子绕组电流产生,不仅增加了定子绕组和逆变器的负担,也提高了逆变器功率要求,当然成本也会提高。

3.4 永磁同步电机额定效率达95%以上,且高效率区域很宽,而开关磁阻基本在90%左右,高效区也很窄,在负载比较低的工况下,耗电量比较高。

3.5 同功率、转速下,永磁同步电机可以做得比开关磁阻体积小、重量轻。

综上:与开关磁阻电机相比,永磁同步电机的优势更明显,特别是在负载不高的工况下,节能效果比较突出。

开关磁阻电机的基本了解

开关磁阻电机的基本了解

开关磁阻电机的基本了解开关磁阻电机的基本学习内容1 开关磁阻电机的基本原理以及结构开关磁阻电动机(Switched Reluctance Motor ,简称SRM) 定转子为双凸极结构,铁心均由普通硅钢片叠压而成,其定子极上有集中绕组,径向相对的两个绕组串联构成一相,转子非永磁体,其上也无绕组[1,3]。

SRM 的定转子极数必须满足如下约束关系:s r s N =2km N = N + 2k(1-1)其中,Ns ,Nr 分别为电机定、转子数;m 为电机相数值减1;k 为一常数。

以下图1-1所示一个典型四相8/6极SRM 为例,相数为4,因而m=3,取k=1,则Ns=6,Nr=8。

m 及k 值越高,越利于高控制性能控制,但相应成本越高,结构越复杂。

目前技术较为成熟,发展较为迅速的产品多为三、四相SRM [2]。

图1-1即为一典型四相8/6结构的SRM 电机本体及其不对称功率变换器主电路的示意图(图1-1在末尾手画)。

为表述清晰,图中仅画出不对称半桥电路的一相,其他各相均与该相相同,并省略了相应的驱动及检测电路。

完整的开关磁阻电机调速系统(Switched Reluctance Motor Drive ,简称SRD )则由SRM 、功率变换器、控制器、位置检测器等四大部分组成,如下图1-2示。

SRM 可以认为是同步电机的一个分支,它运行时遵循磁阻最小原理,同步进电机较为类似[2,30]。

其具体运行原理如下:首先要保证励磁相的定子凸极和最近的转子凹极中心线不重合,也即初始位移不能位于磁阻最小位置。

通以交流电后,经过一个整流桥变为直流电源,当开关S1和S2开通时,AA ’相通电励磁,产生一个磁拉力。

在该电磁力的轴向分量作用下,产生电磁转矩,凸极转子铁心趋向于旋转到定转子极轴线B-B ’与A-A’重合的位置;而电磁力的径向力分量则造成定子的“变形”,这也是产生转矩脉动和电机噪声的根本原因之一。

在该过程中电机吸收电能。

三相交流异步电机永磁同步电机和开关磁阻电机在结构上及工作原理

三相交流异步电机永磁同步电机和开关磁阻电机在结构上及工作原理

三相交流异步电机永磁同步电机和开关磁阻电机在结构上及工作原理1. 引言1.1 概述在现代电力系统中,电机是不可或缺的设备之一。

三相交流异步电机、永磁同步电机和开关磁阻电机是常用的三种类型,在工业生产、家用电器以及交通领域广泛应用。

本文将重点探讨这三种电机在结构上及工作原理方面的差异和应用领域。

1.2 文章结构本文分为五个主要部分,首先是引言部分,对文章进行概述,并列出文章结构。

接下来会依次介绍三相交流异步电机、永磁同步电机和开关磁阻电机的结构、工作原理以及应用领域。

最后是结论部分,对比分析结果并评价各种电机的优缺点,并展望其发展前景。

1.3 目的本文旨在提供一个全面深入的了解三相交流异步电机、永磁同步电机和开关磁阻电机在结构和工作原理上的差异,帮助读者更好地理解它们在不同领域中的应用优势与适用条件。

通过对这些电机种类进行综合比较与评价,读者可以更加准确地选择合适的电机类型以满足特定应用需求,并对其未来发展做出预测。

2. 三相交流异步电机2.1 结构三相交流异步电机是一种常见的电动机类型,它由定子和转子组成。

定子是由三个互相偏移120度的线圈组成,这些线圈通过电路与外部电源连接以产生旋转磁场。

转子由铜质或导体材料制成,并包含永磁体。

2.2 工作原理当交流电源通入定子线圈时,产生的旋转磁场引起了转子内的感应电势。

根据感应法则,轴向排列的导体会在旋转磁场中感应出环形电流。

这个环形电流创造了一个反向磁场,与旋转磁场相互作用并引起了转子运动。

因此,转子开始以稍低于旋转磁场速度的速度运动。

2.3 应用领域三相交流异步电机被广泛应用于各种行业和领域。

它们常见于家庭及工业设备中的泵、风扇、压缩机、传送带等机械设备上。

此外,在交通工具如列车、地铁以及飞机中也经常使用它们。

以上为文章"2. 三相交流异步电机"部分内容的详细描述。

3. 永磁同步电机:永磁同步电机是一种通过在转子上安装永磁体来实现同步运转的电机。

电机的分类和应用

电机的分类和应用

电机的分类和应用
众所周知,电机是传动以及控制系统中的重要组成部分,随着现代科学技术的发展,电机在实际应用中的重点已经开始从过去简单的传动向复杂的控制转移;尤其是对电机的速度、位置、转矩的精确控制。

但电机根据不同的应用会有不同的设计和驱动方式,咋看下好像选型非常复杂,因此为了人们根据旋转电机的用途,进行了基本的分类。

下面我们将逐步介绍电机中最有代表性、最常用、最基本的电机控制电机和功率电机以及信号电机。

控制电机
控制电机主要是应用在精确的转速、位置控制上,在控制系统中作为执行机构。

可分成伺服电机、步进电机、力矩电机、开关磁阻电机、直流无刷电机等几类。

1. 伺服电机
伺服电机广泛应用于各种控制系统中,能将输入的电压信号转换为电机轴上的机械输出量,拖动被控制元件,从而达到控制目的。

一般地,伺服电机要求电机的转速要受所加电压信号的控制;转速能够随着所加电压信号的变化而连续变化;转矩能通过控制器输出的电流进行控制;电机的反映要快、体积要小、控制功率要小。

伺服电机主要应用在各种运动控制系统中,尤其是随动系统。

伺服电机有直流和交流之分,最早的伺服电机是一般的直流电机,在控制精度不高的情况下,才采用一般的直流电机做伺服电机。

当前随着永磁同步电机技术的飞速发展,绝大部分的伺服电机是指交流永磁同步伺服电机或者直流无刷电机。

2. 步进电机
所谓步进电机就是一种将电脉冲转化为角位移的执行机构;更通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。

我们可以通过控制脉冲的个数来控制电机的角位移量,从而达到精确定位的目的;同时还可以通过控。

开关磁阻电机的基本了解

开关磁阻电机的基本了解

开关磁阻电机的基本学习内容1 开关磁阻电机的基本原理以及结构开关磁阻电动机(Switched Reluctance Motor ,简称SRM) 定转子为双凸极结构,铁心均由普通硅钢片叠压而成,其定子极上有集中绕组,径向相对的两个绕组串联构成一相,转子非永磁体,其上也无绕组[1,3]。

SRM 的定转子极数必须满足如下约束关系:s r s N =2km N = N + 2k(1-1)其中,Ns ,Nr 分别为电机定、转子数;m 为电机相数值减1;k 为一常数。

以下图1-1所示一个典型四相8/6极SRM 为例,相数为4,因而m=3,取k=1,则Ns=6,Nr=8。

m 及k 值越高,越利于高控制性能控制,但相应成本越高,结构越复杂。

目前技术较为成熟,发展较为迅速的产品多为三、四相SRM [2]。

图1-1即为一典型四相8/6结构的SRM电机本体及其不对称功率变换器主电路的示意图(图1-1在末尾手画)。

为表述清晰,图中仅画出不对称半桥电路的一相,其他各相均与该相相同,并省略了相应的驱动及检测电路。

完整的开关磁阻电机调速系统(Switched Reluctance Motor Drive,简称SRD)则由SRM、功率变换器、控制器、位置检测器等四大部分组成,如下图1-2示。

SRM可以认为是同步电机的一个分支,它运行时遵循磁阻最小原理,同步进电机较为类似[2,30]。

其具体运行原理如下:首先要保证励磁相的定子凸极和最近的转子凹极中心线不重合,也即初始位移不能位于磁阻最小位置。

通以交流电后,经过一个整流桥变为直流电源,当开关S1和S2开通时,AA’相通电励磁,产生一个磁拉力。

在该电磁力的轴向分量作用下,产生电磁转矩,凸极转子铁心趋向于旋转到定转子极轴线B-B’与A-A’重合的位置;而电磁力的径向力分量则造成定子的“变形”,这也是产生转矩脉动和电机噪声的根本原因之一。

在该过程中电机吸收电能。

关断S1和S2,开通BB’相,此时AA’相经续流二极管VD1、VD2将电能回馈给电源,同时BB’相趋向运行到定转子极轴线C-C’与B-B’重合的位置。

开关磁阻电机大学课件

开关磁阻电机大学课件
阻电机在低速时仍能保持较大的转矩输出,适合于需要重载启动和过 载保护的应用场景;此外,其控制电路简单可靠,可在恶劣环境下工作,适用于各种需要高性能、高 可靠性的应用场景。
02
开关磁阻电机的结构与组成
定子结构
1 3
定子铁芯
由硅钢片叠压而成,是产生磁场的关键部分。
定子绕组
电流斩波控制
总结词
电流斩波控制是一种控制开关磁阻电机 电流的方法,通过设定电流的上限和下 限,当电流超过上限时,控制器会降低 电压以减小电流;当电流低于下限时, 控制器会增加电压以增加电流。
VS
详细描述
在电流斩波控制策略中,控制器实时监测 开关磁阻电机的电流,当电流超过设定的 上限时,控制器会降低电机相电压,以减 小电机电流;当电流低于设定的下限时, 控制器会逐渐增加电机相电压,以增加电 机电流。通过这种方式,可以有效地限制 电机电流,防止过流对电机造成损坏。
传感器
用于检测转子的位置和速度,以便控制器精确控制电 机的运行。
保护电路
用于保护电机和控制器的安全,防止过电流、过电压 等异常情况。
03
开关磁阻电机的控制策略
角度控制
总结词
角度控制是一种精确控制开关磁阻电机转子位置的方法,通过检测转子的位置 并调整开通角和关断角来控制电机的转动。
详细描述
在角度控制策略中,控制器实时检测开关磁阻电机的转子位置,并根据转子的 位置来精确控制电机的开通角和关断角。通过调整开通角和关断角,可以精确 地控制电机的转动,从而实现高精度的位置和速度控制。
06
开关磁阻电机的前景与展望
技术发展趋势
高效能化
随着新材料、新工艺的应用,开关磁阻电机的效 率将进一步提高,降低能耗。

步进电机与开关磁阻电机

步进电机与开关磁阻电机

开关磁阻电机:开关磁阻电动机驱动系统(SRD)是较为复杂的机电一体化装置,SRD的运行需要在线实时检测的反馈量一般有转子位置、速度及电流等,然后根据控制目标综合这些信息给出控制指令,实现运行控制及保护等功能。

转子位置检测环节是SRD的重要组成部分,检测到的转子位置信号是各相主开关器件正确进行逻辑切换的根据,也为速度控制环节提供了速度反馈信号。

开关磁阻电机具有再生的能力,系统效率高:对开关磁阻电机的理论研究和实践证明,该系统具有许多显著的优点:(1)电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境。

(2)损耗主要产生在定子,电机易于冷却;转子无永磁体,可允许有较高的温升。

(3)转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本。

(4)功率变换器不会出现直通故障,可靠性高。

(5)起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象。

(6)调速范围宽,控制灵活,易于实现各种特殊要求的转矩-速度特性。

(7)在宽广的转速和功率范围内都具有高效率(8)能四象限运行,具有较强的再生制动能力。

(9)容错能力强。

开关磁阻电机的容错体现在电机某一相损坏,电机照样可以运行。

开关磁阻电机的应用:近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100000 r/min。

开关磁阻电机电动车应用开关磁阻电机最初的应用领域就是电动车。

目前电动摩托车和电动自行车的驱动电机主要有永磁无刷及永磁有刷两种,然而采用开关磁阻电机驱动有其独特的优势。

当高能量密度和系统效率为关键指标时,开关磁阻电机变为首选对象。

SRD开关磁阻电机驱动系统的电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论步进电机与开关磁阻电机电气1101班110301107王文博磁阻式步进电机磁阻式步进电机,也叫反应式(BF)步进电动机。

是由磁性转子铁芯通过与由定子产生的脉冲电磁场相互作用而产生转动。

磁阻式步进电机的转子由软磁材料重制、叠压而成,转子上无任何绕组,转子圆周外表面均匀分布若干齿和槽。

定子上安有多相励磁绕组,并且定子上均匀分布若干个大磁极,每个大磁极上有数个小齿和槽。

定子磁极上绕有三组绕组,每组绕组由相互串联的两个线圈构成,磁阻式步进电机的定子上有六个极,转子有四个极。

一组绕组叫做一相。

磁阻式步进电动机相数一般为三相、四相、五相、六相。

应用领域:磁阻式步进电机主要应用于计算机外部设备、摄影系统、光电组合装置、阀门控制、核反应堆、银行终端、数控机床、自动绕线机、电子钟表及医疗设备等领域中。

开关磁阻电动机开关磁阻电动机(Switched Reluctance Drive :SRD)是继变频调速系统、无刷直流电动机调速系统之后发展起来的最新一代无级调速系统,是集现代微电子技术、数字技术、电力电子技术、红外光电技术及现代电磁理论、设计和制作技术为一体的光、机、电一体化高新技术。

它具有调速系统兼具直流、交流两类调速系统的优点。

英、美等经济发达国家对开关磁阻电动机调速系统的研究起步较早,并已取得显著效果,产品功率等级从数w直到数百kw,广泛应用于家用电器、航空、航天、电子、机械及电动车辆等领域。

1 简介开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无极调速系统。

它的结构简单坚固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,系统可靠性高。

主要有开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。

控制器内包含功率变换器和控制电路,而转子位置检测器则安装在电机的一端。

现如今,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100,000 r/min2通用系列我国对开关磁阻电动机调速系统的研究与试制起步于20世纪80年代末90年代初,取得了从基础理论到设计制造技术多方面的成果与进展,但产业化及应用性研究工作相对滞后。

由于SRD的产业化,人们通常将其产品称为“开关磁阻调速电动机”。

3 SRD系统开关磁阻电动机调速系统主要由开关磁阻电动机(SRM)、功率变换器、控制器、转子位置检测器四大部分组成,系统框图如图1。

控制器内包含控制电路与功率变换器,而转子位置检测器则安装在电机一端,电动机与国产Y系列感应电动机同功率同机座号同外形。

4工作原理开关磁阻电动机调速系统所用的开关磁阻电动机(SRM)是SRD中实现机电能量转换的部件,也是SRD有别于其他电动机驱动系统的主要标志。

SRM系双凸极可变磁阻电动机,其定、转子的凸极均由普通硅钢片叠压而成。

转子既无绕组也无永磁体,定子极上绕有集中绕组,径向相对的两个绕组联接起来,称为“一相”,SR电动机可以设计成多种不同相数结构,且定、转子的极数有多种不同的搭配。

相数多、步距角小,有利于减少转矩脉动,但结构复杂,且主开关器件多,成本高,现今应用较多的是四相(8/6)结构和三相(12/8)结构。

图2示出四相(8/6)结构SR电动机原理图。

为简单计,图中只画出A相绕组及其供电电路。

SR电动机的运行原理遵循“磁阻最小原理”—…磁通总要沿着磁阻最小的路径闭合,而具有一定形状的铁心在移动到最小磁阻位置时,必使自己的主轴线与磁场的轴线重合。

图2中,当定子D-D‟极励磁时,1-1'向定子轴线D-D'重合的位置转动,并使D相励磁绕组的电感最大。

若以图中定、转子所处的相对位置作为起始位置,则依次给D→A→B→C相绕组通电,转子即会逆着励磁顺序以逆时针方向连续旋转;反之,若依次给B→A→D→C相通电,则电动机即会沿顺时针方向转动。

可见,SR电动机的转向与相绕组的电流方向无关,而仅取决于相绕组通电的顺序。

另外,从图2可以看出,当主开关器件S1、S2导通时,A 相绕组从直流电源US吸收电能,而当S1、S2关断时,绕组电流经续流二极管VD1、VD2继续流通,并回馈给电源US。

因此,SR电动机传动的共性特点是具有再生作用,系统效率高。

由此可见,通过控制加到SR电动机绕组中电流脉冲的幅值、宽度及其与转子的相对位置(即导通角、关断角),即可控制SR电动机转矩的大小与方向,这正是SR电动机调速控制的基本原理。

5系统特点开关磁组电动机调速系统之所以能在现代调速系统中异军突起,主要是因为它卓越的系统性能,主要表现在:结构简单;电动机结构简单、成本低、可用于高速运转。

SRD的结构比鼠笼式感应电动机还要简单。

其突出的优点是转子上没有任何形式的绕组,因此不会有鼠笼感应电机制造过程中铸造不良和使用过程中的断条等问题。

其转子机械强度极高,可以用于超高速运转(如每分钟上万转)。

在定子方面,它只有几个集中绕组,因此制造简便、绝缘结构简单。

电路可靠;功率电路简单可靠。

因为电动机转矩方向与绕组电流方向无关,即只需单方相绕组电流,故功率电路可以做到每相一个功率开关。

对比异步电动机绕组需流过双向电流,向其供电的PWM变频器功率电路每相需两个功率器件。

因此,开关磁阻电动机调速系统较PWM变频器功率电路中所需的功率元件少,电路结构简单。

另外,PWM变频器功率电路中每桥臂两个功率开关管直接跨在直流电源侧,易发生直通短路烧毁功率器件。

而开关磁阻电动机调速系统中每个功率开关器件均直接与电动机绕组相串联,根本上避免了直通短路现象。

因此开关磁阻调速电动机调速系统中功率电路的保护电路可以简化,即降低了成本,又有较高的工作可靠性。

系统可靠性高;系统可靠性高。

从电动机的电磁结构上看,各项绕组和磁路相互独立,各自在一定轴角范围内产生电磁转矩。

而不像在一般电动机中必须在各相绕组和磁路共同作用下产生一个旋转磁场,电动机才能正常运转。

从控制结构上看,各相电路各自给一相绕组供电,一般也是相互独立工作。

由此可知,当电动机一相绕组或控制器一相电路发生故障时,只需停止该相工作,电动机除总输出功率能力有所减小外,并无其他妨碍。

起动优点;起动转矩大,起动电流低。

控制器从电源侧吸收较少的电流,在电机侧得到较大的起动转矩是本系统的一大特点。

典型产品的数据是:起动电流为额定电流的15%时,获得起动转矩为100%的额定转矩;起动电流为额定电流的30%时,起动转矩可达其额定转矩的250%。

而其他调速系统的起动特性与之相比,如直流电机为100%的电流,鼠笼感应电动机为300%的电流,获得100%的转矩。

起动电流小而转矩大的优点还可以延伸到低速运行段,因此本系统十分合适那些需要重载起动和较长时间低速重载运行的机械。

频繁起停;适用于频繁起停及正反向转换运行。

本系统具有的高起动转矩、低起动电流的特点,使之在起动过程中电流冲击小,电动机和控制器发热较连续额定运行时还要小。

可控参数多使其制动运行能与电动运行具有同样优良的转矩输出能力和工作特性。

二者综合作用的结果必然使之适用于频繁起停及正反向转换运行,次数可达1000次/小时。

性能好;可控参数多,调速性能好。

控制开关磁阻电动机的主要运行参数和常用方法至少有四种:相导通角、相关断角、相电流幅值、相绕组电压。

可控参数多,意味着控制灵活方便。

可以根据对电动机的运行要求和电动机的情况,采取不同控制方法和参数值,即可使之运行于最佳状态(如出力最大、效率最高等),还可使之实现各种不同的功能的特定曲线。

如使电动机具有完全相同的四象限运行能力,并具有最高起动转矩和串励电动机的负载能力曲线。

由于SRD速度闭环是必备的,因此系统具有很高的稳速精度,可以很方便的构成无静差调速系统。

效率高损耗小;效率高,损耗小。

本系统是一种非常高效的调速系统。

这是因为一方面电动机绕组无铜损;另一方面电动机可控参数多,灵活方便,易于在宽转速范围和不同负载下实现高效优化控制。

以3kW SRD为例,其系统效率在很宽范围内都在87%以上,这是其它一些调速系统不容易达到的。

将本系统同PWM变频器鼠笼型异步电动机的系统进行比较,本系统在不同转速和不同负载下的效率均比变频器系统高,一般要高5~10个百分点。

满足各种要求;可通过机和电的统一协调设计满足各种特殊使用要求。

6优缺点开关磁阻电动机传动系统综合了感应电动机传动系统和直流电动汽车电机传动系统的优点,是这些传动系统的有力竞争者,其主要优点如下:1、开关磁阻电动机有较大的电动机利用系数,可以是感应电动机利用系数的1.2~1.4倍。

2、电动机的结构简单,转子上没有任何形式的绕组;定子上只有简单的集中绕组,端部较短,没有相间跨接线。

因此,具有制造工序少、成本低、工作可靠、维修量小等特点。

3、开关磁阻电动机的转矩与电流极性无关,只需要单向的电流激励,理想上公率变换电路中每相可以只用一个开关元件,且与电动机绕组串联,不会像PWM逆变器电源那样,存在两个开关元件直通的危险。

所以,开关磁阻电动机驱动系统SED线路简单,可靠性高,成本低于PWM交流调速系统。

4、开关磁阻电动机转子的结构形式对转速限制小,可制成高转速电动机,而且转子的转动惯量小,在电流每次换相时又可以随时改变相匝转矩的大小和方向,因而系统有良好的动态响应。

5、SRD系统可以通过对电流的导通、断开和对幅值的控制,得到满足不同负载要求的机械特性,易于实现系统的软启动和四象限运行等功能,控制灵活。

又由于SRD系统是自同步系统运行,不会像变频供电的感应电动机那样在低频时出现不稳定和振荡问题。

6、由于SR开关磁阻电动机采用了独特的结构和设计方法以及相应的控制技巧,其单位处理可以与感应电动机相媲美,甚至还略占优势。

SRD系统的效率和功率密度在宽广的速度和负载范围内都可以维持在教导水平。

开关磁阻电动机驱动系统SRD系统的主要缺点是:1、有转矩脉动。

从工作原理可知,S开关磁阻电动机转子上产生的转矩是由一些列脉冲转矩叠加而成的,由于双凸极结构和磁路饱和非线性的影响,合成转矩不是一个恒定转矩,而有一定的谐波分量,这影响了SR电动机低速运行性能。

2、SR电动机传动系统的噪声与震动比一般电动机大。

3、SR电动机的出线头较多,如三相SR 电动机至少有四根出线头,四相SR电动机至少有五根出线头,而且还有位置检测器出线端。

上述缺点通过对电动汽车电机进行精心设计,采取适当措施,并从控制角度考虑采用合理策略可以得到改进。

7家电原理由SRD的结构、原理及特点介绍可见其有着极其广泛的应用领域,现仅就SRD在家用电器领域的应用作简单介绍如下[2]。

当今世界家用电器的发展趋势可归结为两句话:“黑色家电数字化,白色家电调速化。

相关文档
最新文档