纳米材料导论结课论文
纳米材料论文

纳米材料论文纳米材料具有独特的尺度效应和界面效应,具备出色的物理、化学和生物学性能,在材料科学领域引起了广泛的关注和研究。
本文将针对纳米材料的合成、性质及其在各领域的应用进行综述,探讨其在未来的发展方向和前景。
一、纳米材料的合成方法纳米材料的制备方法多种多样,常见的包括溶液法、气相法、固相法和凝聚法等。
其中,溶液法是一种常用且有效的纳米材料合成方法,通过调控反应条件、控制反应物浓度和温度等因素,可以实现纳米颗粒的可控合成。
气相法则适用于制备高纯度和无杂质的纳米材料,通过在适当的温度和压力下使气体反应生成纳米材料。
固相法主要适用于制备纳米线或纳米晶,通过热处理、溶解、沉淀等方法得到纳米尺度的材料颗粒。
凝聚法则是通过凝聚剂的作用使纳米颗粒形成物质的凝聚态,如通过热处理使纳米材料形成块状材料。
二、纳米材料的性质研究纳米材料的性质研究是纳米科学和纳米技术的基础,通过对纳米材料的结构、形貌、成分和性能进行表征和分析,可以深入了解其特殊性质及其产生机制。
常用的表征手段包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和原子力显微镜(AFM)等。
透射电子显微镜可以观察到纳米颗粒的形貌和尺寸,并通过选区电子衍射(SAED)分析纳米材料的晶体结构。
扫描电子显微镜则可以获取纳米颗粒的表面形貌和形状信息。
X射线衍射用于分析纳米材料的晶体结构和晶格常数。
原子力显微镜则可以获得纳米颗粒的表面形貌和力学性质等。
纳米材料的性质主要包括光学性质、电子性质、磁性质和力学性质等。
光学性质是纳米材料研究的重要方向之一,由于其尺寸效应和界面效应的存在,纳米材料在可见光和红外光谱范围内显示出独特的吸收、发射和散射性质。
电子性质方面,纳米材料的载流子输运性质、电学性质和电磁性质都与其尺寸和结构密切相关。
磁性是纳米材料的另一个重要性质,由于表面自旋和量子尺寸效应的存在,纳米材料具有较高的磁响应性能。
力学性质主要研究纳米材料的硬度、断裂强度和弹性模量等力学特性。
[纳米材料与纳米技术论文]纳米技术的应用论文
![[纳米材料与纳米技术论文]纳米技术的应用论文](https://img.taocdn.com/s3/m/b21e9c57a26925c52cc5bfc9.png)
[纳米材料与纳米技术论文]纳米技术的应用论文纳米材料是处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称,下面小编给大家分享一些纳米材料与纳米技术论文,大家快来跟小编一起欣赏吧。
纳米材料与纳米技术论文篇一纳米材料的生物安全性摘要:随着纳米科技的迅猛发展,纳米材料得到广泛应用。
本文通过对其生物安全性问题的提出及现今我国面临的问题的分析,希望纳米科技可以得到更好的发展以及纳米材料能更好地应用于生活的各个领域。
关键词:纳米材料;生物安全;应用中图分类号:G301 文献标志码:A 文章编号:1674-932409-0082-02一、什么是纳米材料纳米材料是处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称,根据物理形态划分,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体和纳米相分离液体等五类。
由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应等,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能。
1984年,德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。
1990年7月在美国召开的第一届国际纳米科学技术会议上,正式宣布纳米材料科学为材料科学的一个新分支。
二、纳米材料生物安全性问题的提出进入21世纪以来,纳米科技发展迅猛,大规模生产的各种人造纳米材料已经在生活消费品和工业产品中广泛使用。
据统计,纳米材料已经应用在近千种消费类产品中,来提高原有的功能或获得崭新的新功能,包括化妆品、食品、服装、生活日用品、医药产品等领域。
然而,近年来的研究发现,由于小尺寸效应、量子效应和巨大比表面积等,纳米材料具有很强的“双刃剑”特性,即在提高原有材料功能同时也存在巨大的安全风险。
例如,美国科学家让一组小鼠生活在含20纳米特氟隆颗粒的空气里,结果小鼠在4小时内全部死亡;而另一组生活在含120纳米特氟隆颗粒的空气里的小鼠,却安然无恙。
纳米技术的论文(精选五篇)

纳米技术的论文(精选五篇)第一篇:纳米技术的论文纳米技术在新型建筑材料中的应用纳米技术作为一门新兴的技术,在多个范畴具有十分重要的应用,特别是极大地推进了新型建材的开展,引见了纳米技术在新型建筑涂料、复合水泥、自洁玻璃、陶瓷、防护资料等方面的应用,经过阐述可知,纳米资料在新型建材范畴具有很好的开展应用前景。
纳米技术;新型建材;应用;前景 1 纳米涂料的应用通常传统的涂料都存在悬浮稳定性差,耐老化、耐洗刷性差,光亮度不够等缺陷。
而纳米涂料则能较好的处理这一问题,纳米涂料具有下述优越的性能:(1)具有很好的伸缩性,可以弥盖墙体细小裂痕,具有对微裂痕的自修复作用。
(2)具有很好的防水性,抗异物粘附、沾污性能,抗碱、耐冲刷性。
(3)具有除臭、杀菌、防尘以及隔热保温性能。
(4)纳米涂料的色泽鲜艳温和,手感温和,漆膜平整,改善建筑的外观等。
固然国内外对纳米涂料的研讨还处在初步阶段,但是已在工程上得到了较普遍的应用,如北京纳美公司消费的纳米系列涂料已大量应用于北京建欣苑、建东苑等住宅区的外墙粉刷,效果良好。
在首体改造工程中,运用纳米涂料1700吨,涂刷6万平方米。
复旦大学教育部先进涂料工程研讨中心的专家已研发出了“透明隔热玻璃涂料”。
2 纳米水泥的应用普通水泥混凝土因其刚性较大而柔性较小,同时其本身也存在一些固有的缺陷,使其在运用过程中不可防止地产生开裂并毁坏。
为理解决这一问题就必需加速对具有特殊性能混凝土的研发,而纳米混凝土就能有效的处理这样问题,纳米混凝土,与普通混凝土相比,纳米混凝土的强度、硬度、抗老化性、耐久性等性能均有显着进步,同时还具有防水、吸声、吸收电磁波等性能,因此可用于一些特殊的建筑设备中(如国防设备)。
通常在普通混凝土中参加纳米矿粉(纳米级SiO2、纳米级CaCO3)或者纳米金属粉末已到达纳米混凝土的性能,而且经过改动纳米资料的掺量还能配置出防水砂浆等。
目前开发研制的纳米水泥资料包括纳米防水复合水泥,纳米敏感水泥、纳米环保复合水泥以及纳米隐身复合水泥。
纳米材料论文

纳米材料论文篇一:纳米材料的论文纳米材料论文题目:纳米科技及纳米材料学院:专业:学号: 学生姓名:指导教师:日期: 材料与冶金学院无机非金属材料工程 202202128064 周鸣赵惠忠2022 .11.2【摘要】纳米技术是当今世界最有前途的决定性技术。
文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。
【关键词】纳米技术;纳米材料;结构;性能;应用;前景【Abstract】Nanotechnology is the world's most promising decisive technology. The article briefly outlines the nanometer technology, the structure and nano-materials and nano-materials special nature of the performance of various aspects of the application in practice, and the prospect of nano-materials applications.【Key words】 nanotechnology; Nano materials; Structure; Performance; Application; Prospects1.纳米科学和技术1.1 纳米科技的定义纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。
其涵义是人类在纳米尺寸〔10-9--10-7m〕范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。
纳米科技是现代物理学与先进工程技术相结合的根底上诞生的,是一门根底研究与应用研究紧密联系的新兴科学技术。
纳米材料技术论文(2)

纳米材料技术论文(2)纳米材料技术论文篇二探析纳米技术及纳米材料的应用摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。
关键词:纳米材料;应用;前景展望中图分类号:S219.04 文献标识号:A 文章编号:2306-1499(2013)03-(页码)-页数1.纳米技术引起纳米材料的兴起1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。
80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。
由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。
1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。
1999年,纳米产品的年营业额达到500亿美元。
2.纳米材料及其性质表现2.1纳米材料纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。
一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
纳米技术结课论文

纳米技术学院:姓名:学号:指导教师:论文特色:本论文详细的介绍了关于碳纳米管技术的各种制备方法,以及一些新的制备碳纳米管的思路,体现了这种新型材料的优缺点。
摘要:概述了碳纳米材料的发展及它们的性能和应用。
同时介绍了一些比较成熟的制备纳米材料的技术。
此基础上分析了碳纳米管的形成过程和碳纳米管的微观结构。
纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。
纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物纳米技术包含下列四个主要方面:1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。
这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。
2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。
3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。
有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。
4、纳米电子学:包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。
在这门课程中学习了许多高端的材料与技术,其中给我印象最深的是碳纳米管的制备。
碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。
由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量和高强度。
纳米材料技术论文

纳米材料技术论文纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,下面小编给大家分享一些纳米材料技术论文,大家快来跟小编一起欣赏吧。
纳米材料技术论文篇一纳米材料综述【摘要】本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。
【关键词】纳米、纳米技术、纳米材料、纳米结构1 引言著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。
他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。
”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。
”[1]1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。
1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。
1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。
[2]2 纳米技术纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。
其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。
3 纳米材料3.1纳米材料的概念纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。
因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米材料论文优秀9篇

纳米材料论文优秀9篇摘要:本文主要研究了污染物的光催化降解原理,进一步分析了光催化纳米材料在环境保护工作中的应用,同时对于光催化纳米材料的应用趋势和方向也进行了必要的研究,希望对这一工作的开展提供一定的指导作用。
关键词:光催化;纳米材料;环境保护;工业废水和废气中都含有较多的毒害物质,比如有机磷农药或是二氯乙烯等,这些物质对于人体的影响都是十分明显的。
传统的水处理方式,比如吸附法、混凝法等方法在现阶段实际应用环节中仍然存在较大的困难,效果并不理想,所以在今后的实际发展过程中就需要不断探索和获取一种经济、合理的方式,实现对传统方法处理后水中的残留物质进行更有效的降解。
1976年,科学家在对紫外线光照射下对纳米TiO2进行了研究,发现这种方式可以将难以降解的有机化合物多氯联苯脱氯进行有效降解。
当前,已经发现超过3000余种难降解的有机化合物都可以借助此种方式进行降解,尤其是水中有机污染物浓度较低或是其他降解方式不佳的时候,这项技术更是能发挥出前所未有的技术优势。
一、光催化纳米材料光催化的纳米材料采用的绝大多数都是金属氧化物或是硫化物等半导体材料,是一种特殊的电子结构。
和金属相比,这种半导体存在明显的不连续性,在对电子的低能价带进行填满的过程中会和空的高能导带存在明轩的禁带,所以当二者产生的能量大于光照射的时候,在价带上的电子就会被转移到导带上,最终在半导体表面形成具备高活性的电子[1]。
二、光催化降解原理在光催化反应中,获取光激发所出现的空穴,和对给体或是受体产生的作用也是有效的。
所以在实际工作中为了确保光催化反应能更有效的进行,就应该适当降低电子和空穴之间的简单复合。
三、光催化纳米材料在环保中的应用(一)光催化纳米技术在污水处理中的应用传统的水处理方式中可以对污水中出现的悬浮物质或是泥沙等大颗粒的污染物进行去除,但是对于浓度较低的可溶性物质却很难进行有效的处理,并且由于这项工作的工作效率比较低,花费的经济成本比较高,所以很多时候并不能进行有效的处理。
纳米材料论文

纳米材料论文纳米材料在近年来被广泛研究和应用,其独特的物理和化学特性为材料科学和工程领域带来了新的机遇和挑战。
本文将介绍纳米材料的定义、制备方法和应用领域,并分析其优势和潜在的风险。
纳米材料是指至少有一维尺寸在1-100纳米范围内的材料。
与宏观材料相比,纳米材料具有更大的比表面积和更高的比例效应,使得其在光、电、热、力学等方面具有独特的性能。
纳米材料可以从底层合成成单一纳米颗粒,也可以通过将大尺寸材料加工或处理来获得纳米尺寸。
纳米材料的制备方法包括溶剂热法、气相沉积法、电化学法等。
纳米材料在许多领域中都有广泛的应用。
在电子和光电领域,纳米材料可以用于制造更小、更快的电子器件,如纳米晶体管、纳米电池和光电探测器。
在材料科学和工程中,纳米材料可以用于制造更强、更轻的复合材料,如碳纳米管增强复合材料。
在医学和生物学领域,纳米材料可以用于制造更精确的治疗和诊断工具,如纳米药物载体和纳米生物传感器。
纳米材料具有许多优势,如更高的比表面积、更强的力学性能和更高的化学反应活性。
通过调控纳米材料的尺寸、形状和组成,可以实现更精确的物性控制和性能优化。
然而,纳米材料也存在一些潜在的风险。
由于其小尺寸和高比例效应,纳米材料对环境和健康的影响可能与宏观材料不同。
因此,对纳米材料的生物相容性和安全性需要进行深入研究和评估。
综上所述,纳米材料是一种具有独特性能和广泛应用前景的材料。
通过研究纳米材料的制备方法和特性,可以开发出更高效、更精确的材料。
然而,纳米材料的风险也需要引起足够的重视,确保其安全应用。
因此,对纳米材料的研究和应用需要跨学科的合作和深入的探索。
《纳米材料》评述论文:纳米ZnO的制备

纳米ZnO的制备【1】张永康,刘建本,易保华等.常温固相反应合成纳米氧化锌[J].精细化工,2000,17(6):343-344.摘要:以ZnSO4·7H2O和Na2CO3为原料,用室温固相化学反应首先合成出粒径为12.7nm的前驱体碳酸锌,然后在200℃热分解,经纯化后得到纳米氧化锌。
经XRD 和TEM检测,粒径为6.0~12.7nm。
【2】朱卫兵,陈剑松,廖静等.超声波直接沉淀法制备纳米氧化锌及改性研究[J].无机盐工业,2008,40(3):20-29.摘要:以硝酸锌和无水碳酸钠为原料,把超声波引入到直接沉淀法中,同时用溴化十六烷基三甲基铵(CTAB)作为表面活性剂,合成出粒径小、分布均匀且团聚现象明显减弱的纳米氧化锌,并用TG-DTA,XRD,SEM等分析手段对制得的产物进行表征,找出合成的最佳条件。
同时,还以油酸作为改性剂对所制得的纳米氧化锌进行表面改性,以FT-IR等测试手段对其改性原理进行简单探讨,并通过测定活化指数对改性效果进行分析。
【3】刘家祥,丁德玲,王震等.均匀沉淀法制备纳米氧化锌[J].有色金属,2006,58(1):49-52.摘要:研究均匀沉淀法制备纳米氧化锌影响因素和最佳工艺条件。
结果表明,均匀沉淀法可制备出六方晶系纳米氧化锌。
随Zn2+浓度增加纳米氧化锌颗粒由棒状向球形转化,平均粒径49nm。
对纳米氧化锌产率影响因素的显著性水平依次为反应温度、尿素与Zn2+物质的量之比、反应时间和Zn2+的浓度。
最优工艺参数为:反应温度95℃、反应时间3.5h、Zn2+浓度0.6mol/L 、尿素与Zn2+物质的量之比为2.5 。
以硝酸锌为原料可得到纯度较高的纳米氧化锌。
【4】周富荣,郭晓洁,匡亚琴.反胶束微乳液法制备纳米ZnO[J].应用化工,2005,34(11):690-694.摘要:以十六烷基三甲基溴化铵(CTAB)/煤油/正辛醇/氨水反胶束微乳体系,采用双微乳液混合法制备了纳米ZnO,考察了CTAB和反应物浓度对ZnO粒径的影响,利用TEM、XRD等手段对产品进行了表征。
毕业论文(设计)纳米材料之综述

纳米材料之综述摘要:概述了纳米科技的内涵、纳米材料的特性、表征技术、制备及其应用。
并结合国内外对纳米材料的应用情况,概述了其研究进展。
关键词:纳米科技,纳米材料特性,表征,制备,研究进展Review of nanometer materials Abstract: The concept of nanotechnology and the strange characteristic, characterization, preparation and application of nano materials are summarized. Its development is prospected based on the situation at home and abroad.Key words: nanotechnology, characteristic , characterization,preparation,application引言:纳米科技是20世纪80年代末、90年代初逐步发展起来的新兴学科领域,它是在纳米尺度(0.1nm-100nm)上研究物质的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术。
纳米材料是指晶粒和晶界等显微结构能到达纳米级尺度水平的材料,而纳米粒子是加工和制造纳米材料的原料。
由于材料的超细化,其表面的电子结构和晶体结构发生变化,产生了表面效应、小尺寸效应、量子效应和宏观量子隧道效应,从而使得纳米材料在磁性、非线性光学、光发射、光吸收、光电导、导热性、催化、化学活性、敏感特性、电学即力学方面表现出独特的性能,并在这些领域得到很好的应用。
纳米材料的化学组成及其结构是决定其性能和应用的关键因素。
因此在原子尺度和纳米尺度对纳米材料进行表征是非常重要的。
纳米材料的表征方法很多,发展也很快,而且往往需要多种表征技术相结合,才能得到可靠的信息,这大大地推动了纳米材料科学的发展。
纳米材料论文

纳米材料论文1. 引言纳米材料是指颗粒尺寸在1到100纳米之间的材料。
由于其独特的物理、化学和生物特性,在生物医学、电子学、光学、催化、能源和环境等领域都有广泛的应用。
本文主要讨论纳米材料在生物医学中的应用,包括纳米药物、纳米传感器和纳米影像等。
2. 纳米药物纳米药物是利用纳米技术制备的药物。
由于其比传统药物具有更好的溶解度、更高的生物利用度和更好的组织靶向性,所以在临床上具有广泛的应用。
2.1 纳米粒子药物纳米粒子药物是指将药物包裹在纳米粒子中制成的药物。
通过调整纳米粒子的大小、表面性质和结构等,可以控制纳米粒子的药物释放和药效增强效应。
纳米粒子药物可以通过口服、皮肤贴片、吸入等多种给药途径实现治疗效果。
2.2 纳米胶束药物纳米胶束药物是指将药物包裹在由表面活性剂构成的胶束中的药物。
由于纳米胶束具有良好的亲水性,所以可以在药物分子表面形成保护层,有效提高药物的稳定性和生物利用度。
2.3 纳米酶学药物纳米酶学药物是指将纳米颗粒与酶催化剂结合制成的药物。
由于纳米颗粒具有高比表面积和体积效应,所以可以大幅提高酶的活性和稳定性,从而提高治疗效果。
3. 纳米传感器纳米传感器是利用纳米技术制备的传感器。
由于其基于纳米粒子、纳米线等纳米材料的特殊物理和化学特性,所以可以对化学、生物等环境参数进行高灵敏度、高分辨率、实时性、选择性的检测。
3.1 纳米材料传感器纳米材料传感器是指利用纳米颗粒、纳米线等纳米材料作为传感元件的传感器。
由于纳米材料具有高比表面积和特殊结构,所以可以大幅提高传感器的灵敏度和选择性,实现高精度的检测。
3.2 生物传感器生物传感器是指利用生物分子(如酶、抗体等)作为传感元件的传感器。
由于纳米材料可以提高生物分子的检测灵敏度和选择性,所以在临床诊断、环境检测等领域有广泛的应用。
4. 纳米影像纳米影像是指利用纳米材料作为影像剂,从而实现对生物组织、细胞、分子等的高分辨率、高敏感度、非损伤性的成像。
纳米材料综述论文

纳米材料综述论文纳米材料综述1 引言纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。
它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。
前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。
1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel 相继成功地制得了纯物质的纳米细粉。
Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。
1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。
从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。
在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构.在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。
纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。
纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。
一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。
2 纳米材料特性一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。
当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。
这种现象称为“纳米效应”。
纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。
纳米材料论文(优秀5篇)

纳米材料论文(优秀5篇)摘要:目前世界上上转换纳米荧光材料正处在发展阶段,材料的选择和合成有待于深入细致的研究。
本文对上转换发光纳米晶的选择和合成做了系统的讨论。
关键词:纳米材料发光材料上转换发光荧光材料双光子吸收纳米晶1.引言近年来,人们开始对荧光标记材料产生了浓厚的兴趣,特别是随着纳米技术的发展,能够进行生物标记的无机纳米晶成为人们追逐的热点,但是由于生物背底同样会产生荧光从而对荧光检测形成干扰,于是不会产生背底干扰的稀土上转换纳米发光标记材料引起了人们的注意。
1.1纳米材料简介纳术概念是1959年木,诺贝尔奖获得着理查德。
费曼在一次讲演中提出的。
他在“There is plenty of room at thebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。
他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。
20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(STM),原子力显微镜(AFM)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。
其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0A。
纳米科学与技术(Nano-ST)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。
在这里就不一一介绍了。
1.2上转换纳米材料介绍稀土上转换发光材料通过多光子机制把长波辐射转换成短波辐射称为上转换。
所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。
纳米材料与科学结课论文

纳米材料当今世界,纳米材料已经深入我们的日常生活,随着产业化的发展,纳米技术正成为新兴战略产业中的核心技术。
在生物制药、基因控制、环保、电子器件、能源和航天航空技术等领域发挥着越来越重要的作用。
我们一方面感叹于纳米材料给我们带来的方便与高科技,另一方面我们也担心着纳米科技的广泛发展对我们健康是否有影响,是否为伦理道德所不能接受。
关键词:发展过程研究现状食品安全伦理道德一,纳米材料的发展过程纳米技术的灵感,来自于已故物理学家理查德·费曼1959年所作的一次题为《在底部还有很大空间》的演讲。
范曼认为,我们可以从另外一个角度出发,从单个的分子甚至原子开始进行组装,以达到我们的要求?他说:“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。
” 1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。
他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了ibm三个字母。
70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工;1982年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用; 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生; 1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用36个氙原子排出“ibm”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“ 中国”二字,标志着中国开始在国际纳米科技领域占有一席之地;到1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元; 近年来,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地。
纳米材料与纳米技术论文

纳米材料与纳米技术论文第一篇:纳米材料与纳米技术论文纳米材料与纳米技术学院:自动化学院专业年级:2015级物联网工程学生姓名:梁建业学号:31150014734班摘要:纳米技术是当今世界最有前途的决定性技术。
文章简要了解纳米材料和纳米技术,介绍它的一些相关的应用及其在国内外的现状,并尝试预测它的发展趋势。
与此同时,也共同探讨下其存在的问题。
首先,让我们来简单地了解下纳米材料和纳米技术吧!一.什么是纳米材料?纳米是一个长度单位,1nm=10ˉ9m。
纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。
当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。
纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。
按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。
其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。
按纳米尺度在空间的表达特征,纳米材料可分为零维纳米材料即纳米颗粒材料、一维纳米材料(如纳米线、棒、丝、管和纤维等)、二维纳米材料(如纳米膜、纳米盘和超晶格等)、纳米结构材料即纳米空间材料(如介孔材料。
按形态,纳米材料可分为纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料(如磁性液体纳米材料和纳米溶胶等)。
按功能,纳米材料可分为纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材料等)。
二.什么是纳米技术?纳米技术(nanotechnology)是指在0.1~100nm空间尺度上操纵原子和分子,对材料进行加工,制造具有特定功能的产品或对物质及其结构进行研究的一门综合性的高新技术学科。
其实通俗的讲就是“use little things to finish the big work”。
我们在分子原子这样的微小尺度上加工材料,得到一些新型的功能性的高科技产品,他们往往具有相比于一般材料更优良的性能,具有很高的实用价值和研究价值。
纳米材料导论论文概要

纳米材料在生命科学中的应用研究进展摘要纳米材料自发现以来,以其独特的结构,奇特的物理、化学和力学性质以及潜在的应用前景而倍受人们的关注.在过去几年中,生物纳米材料的理论与实验研究已成为人们关注的焦点,特别是核酸与蛋白质的生化、生物物理、生物力学、热力学与电磁学特征及其智能复合材料已成为生命科学与材料科学的交叉前沿。
目前,纳米生物芯片材料、仿生材料、纳米马达、纳米复合材料、界面生物材料、纳米传感器与药物传递系统等方面已取得很大进展。
本文主要对这些材料的特性研究、开发及应用情况进行了综述,简要概述了纳米材料在生命科学方面的主要应用,并探讨了生物纳米材料的发展前景。
关键词纳米材料,特性,生物化学,生物物理,生物电磁学,分子马达,纳米技术前言纳米材料在结构上属于原子簇和宏观物体交界的过渡区域, 是由数目很少的原子或分子组成的原子或分子的聚集体。
核酸与蛋白质是执行生命功能的重要纳米成分,是最好的天然生物纳米材料。
这些成分相互作用编织了一个复杂的、完美的生物世界。
生物纳米材料研究,不仅涉及基因与蛋白质的结构与功能,包括它们的识别、结合、相变、特殊因子的释放、生物电化学信号的产生与传导、生物力学与热力学特性,而且还涉及新技术工具的发展。
生物纳米材料可分为4类:(1)天然纳米材料;(2)譬物仿生与人工合成的纳米材料;(3)智能纳米复合材料;(4)合成的纳米材料与活细胞形成的复合材料或组织工程纳米材料。
尽管很多根本问题仍然不清楚,但是带有生物与纳米特征的新材料研究与开发已取得很大进展。
1纳米材料简介纳米材料是指结晶粒度或多层膜的调制波长为纳米级(nm) 的多晶材料。
它自本世纪80年代中期以来, 研究开发日新月异。
纳米材料在结构上属于原子簇和宏观物体交界的过渡区域, 是由数目很少的原子或分子组成的原子或分子的聚集体。
粒子具有壳层结构, 其表面层原子占很大的比例并且是无序的类气体状, 在粒子内部存在有序-无序结构。
与晶体体相基层的完全长程有序结构不同, 纳米粒子的结构的特殊性使它们具有与传统固体材料不同的许多特殊性质, 成为材料科学领域中跨世纪的材料科学研究的热门课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京石油化工学院纳米材料导论结课论文
学生姓名:
专业:
学院:
学号:
年级:
指导教师:
2012年 11 月10 日
纳米Al2O3在新材料上的应用
(北京石油化工学院北京 102600)
摘要:作为纳米材料的一种,Al2O3拥有小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应一切特殊性质,所以具备特殊的光电特性、高磁阻现象、非线性电阻现象、在高温下仍具有的高强度、高韧、稳定性好等奇异特性,从而使Al2O3近年来备受关注研究并且在新材料领域有广阔的应用前景[1]。
关键词:纳米;Al2O3;新材料;应用
The application of nanometer Al2O3 in new materials (School of Information Engineering,Beijing Institute of Petrochemical Technology, Beijing 102600, China)
Abstract: As one of the nanometer materials, Al2O3 has small size effect, surface effect, quantum size effect and the macroscopic quantum tunnel effect, all special properties, so have the special optical properties, high reluctance phenomenon, phenomenon, nonlinear resistance in high temperature still has high strength, high toughness, good stability and singularity, so that Al2O3 has attracted much attention in recent years on research and in the field of new materials has broad application prospect[1].
Key word: nanometer;Al2O3;new materials;application
1 引言
由于粒径细小,纳米氧化铝可用来制作人造宝石、分析试剂以及纳米级催化剂和载体,用于发光材料可较大的提高其发光强度,对陶瓷、橡胶增韧,要比普通氧化铝高出数倍,特别是提高陶瓷的致密性、光洁度、冷热疲劳等。
纳米氧化铝已用于YGA激光器的主要部件和集成电路基板,并用在涂料中来提高耐磨性[2]。
随着人们对自身健康的关注和环保意识的增强,绿色化学理念正在材料制备与应用领域备受关注[3]。
2 催化材料
γ型氧化铝具有明显的吸附剂特征,并能活化许多键,如H-H键,C-H键等,因此在烃类裂化、醇类脱水制醚等反应中可直接作为活性催化剂加入反应体系中,如乙醇脱水产生乙烯。
由于γ型氧化铝表面同时存在酸性中心和碱性中心,因此γ型氧化铝本身就是一种极好的催
化剂。
γ型氧化铝尺寸小,表面所占的体积分数大,表面原子配位不全等导致表面活性位置增加,而且随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,增加了化学反应的接触面,因而纳米氧化铝是理想的催化剂或催化剂载体[1]。
近年来研究发现有序介孔氧化铝材料具有较大的比表面积,较大且均已的孔道结构,可以处理较大的分子或基团,是良好的催化剂,催化活性较γ型氧化铝好[4]。
3 光学材料
纳米氧化铝可以吸收紫外光,并且在某些波长光的激发下可以产生出与粒子尺寸相关的波长的光波。
由α-Al2O3可烧结成透明陶瓷,作为高压钠灯管的材料;可用作紧凑型荧光灯中荧光粉层的保护涂膜;还可和稀土荧光粉复合制成荧光灯管的发光材料,提高灯管寿命。
此外,纳米Al2O3多孔膜有红外吸收性能,可制成隐身材料用于军事领域;利用其对80nm紫外光的吸收效果可作紫外屏蔽材料和化妆品添加剂。
4 表面防护层材料
将纳米氧化铝粒子喷涂在金属、陶瓷、塑料、玻璃、漆料及硬质合金的表面上,可明显提高表面强度、耐磨性和耐腐蚀性,且具有防污、防尘、防水等功能,因此可用于机械、刀具、化工管道等表面防护。
据说在AlSi3O4不锈钢表面涂氧化铝防护层,使得表面硬度由3.8GPa提高到10.8GPa,并且在受到同样的负载下,表面压痕深度减少了30℅左右[1]。
5 结论
纳米Al2O3粉体与常规的相比,具有独特的物理和化学特性,是一种重要的陶瓷材料及催化剂载体,具有耐磨,耐腐蚀,耐高温等优异性能,纳米A1203粉体因其具有高强度、高硬度、绝缘性好等优异特性,是一种重要的功能材料。
除了对超细粒度、高纯度的不断追求外,纳米氧化铝粉体的研究还不断向功能化方向发展。
随着材料的制备和应用研究的不断深入,纳米氧化铝粉体材料将在各种领域发挥更大的作用。
当代制铝业是一高耗能产业,如何将低能耗的合成与制备方法应用于工业化大规模生产成了解决当前能源紧张和环境污染问题研究
方向。
参考文献
[1]何克澜,林健,覃爽。
纳米氧化铝的制备与应用进展[J].玻璃与搪瓷,2006,34(5):48-52
[2] 景晓燕,于学清,张密林。
纳米γ-Al2O3粉体的制备研究[J].应用科技,2004,31(9):56-58
[3]连加松,杨辉,李冬云。
纳米氧化铝粉体的绿色合成[J].稀有金属材料与工程,2008,
37(增刊2):336
[4] 宗志强。
有序介孔氧化铝的制备及应用研究[D].东北大学硕士学位论文,2007.。