高分子物理 高分子物理 聚合物的屈服和断裂

合集下载

高分子物理高分子的力学性能

高分子物理高分子的力学性能

高分子物理高分子的力学性能引言高分子是由大量重复单元组成的长链聚合物,具有广泛的应用领域。

高分子材料的力学性能是评估其性能和应用范围的重要指标之一。

本文将重点介绍高分子物理高分子的力学性能,包括拉伸性能、弯曲性能和压缩性能。

拉伸性能拉伸性能是衡量高分子材料抵抗拉伸变形的能力。

引伸模量是评估高分子材料刚度的指标,反映了材料在受力下沿着拉伸方向的抗弯刚度。

拉伸模量越大,材料刚度越高,说明材料越难被拉伸变形。

另一个重要的指标是断裂伸长率,即材料在断裂前所能延伸的长度与原始长度之比。

断裂伸长率越大,材料的延展性越好,能够在受力下更好地承受高应变。

弯曲性能弯曲性能是评估高分子材料在受力下的弯曲变形能力。

弯曲模量是衡量材料刚度和弯曲抗弯能力的指标,它反映了材料在弯曲过程中所需的力和弯曲程度之间的关系。

弯曲模量越大,材料的刚度越好,弯曲变形能力越低。

另一个重要的指标是弯曲强度,即材料在抵抗内部应力下断裂弯曲的能力。

弯曲强度越高,材料越能够承受弯曲应力而不断裂。

压缩性能压缩性能是评估高分子材料在受力下的抗压能力。

压缩模量是衡量材料在受压过程中抗弯刚度的指标,它反映了材料在压缩过程中所需的力和压缩程度之间的关系。

压缩模量越大,材料的刚度越高,抗压变形能力越低。

另一个重要的指标是压缩强度,即材料在抵抗内部应力下断裂压缩的能力。

压缩强度越高,材料越能够承受压缩应力而不断裂。

影响高分子材料力学性能的因素高分子材料的力学性能受多种因素影响。

其中,聚合度是一个重要的因素,即聚合物链的长度。

聚合度越高,链段之间的力学相互作用越多,因此材料的力学性能越好。

另一个重要因素是材料的结晶度。

高结晶度的材料通常具有更好的力学性能,因为结晶区域可以提供更多的强度和刚度。

此外,材料的处理方式和加工工艺也会对力学性能产生影响。

高分子物理高分子的力学性能是评估其应用潜力和性能表现的关键指标。

拉伸性能、弯曲性能和压缩性能是评估高分子材料力学性能的重要指标。

高分子物理(第五版)课后习题答案

高分子物理(第五版)课后习题答案

第1章高分子链的结构1.写出聚氯丁二烯的各种可能构型。

略2.构型与构象有何区别?聚丙烯分子链中碳-碳单键是可以旋转的,通过单建的内旋转是否可以使全同立构的聚丙烯变为间同立构的聚丙烯?为什么?答:构型:是指分子中由化学键所固定的原子在空间的几何排列。

构象:由于分子中的单键内旋转而产生的分子在空间的不同形态。

全同立构聚丙烯与间同立聚丙烯是两种不同构型,必须有化学键的断裂和重排。

3.为什么等规立构聚苯乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙稀分子链在晶体中呈平面锯齿构象?答:因为等规PS上的苯基基团体积较大,为了使体积较大的侧基互不干扰,必须通过C-C键的旋转加大苯基之间的距离,才能满足晶体中分子链构象能量最低原则;对于间规PVC而言,由于氢原子体积小,原子间二级近程排斥力小,所以,晶体中分子链呈全反式平面锯齿构象时能量最低。

4.哪些参数可以表征高分子链的柔顺性?如何表征?答:空间位阻参数δ链段长度b:链段逾短,柔顺性逾好。

5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺型好。

该聚合物为什么室温下为塑料而不是橡胶?答:因为聚乙烯结构规整,易结晶,故具备了塑料的性质,室温下聚乙烯为塑料而不是橡胶。

6. 从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯腈与碳纤维;线性高分子梯形高分子(2)无规立构聚丙烯与等规立构聚丙烯;非晶高分子结晶性高分子(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯;柔性(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。

高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000个主链C原子中约含15~35个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。

7.比较下列四组高分子链的柔顺性并简要加以解释。

高分子物理——聚合物的屈服与断裂

高分子物理——聚合物的屈服与断裂

一、玻璃态高聚物的拉伸
(1)屈服点
应力达到一个极大值,屈服应力 (2)断裂方式(材料破坏有二种方式)
脆性断裂:屈服点之前发生的断裂
断裂表面光滑
不出现屈服
韧性断裂:在材料屈服之后的断裂(明显屈
服点和颈缩现象)
北京理工大学
断裂表面粗糙
(3)应变软化和应变硬化
应变软化:在拉伸过程中,应力随应变的增 大而下降


PVC在室温、图中表明的应变速率下测得的应力-应变曲线
随着拉伸速度提高,聚合物的模量增加,屈 服应力、断裂强度增加,断裂伸长率减少
• 柔性很大的链在冷却成玻璃态时,分子 之间堆砌得很紧密,在玻璃态时链段运 动很困难,要使链段运动需要很大的外 力,甚至超过材料的强度,刚性大,冷 却时堆砌松散,分子间相互作用力小, 链段活动余地较大,这种高聚物在玻璃 态时具有强迫高弹而不脆,脆点低, Tb,Tg间隔大,另外如果刚性太大,链段 不能运动,也不出现高弹形变。
0 exp(
RT )
对于某一种高聚物存在一个特征温度(Tb),只 要温度低于Tb,玻璃态高聚物就不能发展强迫高 弹形变。玻璃态高聚物只有处在Tb到Tg的温度范 围内,才能在外力作用下实现强迫高弹形变。
北京理工大学
外力 E a 拉伸速率 0 exp( ) 结构 RT 柔性高分子链:在玻璃态时呈现脆性。Tb≈Tg 刚性高分子链:较刚性:易出现受(强)迫 高弹性,脆点较低,Tb与Tg间隔较大。 高刚性:链段运动更加困难,Tb与Tg也很接 近。 分子量 分子量较小时,在玻璃态堆砌较紧密,呈现 脆性,Tb~Tg较接近。 当分子量增加到一定程度以后,Tb与Tg差距拉 大,直到达到临界值 北京理工大学
(B)受(强)迫高弹形变:材料在屈服后出现了

高分子物理-第八章解析

高分子物理-第八章解析
关系符合虎克定律,代表普 弹形变。到达y点后,试样 的截面积变的不均匀,出现 一个或几个细颈,由此开始 拉伸的第二阶段,出现细颈 后,细颈部分试样的宽、厚 减小,故负荷读数可能稍下 降。由于细颈部分分子排列 规整,可以承受更大的力, 因而细颈不再变形,而是细 颈两端发展,使细颈部分不 断扩展,非细颈部分逐渐缩 短,直至整个试样完全变为 细颈为止。
b . 分子量
M降低,分子堆砌紧 密,Tb与Tg靠近; M升高,ΔT=Tg—Tb 升高。
(二) 晶态高聚物的应 力-应变曲线
晶态高聚物一般包括含有 晶区和非晶区两部分,因 此晶态高聚物的冷拉也包 括晶区和非晶区部分。
整个曲线可视为三条直线 组成。
第一段:拉伸初期、应力 增加较快, 应变增加较小,
实验证明,链段运动的松弛时间与应力之间有如下关系
E
0e RT
E :活化能
:与材料相关的常

由上式可知,随应力增加,链段运动的松
弛时间将缩短。当应力增大到屈服应力时,
链段运动的松弛时间减小至与拉伸速度相适
应的数值,高聚物可产生大形变。所以加大 外力对松弛过程的影响与升高温度相似。
无定形聚合物的冷拉
重 点
重点掌握强迫高弹形变的概念,非晶和结晶
高聚物的应力-应变曲线、银纹屈服和剪切屈 服机理。影响聚合物拉伸强度和冲击强度的 因素。
难 点
正确理解和掌握强迫高弹形变和高弹形变的 异同之处。区别和理解银纹屈服和剪切屈服 机理。
第一节 高聚物的塑性和屈服
一、应力-应变曲线
先介绍几个概念
强度:在较大外力持续作用或强大外力的 短期作用下,材料将发生大形变直至宏观 破坏或断裂,对这种破坏或断裂的抵抗能 力称为强度。材料破坏方式的不同,强度 又可分为拉伸强度、冲击强度和弯曲强度 等。

高分子物理名词解释 (2)

高分子物理名词解释 (2)

.'.第一章 概论 分子量分布,是指聚合物试样中各组分含量与分子量的关系。

黏弹性,对一整块聚合物熔体在短时间内可以观察到它有一定的形状和弹性,但是经长时间观察这种熔体会表现出液体的流动性。

这种长时间观察到的粘性流动和短时间内观察到的弹性两者相结合,而且与时间有关的力学性质称为黏弹性。

玻璃化转变,无定形和结晶热塑性聚合物低温时都呈玻璃态,受热至某一较窄温度,则转变为橡胶态或柔韧的可塑状态,这一转变过程称为玻璃化转变。

转变时对应的温度称为玻璃化转变温度Tg 。

高弹性,聚合物材料在受到外力时,分子中的链段发生了运动,使长链分子由蜷曲状变成伸展状,产生很大的形变,但不导致高分子链之间产生滑移,当解除外力后,形变可完全恢复,材料的这种性质称为高弹性。

第二章 高分子的链结构高分子的链结构又分近程结构和远程结构。

近程结构属于化学结构,又称一级结构。

远程结构包括分子的大小与形态,链的柔顺性及分子在各种环境中所采取的构象,又称二级结构。

聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构,它们是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。

织态结构和高分子在生物体中的结构则属于更高级的结构。

高分子链的构型包括单体单元的键合顺序、空间构型的规整性、支化度、交联度以及共聚物的组成及序列结构。

高分子链序列结构:共聚物中不同结构单元的交替次数,不同结构单元在分子链中的平均长度。

全同立构,高分子全部由一种旋光异构体键接而成,称为全同立构;间同立构,由两种旋光异构体交替键接而成,称为间同立构;无规立构,两种旋光异构体完全无规键接时,则称为无规立构。

等规立构,全同异构和间同异构统称为等规立构。

定向聚合,通常自由基聚合的高聚物大都是无规的,只有用特殊的催化剂才能制得等规立构的高聚物,这种聚合方法称为定向聚合。

等规度是指高聚物中含有全同立构和间同立构的总的百分数。

高分子物理(第三版)第七章--高分子的屈服和断裂(玻璃...

高分子物理(第三版)第七章--高分子的屈服和断裂(玻璃...

Thedevelopmentof materialsover time.The materialsof pre-history, onthe left,all occurnaturally;the challengefor theengineers ofthat era wasone ofshaping them.Thedevelopmentofthermochemist 11121314 1516 17在小伸长时,拉伸应变通常以单位长度的伸长来定义。

应变:。

:为材料的起始截面积。

当材料发生较大形变时,上式计算的应力与材料的真实应力会发生较大的偏差,这时正确计算应力应该以真实截面积真应力:相应地可提出真应变的定义,如果材料在某一时刻长度从+dl i,则真应变为:真应变:对于理想的弹性团体,应力与应变关系服从虎克定律,25简单拉伸时的杨氏模量:在简单剪切的情况下,材料受到的力F 是与截面相平行的大小相等、方向相反的两个力。

在这剪切力作用下,材料将发生偏斜,偏斜角的正切定义为切应变。

当切应变足够小时,。

相应地,材料的剪切应力为:剪切模量:θγ≈切应变:剪切位移S ,剪切角θ,剪切面间距d体积模量:必须注意的是,试样宽度和厚度在拉伸过程中是随试样的伸长屈服强度断裂强度Polymers with different properties增强途径增强机理:活性粒子吸附大分子,形成链间物理交联,活性粒子起物理交联点的作用。

惰性填料怎么办?例:PVC+CaCO,PP+滑石粉glassy fiber+polyester增强机理:纤维作为骨架帮助基体承担载荷。

Carbon fiber弯曲模量:增强机理:热致液晶中的液晶棒状分子在共混物中形成微纤结构而到增强作用。

由于微纤结构是加工过程中由液晶棒状分子在共混无物基体中就地形成的,故称做“原位”复合增强。

Charpy试验IZOD试验40补充材料:聚合物的韧性与增韧-----冲击强度Impact strength——是衡量材料韧性的一种指标高速拉伸试验测量材料冲击强度的依据。

高分子物理知识重点(第八章)

高分子物理知识重点(第八章)

第八章 聚合物的屈服和断裂1.概念①.强度:在较大外力的持续作用或强大外力的短期作用下,材料将发生大形变直至宏观破坏或断裂,对这种破坏或断裂的抵抗能力称为强度。

②.脆性断裂:与材料的弹性响应相联系,在断裂前试样断裂均匀,断裂时,裂纹迅速垂直于应力方向,断裂面不显出明显的推迟形变,σ-ε曲线是线性的,ε<5%,断裂能小,由张应力引起的-是键长变化的结果。

③.韧性断裂:屈服点以后的断裂,产生大形变,断面显示外延形变(缩颈的结果),σ-ε曲线是非线性的,ε>5%,由剪切应力引起的-链段运动的结果。

* 材料断裂的方式与其形变性质有着密切的联系。

例如,脆性断裂是缺陷快速扩展的结果,而韧性断裂是屈服后的断裂。

高分子材料的屈服实际上是材料在外力作用下产生的塑料形变。

2.图—应力-应变曲线图非结晶聚合物形变经历了普弹形变、应变软化(屈服)、塑性形变(强迫高弹形变)、应变硬化四个阶段材料在屈服点之前发生的断裂称为脆性断裂;在屈服点后发生的断裂称为韧性断裂A.从曲线上可得评价聚合物性能的力学参数:Y :屈服点 σy :屈服强度 εy :屈服伸长率 B ::断裂点 σb :断裂强度 ε:断裂伸长率拉伸强度σi ( σy ,σb ) 杨氏模量 断裂能:OYB 面积B.从分子运动解释非结晶聚合物应力-应变曲线I: 普弹形变小尺寸运动单元的运动引起键长键角变化。

形变小可回复 A YB A σY σB σ应变软化塑性形变N DII :强迫高弹形变在大外力作用下冻结的链段沿外力方向取向III :粘流形变在分子链伸展后继续拉伸整链取向排列,使材料的强度进一步提高。

形变不可回复C.强迫高弹形变的定义处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生的较大应变,移去外力后形变不能回复。

若将试样温度升到其Tg 附近,该形变则可完全回复,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。

这种形变称为强迫高弹形变D.晶态聚合物在单向拉伸时典型的应力-应变曲线如下图:OA-普弹形变YN-屈服,缩颈(应变变大,应力下降)ND -强迫高弹形变DB-细颈化试样重新被均匀拉伸, 应变随应力增加-应变硬化3.图:----温度的影响非晶聚合物在不同温度下的σ-ε曲线如图8:T <T b ,硬玻璃态,脆性断裂--1T b<T <T g ,软玻璃态,韧性断裂--2、3T g<T <T f ,高弹态--4T >T f ,粘流态--5分析:曲线1:在玻璃态(T 《T b ):直线关系,形变小,高模量,原因是由侧基等运动单元引起键长键角的变化引起。

高分子物理课件8聚合物的屈服和断裂

高分子物理课件8聚合物的屈服和断裂

解:=0, n=0
=45, s=0/2
0=30MP 0=40MP
先,拉断
(2).已知材料的最大抗张强度为30MP,最大抗剪强度为
10MP,试问此材料是受张力破坏还是剪切作用下形变?
解:=0, n=0
0=30MP
=45, s=0/2 0=20MP
先,发生形变
8 聚合物的屈服和断裂
Shear bana
在细颈出现之 前试样上出现 与拉伸方向成 45角的剪切滑 移变形带
8 聚合物的屈服和断裂
(3) Crazing 银纹
银纹现象为聚合物所特有,它是聚合物在张应力作用下, 于材料某些薄弱地方出现应力集中而产生局部的塑性形 变和取向,以至于在材料表面或内部垂直于应力方向上 出现长度为100µm、宽度为10 µm左右、厚度约为1 µm 的微细凹槽的现象
(a) Different
T
temperature
T
Temperature Example-PVC,Tg=80℃ Results
a: T<<Tg b: T<Tg
0°C 0~50°C
脆断 屈服后断
c: T<Tg (几十度)
50~70°C
韧断
d: T接近Tg
70°C
无屈服
8 聚合物的屈服和断裂
(b) Different strain rate
要 非常迅速。 特 ➢屈服应力对应变速率和温度都敏感。 征 ➢屈服发生时,拉伸样条表面产生“银纹”或“剪切
带”,继而整个样条局部出现“细颈”。
8 聚合物的屈服和断裂
Strain softening 应变软化
弹性变形后继续施加载荷,则产生塑性形变,称为 继续屈服,包括: ➢应变软化:屈服后,应变增加,应力反而有稍许 下跌的现象,原因至今尚不清楚。 ➢呈现塑性不稳定性,最常见的为细颈。 ➢塑性形变产生热量,试样温度升高,变软。 ➢发生“取向硬化”,应力急剧上升。 ➢试样断裂。

高分子物理习题答案(名词解释4-9章)

高分子物理习题答案(名词解释4-9章)

第4章 聚合物的分子量与分子量分布1.统计平均分子量由于聚合物分子量具有两个特点,一是其分子量比分子大几个数量级,二是除了有限的几种蛋白质高分子外,分子量都不是均一的,都具有多分散性。

因此,聚合物的分子量只有统计意义,用实验方法测定的分子量只是具有统计意义的平均值。

2.微分分子量的分布函数0000()()()1()1n M dM n m M dM mx M dM w M dM ∞∞∞∞====⎰⎰⎰⎰以上是具有连续性的分子量分布曲线 3.分子量分布宽度实验中各个分子量与平均分子量之间差值的平方平均值 4.多分散系数α表征聚合物式样的多分散性。

w n M M α=或zwM M α= 5. Tung (董履和)分布函数表征聚合物的分子量分布,是一种理论分布函数,在处理聚合物分级数据时十分有用。

6.散射介质的Rayleigh 比表征小粒子所产生的散射光强与散射角之间的关系,公式为2(,)iI r R I θθγ= 7.散射因子()P θ表征散射光的不对称性参数,()P θ是粒子尺寸和散射角的函数。

具体公式如下:222216()1sin 3()2P S πθθλ-=-'注:nλλ'=,2S--均方旋转半径,λ'-入射光在溶液中的波长8.特性粘数[]η表示高分子溶液0c →时,单位浓度的增加对溶液比黏度或相对黏度对数的贡献,具体公式如下:0ln []limlimsprc c ccηηη→→==9.膨胀因子χχ维溶胀因子,在Flory 特性黏数理论中应用方式为;2220h hχ=10. SEC 校正曲线和普适校正曲线(1) SEC 校正曲线:选用一组已知分子量的单分散标准样品在相同的测试条件下做一系列的色谱图。

(2) 普适校正曲线:322()[]h Mφη=以lg[]M η对e V 作图,对不同的聚合物试样,所得的校正曲线是重合的。

第5章 聚合物的分子运动和转变1.玻璃-橡胶转变(玻璃化转变)非晶态聚合物的玻璃化转变即玻璃-橡胶转变,对于晶态聚合物是指其中的非晶部分的这种转变。

高分子物理名词解释(期末复习)

高分子物理名词解释(期末复习)

第四章 聚合物分子量和分子量分布 牛顿流体:粘度不随剪切力和剪切速率改变而改变的流体。 淋出体积:凝胶渗透色谱法测分子量过程中,自试样进柱到呗淋洗出来所接收 到的淋出液总体积。多分散试样中,试样的分子量按从大到小的顺序分级。 第五章 聚合物分子运动与转变 *松弛时间 τ:外力解除后试样形变回复到初始最大形变的1/e所需的时间。 聚合物分子运动的特点:运动单元的多重性、分子运动的时间依赖性和温度依 赖性。 玻璃化温度:无定形聚合物由玻璃态向高弹态转变的温度,用Tg表示。 粘流温度:链段沿作用力方向的协同运动导致大分子重心发生相对位移,聚合 物呈现流动性,对应的转变温度为粘流温度Tf。 自由体积:聚合物内部分子间存在的空隙体积。 物理老化:一般聚合物制品的许多性能随时间的推移而发生变化的现象。 退火:将晶态聚合物升温到接近其熔点并维持一定时间的过程。 淬火:将温度升高接近熔点的材料急速冷却到室温的过程。
第七章 聚合物的粘弹性 粘弹性:高分子材料的力学行为,在通常情况下总是或多或少地表现为粘性和 弹性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性 称为粘弹性。 蠕变现象:在一定的温度和较小的恒定应力下,聚合物的形变随时间延ห้องสมุดไป่ตู้而逐 渐增大的现象。包括三个形变过程:普弹形变、高弹形变、粘流形变。 应力松弛:在恒定温度和形变保持不变的情况下, 高聚物内部的应力随时间增 加而逐渐衰减的现象。 滞后现象:聚合物在交变应力作用下应变落后于应力的现象。 力学损耗:存在滞后现象时,每一次拉伸-回缩过程中所消耗的功,称为力学损 耗。
kT
反映高分子与溶剂相互作用能的变化,
可以表征溶剂分子与高分子相互作用程度大小的参数。
θ溶液:指高分子稀溶液在θ温度下,高分子链段间的作用力,高分子链段和溶剂

高分子物理习题库1

高分子物理习题库1

第一章 高分子链的结构一、 概念构型 构象 均方末端距 链段 全同立构 无规立构二、选择答案1、高分子科学诺贝尔奖获得者中,( )首先把“高分子”这个概念引进科学领域。

A 、H. Staudinger,B 、K.Ziegler, G .Natta,C 、P. J. Flory,D 、H. Shirakawa2、下列聚合物中,( )是聚异戊二烯(PI)。

A 、 CCH 2n CH CH 23B 、O C NH O C NH C 6H 4C 6H 4n C 、 CH Cl CH 2n D 、OC CH 2CH 2O O n O C3、链段是高分子物理学中的一个重要概念,下列有关链段的描述,错误的是( )。

A 、高分子链段可以自由旋转无规取向,是高分子链中能够独立运动的最小单位。

B 、玻璃化转变温度是高分子链段开始运动的温度。

C 、在θ条件时,高分子“链段”间的相互作用等于溶剂分子间的相互作用。

D 、聚合物熔体的流动不是高分子链之间的简单滑移,而是链段依次跃迁的结果。

4、下列四种聚合物中,不存在旋光异构和几何异构的为( )。

A 、聚丙烯,B 、聚异丁烯,C 、聚丁二烯,D 、聚苯乙烯5、下列说法,表述正确的是( )。

A 、工程塑料ABS 树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。

B 、ABS 树脂中丁二烯组分耐化学腐蚀,可提高制品拉伸强度和硬度。

C 、ABS 树脂中苯乙烯组分呈橡胶弹性,可改善冲击强度。

D 、ABS 树脂中丙烯腈组分利于高温流动性,便于加工。

6、下列四种聚合物中,链柔顺性最好的是( )。

A 、聚氯乙烯,B 、聚氯丁二烯,C 、顺式聚丁二烯,D 、反式聚丁二烯7、在下列四种聚合物的晶体结构中,其分子链构象为H 31螺旋构象为( )。

A 、聚乙烯,B 、聚丙烯,C 、聚甲醛,D 、聚四氟乙烯8、在热塑性弹性体SBS 的相态结构中,其相分离结构为( B )。

A 、 PS -连续相,PB -分散相; B 、PB -连续相,PS -分散相;B 、 P S 和PB 均为连续相; D 、PS 和PB 均为分散相9、自由基聚合制得的聚丙烯酸为( )聚合物。

何曼君《高分子物理》(第3版)笔记和课后习题(含考研真题)详解(第7~10章)【圣才出品】

何曼君《高分子物理》(第3版)笔记和课后习题(含考研真题)详解(第7~10章)【圣才出品】
、题库视频学习平台

存在一个特征的温度 Tb,只要温度低于 Tb,玻璃态聚合物就不能发展强迫高弹形变, 而发生脆性断裂,这个温度称为脆化温度。玻璃态聚合物只有处在 Tb 到 Tg 之间,才能在外 力作用下实现强迫高弹形变。
③作用力的速度 对于相同的外力来说,拉伸速度过快,强迫高弹形变来不及发生,或者强迫高弹形变得 不到充分的发展,试样发生脆性断裂;拉伸速度过慢,线型玻璃态聚合物会发生一部分黏性 流动;只有在适当的拉伸速度下,玻璃态聚合物的强迫高弹性才能充分表现出来。 (4)强迫高弹形变产生的条件 ①温度:Tb~Tg ②施力:σy≥σb 当应力增加到一定值(屈服应力)时,相应链段运动的松弛时间降到 与外力的作用时间相当,被冻结的高分子链段即能响应产生大的形变,可见增加应力与升高 温度对松弛时间的影响是相同的。
4.硬弹性材料的拉伸 (1)硬弹性材料的定义 易结晶的聚合物熔体,在较高的拉伸应力场中结晶时,可以得到具有很高弹性的纤维或 薄膜材料,其弹性模量比一般橡胶要高得多,这类聚合物称为硬弹性材料。 (2)硬弹性材料的应力-应变行为
5 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 7-3 结晶聚合物拉伸过程应力-应变曲线及试样外形变化示意 (2)结晶聚合物的拉伸与玻璃态聚合物的拉伸的比较 ①相似之处 都经历弹性变形、屈服(成颈)、发展大形变以及应变硬化、断裂等阶段,大形变在室 温时都不能自发回复,而加热后都能回复原状,本质上两种拉伸过程造成的大形变都是链段 运动所导致的高弹形变。 ②区别 产生冷拉的温度范围不同,玻璃态聚合物的冷拉温度区间是 Tb 至 Tg,结晶聚合物为 Tb 至 Tm;晶态聚合物的拉伸过程伴随着比玻璃态聚合物拉伸过程复杂得多的分子凝聚态结构 的变化,后者只发生分子链的取向,不发生相变,前者还包含有结晶的破坏、取向和再结晶 等过程。

高分子物理-第七章-屈服和强度

高分子物理-第七章-屈服和强度

银纹和剪切带
均有分子链取向,吸收能量,呈现屈服现象
主要区别


曲线特征





剪切屈服
45o
90o
a
抵抗外力的方式


抗张强度:抵抗拉力的作用

0
aan
aas
0 /2
抗剪强度:抵抗剪力的作用
0o
45o
90o
抗张强度什么面最大? a=0, an=0
抗剪强度什么面最大? a=45, as=0/2
当应力0增加时,法向应力和切向应力增大的幅度不同
在45o时, 切向应力最大
泊松比: 在拉伸实验中,材料横向应变
与纵向应变之比值的负数
m
v
l
m0
l0
T


常见材料的泊松比
泊松比数值


0.5
不可压缩或拉伸中无体积变化
0.0
没有横向收缩
0.49~40
塑料的典型数值
E, G, B and
E2
G
(1
)
EB
3 (1
2
第 一 期 的 入 党积极 分子培 训课将 要结束 了,在 培训期 间,通 过尊敬 的合江 县府王
督 学 、 学 院 党委王 书记及 学院党 办邬主 任和相 关领导 、教授 对党章 ,党课 及现阶
段 国 内 外 形 式的讲 解,以 及通过 参加学 院开展 的颂歌 献给党 、喜迎 十八大 歌咏比
赛 及 参 观 了 武警合 江中队 和合江 县清代 考试院 、合江 县汉代 石棺陈 列馆等 活
韧性断裂 ductile fracture
各种情况下的应力-应变曲线

何曼君《高分子物理》(第3版)配套题库【课后习题】第7章 聚合物的屈服和断裂 【圣才出品】

何曼君《高分子物理》(第3版)配套题库【课后习题】第7章 聚合物的屈服和断裂 【圣才出品】

第7章聚合物的屈服和断裂1.试比较非晶态聚合物的强迫高弹性、结晶聚合物的冷拉、硬弹性聚合物的拉伸行为和嵌段共聚物的应变诱发塑料一橡胶转变,从结构观点加以分析,并指出其异同点。

答:(1)玻璃态聚合物在大外力的作用下发生的大形变其本质与橡胶的高弹形变一样,但表现形式却有差别,此称为非晶体态聚合物的强迫高弹性。

强迫高弹性主要是由聚合物的结构决定的。

强迫高弹性的必要条件是聚合物要具有可运动的链段,通过链段的运动使链的构象改变。

所以分子链不能太柔软,否则在玻璃态是由于分子堆砌的很紧密而很难运动;同时分子链的刚性也不能太大,刚性太大分子链不能运动。

(2)结晶聚合物的冷拉:第一阶段,应力随应变线性的增加试样被均匀的拉长,到达一点后,截面突然变得不均匀,出现细颈。

第二阶段,细颈与非细颈部分的截面积分别维持不变,而细颈部分不断扩展,非细颈部分逐渐缩短,直至整个试样完全变细为止。

第三阶段,成颈后的试样重新被均匀的拉伸,应力又随应变的增加而增加直到断裂点。

在外力的作用下,分子在拉伸方向上开始取向,结晶聚合为中的微晶也进行重排,甚至在某些晶体可能破裂成较小的单位,然后再去向的情况下再结晶。

(3)硬弹性聚合物的拉伸行为:易结晶的聚合物熔体,在较高的拉伸应力场中结晶时,可以得到具有很高弹性的纤维或薄膜材料,而其弹性模量比一般橡胶却要高的多。

E.S.Clark提出一种片晶的弹性弯曲机理。

由于在片晶之间存在由系带分子构成的连接点,是使硬弹材料在收到张力时,内部晶片将发生弯曲和剪切弹性变形,晶片间被拉开,形成网格状的结构,因而可以发生较大的形变,而且变形越大,应力越高,外力消失后,靠晶片的弹性回复,网格重新闭合,形变可大部分回复。

(5)嵌段共聚物的应变诱发塑料—橡胶转变:材料在室温下像塑料,在外力的作用下,能够发生很大的形变,移去外力后也能很快的回复。

如果接着进行第二次拉伸,则会像橡胶的拉伸过程材料呈现高弹性。

经拉伸变为橡胶的试样,在室温下放置较长的时间又能回复拉拉伸前的塑料性质。

高分子物理第八章

高分子物理第八章
试样受冲击载荷而折断时单位面积 所吸收的能量。
E i A
摆锤式冲击实验:简支梁;悬臂梁。 单位 :KJ/m2;J/m
北京理工大学
(4)硬度
衡量材料表面抵抗机械压力的能力。 与材料的抗张强度和弹性模量有关。 硬度实验方法很多,加荷方式有动载法和静载法两类。 有布氏、洛氏和邵氏等名称。
实验是以平稳的载荷将直径D一定的 硬刚球压入试样表面,保持一定时间 使材料充分变形,并测量压入深度h, 计算试样表面凹痕的表面积,以单位 面积上承受的载荷公斤/毫米2)为材 料的布氏硬度
第八章 聚合物的屈服和断裂(Yielding and fracture of polymers )
主要内容



前言 8.1 聚合物的塑性和屈服 8.2 聚合物的断裂和强度
教学Байду номын сангаас容:
聚合物的应力—应变曲线 聚合物的屈服 聚合物的断裂与强度
重点要求:
会从聚合物应力——应变曲线获取信息;掌握屈服和断裂现象 及其机理;韧性和强度的影响因素及增韧、增强方法和机理。
15
试样在拉伸过程的变化过程
颈缩阶段:“细颈”扩张,应力变化很小,应变大幅度增加
弹性形变-屈服-应变软化-冷拉-应变硬化-断裂
高模量、小变形 键长、键角运动
可恢复
受迫高弹形变
链段运动
粘流 分子链运动
玻璃态,不可恢复,需Tg以上退火处理恢复。
受迫高弹形变
1)定义:玻璃态高聚物在大外力的作用下发生的大形变; 2)条件:在Tg以下10℃(或更低)左右 3)机理:在大外力的帮助下,玻璃态高聚物本来被冻结的 链段开始运动,即在外力的帮助下,高分子链的伸展提供 了大变形,这时由于在Tg以下,即使外力除去也不能自发回 复。

沈阳工业大学。高分子物理名词解释王宝成2012.12

沈阳工业大学。高分子物理名词解释王宝成2012.12

第一章 高分子链结构构型:大分子链内相邻原子或原子团之间所处空间相对位置的表征。

无规高分子:主链链节上不对称原子(通常指碳原子)所连两个侧基在主链上所具有的主平面上下两方呈无规定间排列的聚合物。

全同立构:高分子全部由一种旋光异构单元键接而成.间同立构:由两种旋光异构单元交替键接.无规立构:两种旋光异构单元完全无规则键接时等规度高聚物中含有全同立构和间同立构的总的百分数.支化度以支化点密度或相邻支化点之间的链的平均分子量来表示运货的程度交联度通常用相邻两个交联点之间的链的平均分子量Mc 来表示.构象由于单键内旋转而产生的分子在空间的不同形态称为链段指由高分子链中划出来的可以任意取向的最小链单元柔顺性高分子链能够改变其构象的性质称为末端距:指线型高分子链的一端至另一端的直线距离,用h 表示自由连接链假定分子是由不占有体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中每个键在任何方向取向的几率都相等.实际高分子链:不是一个自由连接链,而且内旋转也不是完全自由的,为此,将一个原来含有n 个键长为l 、键角θ固定、旋转不自由的键组成的链视为一个含有Z 个长度为b 的链段组成的“等效自由连接链”若用h max 表示链的伸长度。

则h max =Zb等效自由连接链:假定分子是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中生个键在任何方向取向的几率都相等.高斯链:因为等效自由结合链的链段分布符合高斯分布函数,故这种链称高斯链。

无扰尺寸:在特殊情况下,正的外排斥体积和负的内排斥体积正好抵消,u =0,线团的行为好像无限细的链的一样,处于无扰的状态,这种状态的尺寸称无扰尺寸。

空间位阻参数:(刚性因子σ)真实高分子在θ态的均方末端距与假设该高分子链在键长键角固定但内旋转自由时的均方末端距之比的平方根。

极限特征比:无扰链与自由基连接链均方末端距的比值第二章 高分子的凝聚态结构内聚能:定义为克服分子间的作用力,把一摩尔液体或固体分子移到其分子间的引力范围这外所需要的能量.V E H R T ∆=∆-内聚能密度:是单位体积的内聚能. 内聚能密度小290兆焦/米3的高聚物,都是非极性高聚物,由于它们的分子链上不含有极性基团,分子间力主要是色散力,分子间相互作用较弱,加上分子链的柔顺性较好,使这些高聚物材料易于变形,富有弹性,可用作橡胶。

高分子物理第八章 聚合物的屈服和断裂

高分子物理第八章 聚合物的屈服和断裂
冷拉伸包括晶区与非晶区两部分形变,非晶态部分先发生,然
后球晶产生形变。晶区形变是应力作用使原有的结晶结构破坏,
球晶、片晶被拉开分裂成更小的结晶单元,分子链从晶体中被 拉出、伸直,沿着拉伸方向排列形成的
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
结晶的影响
结晶度
球晶大小
第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
剪切带屈服机理
( 1 )剪切带是韧性聚合物在单向拉伸至屈服点 时出现的与拉伸方向成约 45°角倾斜的剪切滑移 变形带。 (2)剪切带的厚度约1µ m,在剪切带内部,高分 子链沿外力方向高度取向,剪切带内部没有空隙, 因此,形变过程没有明显的体积变化。 ( 3 )剪切带的产生与发展吸收了大量能量。同 时,由于发生取向硬化,阻止了形变的进一步发 展。 第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
应变速率的影响
时温等效原理:
拉伸速度快 = 时间短
=温度低
第八章 聚合物的屈服和断裂
8.1.1.2 晶态聚合物
在Tm以下,适 当的拉伸速率下 拉伸得到的晶态 聚合物典型的应 力-应变曲线
成颈or冷拉
第八章 聚合物的屈服和断裂
结晶聚合物应力-应变曲线
8.1.5 银纹现象
银纹现象是聚合物在张应力的作用下,于材料某些薄弱部位出现
应力集中而产生局部的塑性形变和取向,以至在材料表面或者内
部垂直于应力方向上出现长度为 100um 、宽度为 10um 左右、厚 度为1um的细微凹槽或“裂纹”的现象。
第八章 聚合物的屈服和断裂
银纹
银纹的平面垂直于产生银纹的张应力,在张应力作用下,能产 生银纹的局部区域内,聚合物呈塑性形变,高分子链沿张应力 方向高度取向,并吸收能量。由于横向收缩不足以全部补偿塑 性伸长,导致银纹体内产生大量空隙。密度、折光指数降低。 第八章 聚合物的屈服和断裂

2019年整理11级高分子物理7 聚合物的屈服和断裂精品资料

2019年整理11级高分子物理7 聚合物的屈服和断裂精品资料

8/11/2019
43
8/11/2019
26
7.3.4 聚合物的理论强度
第三种情况,断裂时部分氢 键或范德华力的破坏。
估算出氢键和范德华键的拉 伸强度分别为400MPa和 120MPa,与实际测得的高 度取向纤维的强度是同数量 级。
8/11/2019
27
7.4 影响聚合物实际强度的因素
8/11/2019
28
7.4.1 聚合物本身结构的影响
2. 纤维状填料
纤维填料中使用最早的是各种天然纤维,如棉、 麻、丝及其织物等。后来,发展了玻璃纤维。
纤维填料在橡胶轮胎和橡胶制品中,主要作为 骨架,以帮助承担负荷。通常采用纤维的网状 织物,俗称为帘子布。
在热固性塑料中常以玻璃布为填料,得到得谓 玻璃纤维层压塑料,强度可与钢铁媲美。
8/11/2019
当原子热运动的无规热涨落能量超过束缚原子间的势 垒时,会使化学键离解,从而发生断裂。
承载寿命
= 0
exp

U
0

kT
B

拉伸应力
8/11/2019
20
7.3.3 微裂纹
微裂纹也称为银纹:聚合物在张应力作用下, 出现于材料的缺陷或薄弱处,与主应力方向 垂直的长条形微细凹槽。
长100μm、宽10μm、厚1μm
2a b

8/11/2019

max 0 1 2
c



2 0
c

b2/a
锐口的应力集中系数比钝 口的大得多。
32
7.4.3 应力集中的影响
8/11/2019
33
7.4.4 增塑剂的影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(脆化温度)到 Tg之间 。
? 拉伸速度,链柔性,分子量也是影响因素。
7.1.3结晶高聚物的拉伸
? 拉伸曲线可以分为三阶段: ? 第一阶段应力随应变线性
地增加,至屈服点
? 第二阶段的应力 —应变曲
线表现为应力几乎不变, 而应变不断增加
? 第三阶段应力又随应变的
增加而增大直到断裂点
? 结晶聚合物的大形变,就本质上说也是高
d? ' ? ? ' d? ?
(2 ) d? ' d?
有一个值
(3) d? ' 有二个值 d?
(2 )
(3 )
7 .3 聚合物的断裂理论和理论强度
? 韧性材料在受到较大应力,或经受变形时,
可以发生屈服,吸收大量的能量,它使聚 合物材料在实际应用中可以发生较大的变 形或承受较大的冲击而不破坏。
? 外力超过一定限度,聚合物材料会发生韧
7.1.2玻璃态聚合物的强迫高弹形变
? 强迫高弹形变:为了区别于普通的高弹形变,玻
璃态高聚物屈服点以后材料的大形变的称为强迫 高弹形变。
? 实验证明,松弛时间与应力之间有如下关系
?
?
?
0
exp
?? ?
?
E ? a?
RT
?? ?
? 增加应力、提高温度都将使链段运动的松
弛时间缩短。
? 高弹形变条件:断裂应力大于屈服,即 T在Tb
7.2.2 真应力—应变曲线及其屈服判据
? 假定试样变形时体积
不变,则拉伸时实际 受力的截面积为
A ? A0l0 l
?
真应力:
? '?
F
? (1 ? ?)?
A
? 屈服点:
d? / d? ? 0
? 由此得: d? ' ? ? ' d? ?
(Hale Waihona Puke )高聚物的真应力 —应变
曲线可归纳为三种类型:
(1 )
性断裂,也可以发生脆性断裂。
? 影响聚合物材料的断裂行为的外界条件主
要是温度和应变速率。
7.3.1 断裂的分子理论
? 材料断裂过程是一个松弛过程,材料的宏
观断裂对应于微观化学键的断裂 ,是与时
间有关的活化过程 。
? 承载寿命与拉伸应力和绝对温度之间的关
系:
?
?? 0exp??U 0
?
? ??
kT
B
弹性的,只是形变被新产生的结晶所冻结 而已。加热到熔点附近,还是能回缩到未 拉伸状态的。
? 玻璃态和结晶聚合物的拉伸大形变都是高
弹形变,统称为“冷拉”。
? 玻璃态聚合物“冷拉”温度范围在Tb至Tg
之间,结晶聚合物“冷拉”温度范围在 T g 至Tm之间。
7.1.4 硬弹性材料的拉伸
?硬弹性材料:起始模量高。 ?拉伸行为:屈服点不明显,
与拉伸方向相垂直,断裂面也 很光洁;
?韧性聚合物拉伸至屈服点时,
常可看到试样上出现与拉伸方 向成大约45 角倾斜的剪切滑移 变形带,或者在材料内部形成 与拉伸方向倾斜一定角度的 “剪切带”。
?拉伸屈服 :韧性聚合物拉伸至屈服点时,试样上出 现与拉伸方向成大约 45°倾斜的剪切滑移变形带。
0
角倾斜的剪切滑移变形带。
?? ?
? ?0 ,U 0 , ? 是决定聚合物强度特征的常数,k是
Boltzmann 常数。
7.3.2 非线性断裂理论
? 广义断裂理论:含有一裂缝的无限大的平
板试样在拉伸应力作用下,裂缝增长产生 单位面积体系消耗的总能量的普适表达式 为
? ? ? 0? (? 0 ,T , ? )
第七章 聚合物的屈服和断裂
? 7.1 高聚物的拉伸行为 ? 7.1.1 高聚物的拉伸 ? 典型的玻璃态聚合物单
轴拉伸时的应力—应变 曲线
? 一、现象
? 1、T<<Tg ,应力随应变成正比地增加,最后应变不
到l0%就发生断裂;
? 2、T<Tg ,出现屈服点 B,此时达到一个极大值,
称为屈服应力,过了 B点应力反而降低,试样应变 增大。试样断裂时总的应变不超过 20%;
7.2.1 聚合物单轴拉伸的应力分析
在试样上任意取一倾斜的 截面,设其与横截面的夹 角为α
Fn ? F cos? Fs ? F sin ?

? ?n
?
Fn A?
? ? o cos 2 ?
? ?s
?
Fs A?
?
(? o sin 2? ) / 2
两个互相垂直的斜截面上的剪应 力的数值相等,方向相反,它们 是不能单独存在的,总是同时出 现,这种性质称为切应力双生互 等定律。
? 以苯乙烯—丁二烯—苯乙烯三嵌段共聚物(SBS)
为例:
? 拉伸和复原过程的本质:
? 试样在亚微观上具有无规取向的交替层状
结构,其中塑料相和橡胶都成连续相。连 续塑料相的存在,使材料在室温下呈现塑 料性质。第一次拉伸,塑料相被撕碎分散 在橡胶连续相中。
7.2 高聚物的屈服
?脆性聚合物的拉伸断裂面一般
? 3、Tg以下几十度的范围内,屈服点之后,试样在
不增加外力或者外力增加不大的情况下能发生很大 的应变,直到最后断裂。断裂点 c的应力称为断裂应 力,对应的应变称为断裂伸长率;
? 4、T>Tg ,高弹形变,曲线不再出现屈服点。
? 二、分析:
? 玻璃态聚合物拉伸时,曲线的起始阶段应力与应变
成正比,表现出虎克弹性体的行为,直线的斜率即 试样的杨氏模量(很大)。形变由键长键角变化引 起,移去外力,试样将立刻完全回复原状。
? 屈服之前发生的断裂称为脆性断裂,屈服之后的断
裂,则称为韧性断裂
? 大形变的分子机理主要是高分子的链段运动,无法
完全回复,但是加果让试样的温度升到 Tg附近,则 可发现,形变又回复了。
? 如果在分子链伸展后继续拉伸,则出于分子链取向
排列,使材料强度进一步提高,因而需要更大的力, 所以应力又出现逐渐的上升,直到发生断裂。
? 一般来说,韧性材料拉伸时,斜截面上的
最大切应力首先达到材料的剪切强度,因 此试样上首先出现与拉伸方向成45 角的剪 切滑移变形带( 或互相交叉的剪切带 ) ,相 当于材料屈服。
? 对于脆性材料,情况则不同。在最大切应
力达到剪切强度之前,正应力已超过材料 的拉伸强度,因此试样来不及发生屈服就 断裂了。一般脆性材料有较高的压缩强度, 所以在受到单向压缩时,材料通常沿45 角 方向发生破裂。
转折前后曲线斜率不同。形 变可以自发基本回复,但形 成滞后圈。
? 硬弹性机理:晶片的弹性弯曲
?非晶硬弹性材料:体内有空洞相间的微纤, 硬弹性主要由形成微纤的表面能改变所贡 献。
7.1.5 应变诱发塑料—橡胶转变
? 这是某些嵌段共聚物及其与相应均聚物组
成的共混物所表现出来的一种特有的应变 软化现象。
相关文档
最新文档