运筹学习题答案(第四章)

合集下载

《管理运筹学》第四版 第4章 线性规划在工商管理中的应用 课后习题解析

《管理运筹学》第四版 第4章 线性规划在工商管理中的应用 课后习题解析

《管理运筹学》第四版课后习题解析第4章线性规划在工商管理中的应用1.解:为了用最少的原材料得到10台锅炉,需要混合使用14种下料方案。

设14种方案下料时得到的原材料根数分别为x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,如表4-1所示。

表4-1 各种下料方式1234567891011121314s.t. 2x1+x2+x3+x4≥80x2+3x5+2x6+2x7+x8+x9+x10≥350x3+x6+2x8+x9+3x11+2x12+x13≥420x4+x7+x9+2x10+x12+2x13+3x14≥10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥0通过管理运筹学软件,我们可以求得此问题的解为:x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0,x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333最优值为300。

2.解:(1)将上午11时至下午10时分成11个班次,设x i表示第i班次新上岗的临时工人数,建立如下模型。

min f=16(x1+x 2+x3+x4+x5+x6+x7+x8+x9+x10+x11)s.t.x1+1≥9x1+x2+1≥9x1+x2+x3+2≥9x1+x2+x3+x4+2≥3x2+x3+x4+x5+1≥3x3+x4+x5+x6+2≥3x4+x5+x6+x7+1≥6x5+x6+x7+x8+2≥12x6+x7+x8+x9+2≥12x7+x8+x9+x10+1≥7x8+x9+x10+x11+1≥7x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥0通过管理运筹学软件,我们可以求得此问题的解如下:x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0,x10=0,x11=0,最优值为320。

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

第四版运筹学部分课后习题解答

第四版运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯=P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

运筹学习题答案(第四章)

运筹学习题答案(第四章)

售价( /kg) 售价(元/kg) 5.5 5.0 4.8
解: x11 = 1125 , x12 = 300 , x13 = 75 , x 21 = 1125 , x 22 = 200 , x 23 = 675 , x 31 = 0 , x 32 = 1000 , x 33 = 0 , d 1− = 225 , d 3− = 50 , d 5− = 375 , d 7+ = 250 满足所有目标
} } }
(2) max 不正确
{d {d {d

−d+ −d+
}

(4) min

} }
d + = 0时正确
+
(6) min
+
−d−
d + = 0时正确
d − = 0时正确
page 2 24 September 2011
School of Management
运筹学教程
第四章习题解答
4.2 用图解法解下列目标规划问题: 用图解法解下列目标规划问题:
page 13 24 September 2011
School of Management
运筹学教程
第四章习题解答
表4-15 项 目 维生素A mg) 维生素A(mg) 维生素B mg) 维生素B(mg) 维生素C mg) 维生素C(mg) 胆固醇(单位) 胆固醇(单位) 费用( 费用(元) 牛奶 牛肉 鸡蛋 500g) 500g) 500g) (500g) (500g) (500g) 1 100 10 70 1.5 1 10 100 50 8 10 10 10 120 4 每日最少 需要量 1 30 10
page 14 24 September 2011

《运筹学》试题及答案(四)

《运筹学》试题及答案(四)

《运筹学》试题及答案一、单选题1. μ是关于可行流f的一条增广链,则在μ上有(D)A.对一切B.对一切C.对一切D.对一切2.不满足匈牙利法的条件是(D)A.问题求最小值B.效率矩阵的元素非负C.人数与工作数相等D.问题求最大值3.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.当基变量x i的系数c i波动时,最优表中引起变化的有(B)A.最优基BB.所有非基变量的检验数C.第i 列的系数D.基变量X B6.当非基变量x j的系数c j波动时,最优表中引起变化的有(C)A.单纯形乘子B.目标值C.非基变量的检验数D. 常数项7.当线性规划的可行解集合非空时一定(D)A.包含点X=(0,0,···,0)B.有界C.无界D.是凸集8.对偶单纯形法的最小比值规划则是为了保证(B)A.使原问题保持可行B.使对偶问题保持可行C.逐步消除原问题不可行性D.逐步消除对偶问题不可行性9.对偶单纯形法迭代中的主元素一定是负元素()AA.正确B.错误C.不一定D.无法判断10.对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正()BA.换出变量B.换入变量C.非基变量D.基变量11.对LP问题的标准型:max,,0Z CX AX b X==≥,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值Z必为()BA.增大B.不减少C.减少D.不增大12. 单纯形法迭代中的主元素一定是正元素( )AA.正确B.错误C.不一定D.无法判断13.单纯形法所求线性规划的最优解()是可行域的顶点。

AA.一定B.一定不C.不一定D.无法判断14.单纯形法所求线性规划的最优解()是基本最优解。

运筹学习题答案(第四章)

运筹学习题答案(第四章)
9 page 9 23 May 2012
School of Management
运筹学教程
第四章习题解答
4.5 某成品酒有三种商标 红、黄、蓝),都是由 某成品酒有三种商标(红 , 三种原料酒(等级 Ⅱ 等级Ⅰ 兑制而成。 三种原料酒 等级 Ⅰ ,Ⅱ, Ⅲ )兑制而成。 三种等级的原 兑制而成 料酒的日供应量和成本见表4-13,三种商标的成品酒 料酒的日供应量和成本见表 , 的兑制要求和售价见表4-14。决策者规定 : 首先必须 的兑制要求和售价见表 。 决策者规定: 严格按规定比例兑制各商标的酒;其次是获利最大; 严格按规定比例兑制各商标的酒 ; 其次是获利最大 ; 再次是红商标的酒每天至少生产2 000kg。试列出该问 再次是红商标的酒每天至少生产 。 题的数学模型。 题的数学模型。
13 page 13 23 May 2012
School of Management
运筹学教程
第四章习题解答
已知单位牛奶、牛肉、 4.7 已知单位牛奶、牛肉、鸡蛋中的维生素及胆 固醇含量等有关数据见表4 15。 固醇含量等有关数据见表4 - 15 。如果只考虑这三种食 并且设立了下列三个目标: 物,并且设立了下列三个目标: 第一,满足三种维生素的每日最小需要量; 第一,满足三种维生素的每日最小需要量; 第二,使每日摄人的胆固醇最少; 第二,使每日摄人的胆固醇最少; 第三,使每日购买食品的费用最少。 第三,使每日购买食品的费用最少。 要求建立问题的目标规划模型。 要求建立问题的目标规划模型。
售价( /kg) 售价(元/kg) 5.5 5.0 4.8
解: x11 = 1125 , x12 = 300 , x13 = 75 , x 21 = 1125 , x 22 = 200 , x 23 = 675 , x 31 = 0 , x 32 = 1000 , x 33 = 0 , d 1− = 225 , d 3− = 50 , d 5− = 375 , d 7+ = 250 满足所有目标

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。

它包括数学模型的建立、问题求解方法的设计等方面。

b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。

它可以帮助组织提高效率、降低成本、优化资源分配等。

c)运筹学主要包括线性规划、整数规划、指派问题等方法。

习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。

它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。

运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。

1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。

在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。

在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。

在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。

在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。

习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。

在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。

在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。

在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。

第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。

其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。

习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。

运筹学基础及应用_(第四章_整数规划与分配问题)

运筹学基础及应用_(第四章_整数规划与分配问题)
号与7号必须同时开采;
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next

运筹学答案_刁在筠等(2-4章)

运筹学答案_刁在筠等(2-4章)

4
44
1
15
ቤተ መጻሕፍቲ ባይዱ
x2 2 1 0 2
2
x3
−1 4
0
1
−1 4
7 4
根据最优化准则知,问题(P)的最优解为 x* = (0, 5 , 7)T , 最优值为 7 .
24
4
(2) 将问题(P)化为一般形式
8
运筹学 (第三版) 刁在筠等
⎧min z = x1 + x3
⎪⎪⎪s.t. − x1 − 2x2
≥ −5
⎪⎪s.t. ⎨ ⎪
x1 + 4x2 − 2x3 + 8x4 = 2 − x1 + 2x2 + 3x3 + 4x4 = 1
⎪⎩
x1 , x2 , x3, x4 ≥ 0
添加人工变量 x5 , x6 得到辅助问题
⎧min g = x5 + x6
⎪⎪s.t. ⎨ ⎪
x1 + 4x2 − 2x3 + 8x4 + x5 = 2 − x1 + 2x2 + 3x3 + 4x4 + x6 = 1
⎪⎩ x2 ≥ 2
解:图 2.1 的阴影部分为此问题的可行区域.将
8
目标函数的等值线 x1 + 3x2 = c ( c 为常数)沿它的
负法线方向 (−1,− 3)T 移动到可行区域的边界上.
o
于是交点(12,8)T 就是该问题的最优解,其最优 值为 36. P75 16. 用单纯形法求解下列线性规划问题:
进基变量代替离基变量
以 x2 为进基变量, x6 为离基变量旋转得
2
运筹学 (第三版) 刁在筠等
x1 x2 x3 x4 x5 x6 x7 RHS z -1 1 -1 0 -1 1 0 0 x5 0 0 3 0 1 1 0 6 x2 0 1 2 -1 0 0 0 10 x1 1 0 0 0 0 -1 0 0 x7 0 0 1 0 0 1 1 6

运筹学第四章习题答案

运筹学第四章习题答案

即:4y1+6y2=﹣8 ① 又由于原问题的最优解X1*>0,X2*<0是松约束,故对偶问题的 约束必为紧约束,即对偶问题的前两个约束必为等式:
y1+y2=﹣2 y1+ky2=﹣2 ∴由①②解得y1*=﹣2 Y*=(﹣2,0)
② ③ y2*=0,即对偶问题的最优解为
将y1*,y2*的值代入③式得k=﹣1
(2)max z=4x1-2x2+3x3-x4
X1+x2+2x3+x4≤7
2x1-x2+2x3-x4=﹣2
s、t
X1-2x2+x4≥﹣3
X1、x3≥0 x2、x4无符号约束
解:其对偶问题为:
Min w=7y1-2y2-3y3
y1+2y2+y3≥4
y1-y2-2y3=﹣2
s、t
2y1+2y2≥3
y1-y2+y3=﹣1
y1≥0 y2无符号约束 y3≤0
4、已知线性规划问题:
Max z=x1+2x2+3x3+4x4
x1+2x2+2x3+3x4≤20
s、t
2x1+x2+3x3+2x4≤20
xj≥0 j=1、2、3、4
其对偶问题最优解为y1=1.2 y2=0.2,由对偶理论直接求出原问题的 最优解。
解:将Y*=(1.2,0.2)代入对偶问题的约束条件:
1、写出下列线性规划问题的对偶问题。
(1)min z=x1+x2+2x3
X1+2x2+3x3≥2
2x1+x2-x3≤4
s.t
3x1+2x2பைடு நூலகம்4x3≤6

《管理运筹学》第四版 第4章 线性规划在工商管理中的应用 课后习题解析教学资料

《管理运筹学》第四版 第4章 线性规划在工商管理中的应用 课后习题解析教学资料

《管理运筹学》第四版第4章线性规划在工商管理中的应用课后习题解析《管理运筹学》第四版课后习题解析第4章线性规划在工商管理中的应用1.解:为了用最少的原材料得到10台锅炉,需要混合使用14种下料方案。

设14种方案下料时得到的原材料根数分别为x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,如表4-1所示。

表4-1 各种下料方式min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14s.t. 2x1+x2+x3+x4≥80x2+3x5+2x6+2x7+x8+x9+x10≥350x3+x6+2x8+x9+3x11+2x12+x13≥420x4+x7+x9+2x10+x12+2x13+3x14≥10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥0通过管理运筹学软件,我们可以求得此问题的解为:x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0,x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333最优值为300。

2.解:(1)将上午11时至下午10时分成11个班次,设x i表示第i班次新上岗的临时工人数,建立如下模型。

min f=16(x1+x 2+x3+x4+x5+x6+x7+x8+x9+x10+x11)s.t.x1+1≥9x1+x2+1≥9x1+x2+x3+2≥9x1+x2+x3+x4+2≥3x2+x3+x4+x5+1≥3x3+x4+x5+x6+2≥3x4+x5+x6+x7+1≥6x5+x6+x7+x8+2≥12x6+x7+x8+x9+2≥12x7+x8+x9+x10+1≥7x8+x9+x10+x11+1≥7x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥0通过管理运筹学软件,我们可以求得此问题的解如下:x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0,x10=0,x11=0,最优值为320。

运筹学习题答案(第四章)(课堂PPT)

运筹学习题答案(第四章)(课堂PPT)


1500
6

2000
4.5

1000
3
page 9 28 April 2020
School of Management
运筹学教程
第四章习题解答
表4-14
商标
兑制要求
售价(元/kg)

Ⅲ少于10% Ⅰ多于50%
5.5

Ⅲ少于70% Ⅰ多于20%
5.0

Ⅲ少于50% Ⅰ多于10%
4.8
解:x11 1125, x12 300, x13 75, x21 1125,
x2
d1
d
2
d3
d1
d
2
d3
150 40 40
x1
,
x2
,
d
i
,
d
i
0, i
1,2,3
解:x1
55, x2
40,
d
2
15
满足P1,不满足P2
page 3 28 April 2020
School of Management
运筹学教程
第四章习题解答
min
P1
(d
3
d
4
第四章习题解答
解:目标规划模型如下:
min
P1d1
,
P2
(d
2
d
3
d
4
),
P3d
5
,
P4
d
6
x1 x2 x3 1000
x1
d1
d1
300,
x2
d
3
d
3
350,
x1

运筹学1至6章习题参考答案

运筹学1至6章习题参考答案
C(j)-Z(j)
0
2
11/8
0
-3/4
0
9
X4
0
0
0
9/8
1
7/16
-1/4
27/4
6
X1
3
1
0
-1/2
0
1/4
0
3
M
X2
2
0
1
[11/16]
0
-3/32
1/8
1/8
0.181818
C(j)-Z(j)
0
0
0
0
-9/16
-1/4
37/4
X3进基、X2出基,得到另一个基本最优解。
C(j)
3
2
-0.125
6重油
7残油
辛烷值
80
115
105
蒸汽压:公斤/平方厘米
1.0
1.5
0.6
0.05
每天供应数量(桶)
2000
1000
1500
1200
1000
1000
800
问炼油厂每天生产多少桶成品油利润最大,建立数学模型。
解设xij为第i(i=1,2,3,4)种成品油配第j(j=1,2,…,7)种半成品油的数量(桶)。
10
-5
1
0
0
0
* Big M
5
3
1
0
0
0
X1
10
1
3/5
1/5
0
1/5
2
X4
0
0
4
-9
1
1
25
C(j)-Z(j)
0
-11
-1

运筹学第四章

运筹学第四章

(2)图解法 X2
d
2
d3
d
4
A
C
d1 B
D
X1
由图可知,满足域为线段 AB A(25,15),B(30,10)故该问题的解可
表示为 a1(25,15) a2 (30,10) (25a1 30a2 ,15a1 10a2 ) (a1,a2 0, a1 a2 1)
(1)单纯形法
0
0
P1
(2)
(a1, a2 0, a1 a2 1)
0
0 P2
0
0 P3
P1 P4
1.5P
P1
4
CB XB x1
x2
b
0
1
1
-1
1
0
0
0
0
0
0
40
1
1
0
0
-1
1
0
0
0
0
100
1
0
0
0
0
0
-1
1
0
0
30
0
1
0
0
0
0
0
0
-1
1
15
P1 0 0 0 0 0 0 1 0 1 0
P2 0 0 1 0 0 0 0 0 0 0
0
0
P2
P3
P3
CB
XB
x1
x2
b
P3
6
2
0
0
0
0
-1
1
24
P2
2
1
0
0
-1
1
0
0
5
0
5
0
-1

《运筹学》 第四章习题及 答案

《运筹学》 第四章习题及 答案

《运筹学》第四章习题一、思考题1.运输问题的数学模型具有什么特征?为什么其约束方程的系数矩阵的秩最多等于1-+n m ?2. 用左上角法确定运输问题的初始基本可行解的基本步骤是什么?3. 最小元素法的基本思想是什么?为什么在一般情况下不可能用它直接得到 运输问题的最优方案?4. 沃格尔法(V ogel 法)的基本思想是什么?它和最小元素法相比给出的运输问题的初始基本可行解哪一个更接近于最优解?为什么?5. 试述用闭回路法检验给定的调运方案是否最优的原理,其检验数的经济意义是什么?6. 用闭回路法检验给定的调运方案时,如何从任意空格出发去寻找一条闭回路?这闭回路是否是唯一的?7. 试述用位势法求检验数的原理、步骤和方法。

8. 试给出运输问题的对偶问题(对产销平衡问题)。

9. 如何把一个产销不平衡的运输问题(产大于销或销大于产)转化为产销平衡的运输问题。

10.一般线性规划问题应具备什么特征才可以转化为运输问题的数学模型? 11.试述在表上作业法中出现退化解的涵义及处理退化解的方法。

二、判断下列说法是否正确1.运输问题模型是一种特殊的线性规划模型,所以运输问题也可以用单纯形方法求解。

2.因为运输问题是一种特殊的线性规划模型,因而求其解也可能出现下列四种情况:有唯一最优解;有无穷多个最优解;无界解;无可行解。

3.在运输问题中,只要给出一组(1-+n m )个非零的{}j i x ,且满足∑==nj i j i a x 1,∑==mi j j i b x 1,就可以作为一个基本可行解。

4.表上作业法实质上就是求解运输问题的单纯形法。

5.按最小元素法或元素差额法给出的初始基本可行解,从每一空格出发都可以找到一闭回路,且此闭回路是唯一的。

6.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案将不会发生变化。

7.如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k ,最优调运方案将不会发生变化。

运筹学基础(第2版)何坚勇 第四章习题答案

运筹学基础(第2版)何坚勇  第四章习题答案

表4.7.1
10 CB 4 XB x2 b¯ 3/2 x1 0 5 x2 1 0 x3 0 x4
[5/14] -3/14
12
x1 -Z
1 -35/2
1 0
0 0
-1/7 2/7
2/7 -18/7
表4.7.2
第四章习题
4.2
• 已知线性规划问题 max z=3x1+2x2 s.t -x1+2x2 4 min f=4w1+14w2 +3w2 s.t -w1+3w2 +3w2 3 2w1+2w2 -w2 2 w1,w2 ,w2 0
3x1 +2x2 14
x 1- x 2 3
x1,x2 0
(2)
• 如果愿问题与对偶问题都有可行解,则 二者都有最优解。 • 由原题可见,下列解是原问题与对偶问 题的可行解。 • X(0)=(0,0)T • W(0)=(0,1,0)T
4.3
min z=2x1-x2 +2x3 s.t -x1+x2 +x3 = 4 -x1+x2 -Kx3 6
X1 0,X2 0, X3无约束
5 2 0
=( C'1 ,5,0,0)-[C'1 ,5,(25-2 C'1 )/14 , (4 C'1 - 25)/14 ]
矩阵乘法的性质
• (AB)C=A(BC)
• (A+B)C=AC+BC
• C(A+B)=CA+CB
• K(AB)=(KA)B=A(KB)
(2)约束右端项b1
• 约束右端项b1,b2当一个不变时,另一个在什 么范围变化时,原问题的最优解保持不变。

《管理运筹学》第四版第4章线性规划在工商管理中的应用课后习题解析

《管理运筹学》第四版第4章线性规划在工商管理中的应用课后习题解析

《管理运筹学》第四版课后习题解析第4章线性规划在工商管理中的应用1.解:为了用最少的原材料得到10台锅炉,需要混合使用14种下料方案。

设14种方案下料时得到的原材料根数分别为x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,如表4-1所示。

表4-1 各种下料方式1234567891011121314s.t. 2x1+x2+x3+x4≥80x2+3x5+2x6+2x7+x8+x9+x10≥350x3+x6+2x8+x9+3x11+2x12+x13≥420x4+x7+x9+2x10+x12+2x13+3x14≥10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥0通过管理运筹学软件,我们可以求得此问题的解为:x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0,x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333最优值为300。

2.解:(1)将上午11时至下午10时分成11个班次,设x i表示第i班次新上岗的临时工人数,建立如下模型。

min f=16(x1+x 2+x3+x4+x5+x6+x7+x8+x9+x10+x11)s.t.x1+1≥9x1+x2+1≥9x1+x2+x3+2≥9x1+x2+x3+x4+2≥3x2+x3+x4+x5+1≥3x3+x4+x5+x6+2≥3x4+x5+x6+x7+1≥6x5+x6+x7+x8+2≥12x6+x7+x8+x9+2≥12x7+x8+x9+x10+1≥7x8+x9+x10+x11+1≥7x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥0通过管理运筹学软件,我们可以求得此问题的解如下:x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0,x10=0,x11=0,最优值为320。

运筹学课后习题答案

运筹学课后习题答案

s1 = 2, s2 = 0
5 、解: 标准形式: min f = 11x1 + 8x2 + 0s1 + 0s2 + 0s3
10x1 + 2x2 − s1 = 20 3x1 + 3x2 − s2 = 18 4x1 + 9x2 − s3 = 36 x1, x2 , s1, s2 , s3 ≥ 0
s1 = 0, s2 = 0, s3 = 13 6 、解:
3 车间每增加 1 工时,总利润增加 200 元 2、4 车间每增加 1 工时,总利润不增加。 d 3 车间,因为增加的利润最大 e 在 400 到正无穷的范围内变化,最优产品的组合不变
f 不变 因为在 [0,500]的范围内
g 所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条
件 1 的右边值在 [200,440]变化,对偶价格仍为 50(同理解释其他约束条件)
2、解:从上午 11 时到下午 10 时分成 11 个班次,设 xi 表示第 i 班次安排的临时 工的人数,则可列出下面的数学模型: min f=16(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11) s.t. x1+1 ≥ 9 x1+x2+1 ≥ 9 x1+x2+x3+2 ≥ 9 x1+x2+x3+x4+2 ≥ 3
x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0, x10=0,x11=0 最优值为 320。
a、 在满足对职工需求的条件下,在 10 时安排 8 个临时工,12 时新安排 1 个临时工,13 时新安排 1 个临时工,15 时新安排 4 个临时工,17 时新 安排 6 个临时工可使临时工的总成本最小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

page 20 26 November 2019
School of Management
运筹学教程
第四章习题解答
产品 需求 阶段
1 2 3
表4-16
1
2
500
750
680
800
800
950
3
900 800 1000
page 21 26 November 2019
School of Management
,
di

0, i
1,2,3,4
解:x1

70, x2

20,
d
4

25
满足P1、P2 , 不满足P3
page 6 26 November 2019
School of Management
运筹学教程
第四章习题解答
4.4 对于目标规划问题
min
P1d1 ,
P2
d
4
,
P3
(5d
2
第四章习题解答
min
P1d1 ,
P2
d
2
,
P3
(5d
3

3d
4
)
,
P4
d1
)
(2)
st.
x1 x2 d1 d1 80
x1
d
2

d
2
90
x2

d
3

d
3

70

d1

d
4

d
4

45

x1
,
x2
,
d
i
第一,A产品至少投资300万元;
第二,为分散投资风险,任何一种新产品的开发 投资不超过开发基金总额的35%;
第三,应至少留有10%的开发基金,以备急用;
第四,使总的投资利润最大。
试建立投资分配方案的目标规划模型。
page 11 26 November 2019
School of Management
第三,使每日购买食品的费用最少。 要求建立问题的目标规划模型。
page 13 26 November 2019
School of Management
运筹学教程
第四章习题解答
表4-15
项目
牛奶
牛肉
鸡蛋
(500g) (500g) (500g)
维生素A(mg) 1
1
10
维生素B(mg) 100
10
10
page 12 26 November 2019
School of Management
运筹学教程
第四章习题解答
4.7 已知单位牛奶、牛肉、鸡蛋中的维生素及胆 固醇含量等有关数据见表4-15。如果只考虑这三种食 物,并且设立了下列三个目标:
第一,满足三种维生素的每日最小需要量;
第二,使每日摄人的胆固醇最少;

3d3
),
P4
(3d
2
5d3 )
st.
x1 x2 d1 d1 80
x1
d
2

d
2

70
x2 d3 d3 45

d1

d
4

d
4
10
x1,
x2
,
d
i
,
di

0, i
1,2,3,4
page 7 26 November 2019
乙两条生产线,甲生产线每h生产2台,乙生产线每h 生产1.5台。甲、乙两条生产线每周正常工作时间都 是40h。据估计,每台彩色电视机的利润是100元。 公司经理有下列目标和优先权结构。
Pl :每周生产180台彩色电视机。 P2 :限制甲生产线的加班时间为lOh。 P3 :保证甲、乙生产线的正常生产,避免停工 (根据两条生产线的生产率不同给予不同的权)。
运筹学教程
第四章习题解答
解:目标规划模型如下:
min
P1d1
,
P2
(d
2

d
3

d
4
),
P3d
5
,
P4
d
6
x1 x2 x3 1000

x1
d1
d1
300,

x2

d
3

d
3

350,
x1

d
2

d
2
350
x3

P4
d
4
,
则满意解有什么变化?
解:x1

70, x2

45,
d
4

25, d1

35
满足P1、P2、P3 , 不满足P4
page 8 26 November 2019
School of Management
运筹学教程
第四章习题解答
4.5 某成品酒有三种商标(红、黄、蓝),都是由三
种原料酒(等级Ⅰ,Ⅱ,Ⅲ)兑制而成。三种等级的原料 酒的日供应量和成本见表4-13,三种商标的成品酒的 兑制要求和售价见表4-14。决策者规定:首先必须严
P4 :甲、乙两生产线的加班时间之和加以限制 (根据加班的相对费用给予权,假定两队的代价是一 样的。
page 16 26 November 2019
School of Management
运筹学教程
第四章习题解答
要求: (1)请建立问题的目标规划模型。
page 17 26 November 2019
d1

225, d3

50,
d
5

375,
d
7

250
满足所有目标
page 10 26 November 2019
School of Management
运筹学教程
第四章习题解答
4.6 公司决定使用1 000万元新产品开发基金开 发A,B,C三种新产品。经预测估计,开发A,B,C三 种新产品的投资利润率分别为5%,7%,10%。由于 新产品开发有一定风险,公司研究后确定了下列优先 顺序目标:
运筹学教程(第二版) 习题解答
运筹学教程
第四章习题解答
4.1 若用以下表达式作为目标规划的目标函数, 其逻辑是否正确?为什么?
(1) max d d
(2) max d d
不正确
不正确
(3) min d d
正确
(4) min d d
P1d1 , P2 (2d3

d
2
),
P3d1
)
(1)
st.
2 x1 x1
x2
x2
d1
d
2
d3
d1

d
2
d3
150 40 40

x1
,
x2
,
d
i
,
d
i

0, i
1,2,3
解:x1

55, x2

40,
d
2
page 19 26 November 2019
School of Management
运筹学教程
第四章习题解答
4.9 金源公司生产三种产品,其整个计划期分 为三个阶段。现需编制生产计划,确定各个阶段各种 产品的生产数量。
计划受市场需求、设备台时、财务资金、稀有材 料供应、生产费用等方面条件的约束,有关数据见表 4-16和表4-17所示。假设计划期初及期末各种产品的库 存量皆为零。
格按规定比例兑制各商标的酒;其次是获利最大;再 次是红商标的酒每天至少生产2 000kg。试列出该问题 的数学模型。
表4-13
等级
日供应量(kg) 成本(元/kg)

1500
6

2000
4.5

1000
3
page 9 26 November 2019
School of Management
运筹学教程
运筹学教程
第四章习题解答
表4-17
每台产品资源
项目
产品
消耗(占用)量
每阶段资源 消耗(占用)限额
1
2
3
设备工作台时(h)
2.0 1.0 3.1
5000
流动资金占用量(元) 40 20 55
93000
稀有材料消耗量(k8) 0.8 0.6 1.2
2100
每阶段产品库存费用(元) 1.0 0.5 1.5
d
4

d
4

350
1000 (x1

x2

x3
)

d
5

d
5
100
0.05x1
0.07x2
0.1x3

d
6

d
6
100
解答如下:
x1 300, x2 250, x3 350
d
2

50,
d
3

100,
d
6
325,总利润67.5
-
d
5

0;
解答如下:
x1 0.2870,x 2 0.06481,x3 0.06481
相关文档
最新文档