2.1比0小得数(1)

合集下载

高中数学第二章2.1等式性质与不等式性质教师用书新人教A版必修第一册

高中数学第二章2.1等式性质与不等式性质教师用书新人教A版必修第一册

2.1 等式性质与不等式性质考点学习目标核心素养不等关系的表示会用不等式(组)表示实际问题中的不等关系数学建模数(式)大小比较会运用作差法比较两个数或式的大小逻辑推理不等式的性质掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题逻辑推理问题导学预习教材P37-P42,并思考以下问题:1.如何比较两个实数的大小?2.等式的基本性质有哪些?3.不等式的基本性质有哪些?1.比较实数a,b的大小(1)文字叙述如果a-b是正数,那么a>b;如果a-b等于0,那么a=b;如果a-b是负数,那么a<b,反过来也对.(2)符号表示a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.■名师点拨符号“⇔”叫做等价号,读作“等价于”,“p⇔q”的含义是:p可以推出q,q也可以推出p,即p与q可以互推.2.常用的不等式的基本性质性质1 a>b⇔b<a;性质2 a>b,b>c⇒a>c;性质3 如果a>b,那么a+c>b+c;性质4 如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc;性质5 如果a>b,c>d,那么a+c>b+d;性质6 如果a>b>0,c>d>0,那么ac>bd;性质7 如果a>b>0,那么a n>b n(n∈N,n≥2).■名师点拨对不等式性质的五点说明(1)性质1和性质2,分别称为“对称性”与“传递性”,在它们的证明中,要用到比较大小的“定义”等知识.(2)性质3(即可加性)的依据是移项法则“不等式中任何一项的符号变成相反的符号后,可以把它从一边移到另一边”.(3)性质4(即可乘性)在使用中要特别注意研究“乘数的符号”.(4)性质5(即同向可加性),即“同向不等式只能相加,不等号方向不变,不能相减”.(5)性质6和性质7(即同向同正可乘性,可乘方性),即均为正数的同向不等式相乘,得同向不等式,并无相除式.判断正误(正确的打“√”,错误的打“×”)(1)实数a不大于-2,用不等式表示为a≥-2.( )(2)不等式x≥2的含义是指x不小于2.( )(3)若a<b或a=b之中有一个正确,则a≤b正确.( )(4)若a+c>b+d,则a>b,c>d.( )答案:(1)×(2)√(3)√(4)×某工厂在招标会上,购得甲材料x吨,乙材料y吨,若维持工厂正常生产,甲、乙两种材料总量至少需要120吨,则x,y应满足的不等关系是( )A.x+y>120 B.x+y<120C.x+y≥120 D.x+y≤120答案:C已知a>b,c>d,且c,d均不为0,那么下列不等式一定成立的是( ) A.ad>bc B.ac>bdC.a-c>b-d D.a+c>b+d解析:选D.令a=2,b=-2,c=3,d=-6,可排除A,B,C.由不等式的性质5知,D 一定成立.若x<1,M=x2+x,N=4x-2,则M与N的大小关系为________.解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2),又因为x<1,所以x-1<0,x-2<0,所以(x-1)(x-2)>0,所以M>N.答案:M>N用不等式(组)表示不等关系(1)某车工计划在15天里加工零件408个,最初三天中,每天加工24个,则以后平均每天至少需加工多少个,才能在规定的时间内超额完成任务?设以后平均每天至少需要加工x 个,求解此问题需要构建的不等关系式为________.(2)用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于110 m 2,靠墙的一边长为x m .试用不等式表示其中的不等关系.【解】 (1)因为该车工3天后平均每天需加工x 个零件,加工(15-3)天共加工12x 个零件,15天里共加工(3×24+12x )个零件,则3×24+12x >408.故填72+12x >408.(2)由于矩形菜园靠墙的一边长为x m ,而墙长为18 m ,所以0<x ≤18,这时菜园的另一条边长为30-x 2=⎝⎛⎭⎪⎫15-x 2(m).因此菜园面积S =x ⎝ ⎛⎭⎪⎫15-x 2,依题意有S ≥110,即x ⎝ ⎛⎭⎪⎫15-x 2≥110,故该题中的不等关系可用不等式表示为 ⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥110.1.本例(2)中,若矩形的长、宽都不能超过11 m ,对面积没有要求,则x 应满足的不等关系是什么?解:因为矩形的另一边15-x2≤11,所以x ≥8,又0<x ≤18,且x ≤11,所以8≤x ≤11.2.本例(2)中,若要求x ∈N ,则x 可以取哪些值?解:函数S =x ⎝ ⎛⎭⎪⎫15-x 2的对称轴方程为x =15,令S ≥110,x ∈N ,经检验当x =13,14,15,16,17时S ≥110.利用不等式表示不等关系时的注意点(1)必须是具有相同性质,可以比较大小的两个量才可用不等式来表示,没有可比性的两个量之间不能用不等式来表示.(2)在用不等式表示实际问题时,一定要注意单位统一.1.某厂技术科组织工人参加某项技能测试,某职工参加完测试后对自己的成绩进行了如下估计:理论考试成绩x 超过85分,技能操作成绩y 不低于90分,答辩面试成绩z 高于95分,用不等式组表示为( )A.⎩⎪⎨⎪⎧x >85y ≥90z ≥95 B.⎩⎪⎨⎪⎧x ≥85y >90z >95 C.⎩⎪⎨⎪⎧x >85y ≥90z >95D.⎩⎪⎨⎪⎧x ≥85y >90z ≥95解析:选C.x 超过85分表示为x >85,y 不低于90分表示为y ≥90,z 高于95分,表示为z >95,故选C.2.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________.解析:由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 答案:4.5t <28 000数(式)大小的比较(1)比较3x 3与3x 2-x +1的大小.(2)已知a ≥1,试比较M =a +1-a 和N =a -a -1的大小. 【解】 (1)3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1) =3x 2(x -1)+(x -1)=(3x 2+1)(x -1).当x ≤1时,有x -1≤0,而3x 2+1>0.所以(3x 2+1)(x -1)≤0,所以3x 3≤3x 2-x +1. 当x >1时,(3x 2+1)(x -1)>0, 所以3x 3>3x 2-x +1. (2)因为a ≥1,所以M =a +1-a >0,N =a -a -1>0. 所以MN=a +1-a a -a -1=a +a -1a +1+a.因为a +1+a >a +a -1>0, 所以M N<1,所以M <N .利用作差法比较大小的四个步骤(1)作差:对要比较大小的两个式子作差.(2)变形:对差式通过通分、因式分解、配方等手段进行变形.(3)判断符号:对变形后的结果结合题设条件判断出差的符号. (4)作出结论.[注意] 上述步骤可概括为“三步一结论”,这里的“判断符号”是目的,“变形”是关键.其中变形的技巧较多,常见的有因式分解法、配方法、有理化法等.1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A.因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy -1,故选A.2.已知x >y >0,试比较x 3-2y 3与xy 2-2x 2y 的大小.解:由题意,知(x 3-2y 3)-(xy 2-2x 2y )=x 3-xy 2+2x 2y -2y 3=x (x 2-y 2)+2y (x 2-y 2)=(x 2-y 2)(x +2y )=(x -y )(x +y )(x +2y ),因为x >y >0,所以x -y >0,x +y >0,x +2y >0, 所以(x 3-2y 3)-(xy 2-2x 2y )>0,即x 3-2y 3>xy 2-2x 2y . 3.比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.解因为5x 2+y 2+z 2-(2xy +4x +2z -2)=4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,所以5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =12且z =1时取到等号.不等式的基本性质(1)对于实数a ,b ,c ,有下列说法: ①若a >b ,则ac <bc ; ②若ac 2>bc 2,则a >b ; ③若a <b <0,则a 2>ab >b 2; 其中正确的是________(填序号). (2)若c >a >b >0,求证:ac -a >bc -b.【解】 (1)①中,c 的正、负或是否为0未知,因而判断ac 与bc 的大小缺乏依据,故①不正确.②中,由ac 2>bc 2,知c ≠0,故c 2>0,所以a >b 成立,故②正确.③中,⎩⎪⎨⎪⎧a <b ,a <0⇒a 2>ab ,⎩⎪⎨⎪⎧a <b ,b <0⇒ab >b 2,所以a 2>ab >b 2,故③正确.故填②③.(2)证明:因为a >b >0⇒-a <-b ⇒c -a <c -b . 因为c >a ,所以c -a >0,所以0<c -a <c -b . 上式两边同乘1(c -a )(c -b ),得1c -a >1c -b >0.又因为a >b >0,所以ac -a >bc -b.利用不等式的性质证明不等式的方法(1)简单不等式的证明可直接由已知条件,利用不等式的性质,通过对不等式变形得证. (2)对于不等号两边式子都比较复杂的情况,直接利用不等式的性质不易得证,可考虑将不等式的两边作差,然后进行变形,根据条件确定每一个因式(式子)的符号,利用符号法则判断最终的符号,完成证明.1.给出下列命题: ①a >b ⇒a 2>b 2; ②a 2>b 2⇒a >b ;③a >b ⇒b a<1;④a >b ⇒1a <1b.其中正确的命题个数是( ) A .0 B .1 C .2D .3解析:选A.由性质7可知,只有当a >b >0时,a 2>b 2才成立,故①②都错误; 对于③,只有当a >0且a >b 时,b a<1才成立,故③错误; 当a >0,b <0时,1a >1b,故④错误.2.已知a >b >0,求证:a b >b a. 证明:因为a >b >0,所以a >b >0.①又因为a >b >0,两边同乘正数1ab,得1b >1a>0.② ①②两式相乘,得a b >b a.利用不等式性质求代数式的取值范围已知-1<x <4,2<y <3.(1)求x -y 的取值范围; (2)求3x +2y 的取值范围.【解】 (1)因为-1<x <4,2<y <3,所以-3<-y <-2,所以-4<x -y <2. (2)由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,所以1<3x +2y <18.1.若将本例条件改为-1<x <y <3,求x -y 的取值范围. 解:因为-1<x <3,-1<y <3, 所以-3<-y <1,所以-4<x -y <4. 又因为x <y ,所以x -y <0,所以-4<x -y <0.2.若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围. 解:设3x +2y =m (x +y )+n (x -y ), 则⎩⎪⎨⎪⎧m +n =3,m -n =2,所以⎩⎪⎨⎪⎧m =52,n =12. 即3x +2y =52(x +y )+12(x -y ),又因为-1<x +y <4,2<x -y <3, 所以-52<52(x +y )<10,1<12(x -y )<32,所以-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232.利用不等式的性质求取值范围的策略(1)建立待求范围的整体与已知范围的整体的关系,最后利用一次不等式的性质进行运算,求得待求的范围.(2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.[注意] 求解这种不等式问题要特别注意不能简单地分别求出单个变量的范围,再去求其他不等式的范围.1.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A.由-1<α<1,-1<β<1, 得-1<-β<1, 所以-2<α-β<2.又因为α<β,故-2<α-β<0.2.已知12<a <60,15<b <36,求a -b 与ab的取值范围. 解:因为15<b <36,所以-36<-b <-15, 所以12-36<a -b <60-15,即-24<a -b <45. 因为136<1b <115,所以1236<a b <6015,所以13<a b<4.1.已知b <2a ,3d <c ,则下列不等式一定成立的是( ) A .2a -c >b -3d B .2ac >3bd C .2a +c >b +3dD .2a +3d >b +c解析:选C.由于b <2a ,3d <c ,则由不等式的性质得b +3d <2a +c ,故选C. 2.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B.因为0<a 1<1,0<a 2<1,所以-1<a 1-1<0,-1<a 2-1<0,所以M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,所以M >N ,故选B.3.已知a ,b 为实数,且a ≠b ,a <0,则a ________2b -b 2a .(填“>”“<”或“=”)解析:因为a ≠b ,a <0,所以a -⎝⎛⎭⎪⎫2b -b 2a =(a -b )2a <0,所以a <2b -b 2a . 答案:<4.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解:因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .[A 基础达标]1.高速公路对行驶的各种车辆的最大限速为120 km/h ,行驶过程中,同一车道上的车间距d 不得小于10 m ,用不等式表示为( )A .v ≤120 km/h 或d ≥10 mB .⎩⎪⎨⎪⎧v ≤120 km/h d ≥10 m C .v ≤120 km/h D .d ≥10 m解析:选B.依据题意直接将条件中的不等关系转化为不等式,即为v ≤120 km/h ,d ≥10 m.2.下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若1a >1b,则a <bC .若b >c ,则|a |b ≥|a |cD .若a >b ,c >d ,则a -c >b -d解析:选C.A 项:a ,b ,c ,d 的符号不确定,故无法判断;B 项:不知道ab 的符号,无法确定a ,b 的大小;C 项:|a |≥0,所以|a |b ≥|a |c 成立;D 项:同向不等式不能相减.3.若y 1=3x 2-x +1,y 2=2x 2+x -1,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1=y 2C .y 1>y 2D .随x 值变化而变化解析:选C.y 1-y 2=(3x 2-x +1)-(2x 2+x -1) =x 2-2x +2=(x -1)2+1>0, 所以y 1>y 2.故选C.4.已知a >b >0,则下列不等式一定成立的是( ) A .a +1b >b +1aB .a +1a ≥b +1bC .b a >b +1a +1D .b -1b>a -1a解析:选A.因为a >b >0,所以1b >1a>0,所以a +1b >b +1a,故选A.5.设a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>c |b |解析:选C.因为a >b >c ,且a +b +c =0, 所以a >0,c <0,b 可正、可负、可为零.由b >c ,a >0知,ab >ac . 故选C.6.给出四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推得1a <1b成立的是________.解析:1a <1b ⇔b -a ab<0,所以①②④能使它成立.答案:①②④7.一辆汽车原来每天行驶x km ,如果这辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过 2 200 km ,写成不等式为________;如果它每天行驶的路程比原来少12 km ,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为________.解析:①原来每天行驶x km ,现在每天行驶(x +19)km.则不等关系“在8天内的行程超过2 200 km ”,写成不等式为8(x +19)>2 200. ②若每天行驶(x -12)km ,则不等关系“原来行驶8天的路程现在花9天多时间”, 写成不等式为8x >9(x -12). 答案:8(x +19)>2 200 8x >9(x -12)8.已知三个不等式①ab >0;②c a >db;③bc >ad .若以其中的两个作为条件,余下的一个作为结论,则可以组成________个正确命题.解析:①②⇒③,③①⇒②.(证明略) 由②得bc -adab>0,又由③得bc -ad >0.所以ab >0⇒①.所以可以组成3个正确命题. 答案:39.已知a ,b ∈R ,a +b >0,试比较a 3+b 3与ab 2+a 2b 的大小. 解:因为a +b >0,(a -b )2≥0,所以a 3+b 3-ab 2-a 2b =a 3-a 2b +b 3-ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )(a -b )(a +b )=(a -b )2(a +b )≥0,所以a 3+b 3≥ab 2+a 2b .10.已知-2<a ≤3,1≤b <2,试求下列代数式的取值范围. (1)|a |;(2)a +b ;(3)a -b ;(4)2a -3b . 解:(1)|a |∈[0,3]. (2)-1<a +b <5.(3)依题意得-2<a ≤3,-2<-b ≤-1, 相加得-4<a -b ≤2;(4)由-2<a ≤3得-4<2a ≤6,①由1≤b <2得-6<-3b ≤-3,②由①+②得,-10<2a -3b ≤3.[B 能力提升]11.(2019·河南省实验中学月考)若1a <1b<0,则下列结论中不正确的是( ) A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b | 解析:选D.因为1a <1b<0,所以b <a <0,所以b 2>a 2,ab <b 2,a +b <0,所以A ,B ,C 均正确,因为b <a <0,所以|a |+|b |=|a +b |,故D 错误,故选D.12.若α、β满足-π2<α<β<π2,则2α-β的取值范围是( ) A .-π<2α-β<0B .-π<2α-β<πC .-3π2<2α-β<π2D .0<2α-β<π解析:选C.由-π2<α<β<π2,得-π<α-β<0,又-π2<α<π2,所以-32π<α+(α-β)<π2,即-32π<2α-β<π2.13.已知0<a <b 且a +b =1,试比较:(1)a 2+b 2与b 的大小;(2)2ab 与12的大小. 解:(1)因为0<a <b 且a +b =1,所以0<a <12<b , 则a 2+b 2-b =a 2+b (b -1)=a 2-ab =a (a -b )<0,所以a 2+b 2<b .(2)因为2ab -12=2a (1-a )-12=-2a 2+2a -12=-2⎝⎛⎭⎪⎫a 2-a +14=-2⎝ ⎛⎭⎪⎫a -122<0, 所以2ab <12. 14.若bc -ad ≥0,bd >0,求证:a +b b ≤c +d d. 证明:⎩⎪⎨⎪⎧bc -ad ≥0⇒bc ≥ad bd >0⇒1bd >0⇒c d ≥a b ⇒c d +1≥a b +1⇒c +d d ≥a +b b ⇒a +b b ≤c +d d . [C 拓展探究]15.某种商品计划提价,现有四种方案:方案(Ⅰ)先提价m %,再提价n %;方案(Ⅱ)先提价n %,再提价m %;方案(Ⅲ)分两次提价,每次提价⎝ ⎛⎭⎪⎫m +n 2%;方案(Ⅳ)一次性提价(m +n )%.已知m >n >0,那么四种提价方案中,提价最多的是哪种方案?解:依题意,设单价为1,那么方案(Ⅰ)提价后的价格是1×(1+m %)(1+n %)=1+(m +n )%+m %·n %;方案(Ⅱ)提价后的价格是1×(1+n %)(1+m %)=1+(m +n )%+m %·n %;方案(Ⅲ)提价后的价格是⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫m +n 2%2=1+(m +n )%+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m +n 2%2; 方案(Ⅳ)提价后的价格是1+(m +n )%.所以只要比较m %·n %与⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m +n 2%2的大小即可. 因为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m +n 2%2-m %·n %=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m -n 2%2≥0, 所以⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m +n 2%2≥m %·n %. 又因为m >n >0,所以⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m +n 2%2>m %·n %. 即⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫m +n 2%2>(1+m %)·(1+n %), 因此,方案(Ⅲ)提价最多.。

(常考题)新人教版小学数学三年级下册第七单元《小数的初步认识》 单元检测题(包含答案解析)(1)

(常考题)新人教版小学数学三年级下册第七单元《小数的初步认识》 单元检测题(包含答案解析)(1)

(常考题)新人教版小学数学三年级下册第七单元《小数的初步认识》单元检测题(包含答案解析)(1)一、选择题1.姐姐买辅导书花了14.5元,买练习本花了1.4元,姐姐一共花了()。

A. 15.9元B. 14.9元C. 15.09元2.一个游泳圈10.5元,买两个游泳圈需要()元。

A. 21B. 20.10C. 20.53.三年级4名学生100米跑的成绩如表:姓名赵军钱进孙兵李冬成绩/秒19.118.919.818.6A. 赵军B. 钱进C. 孙兵D. 李冬4.在100米短跑比赛中,小芳用了18.7秒,小英用了19.1秒,()跑得快。

A. 小英B. 小芳C. 无法判断5.5.6>□.5,方框里可以填()个数。

A. 4B. 5C. 66.在100米赛跑中,小明成绩是11.2秒,晓东成绩是10.9秒,他们的成绩()。

A. 小明好B. 晓东好C. 无法比较7.百米赛跑,小明跑了15.3秒,小智跑了15.8秒,小慧跑了16.1秒,()最快.A. 小明B. 小智C. 小慧8.5-2.7=( )A. 4.3B. 1.3C. 2.3D. 3.3 9.23.5+79.8+16.5=( )A. 103.3B. 30C. 40.4D. 119.8 10.张工程师买了两本科技书,一本书的价格是28.5元,另一本的书价是14.4元.他付给营业员50元,应找回()A. 42.9元B. 21.5元C. 7.1元D. 8.1元11.4-0.4=()A. 0.6B. 2C. 2.9D. 3.6 12.2.8-0.8=()A. 0.6B. 2C. 2.9D. 3.6二、填空题13.星期天,妈妈用3.2元买了一包饼干,用4.5元买了一袋薯片,妈妈一共花了________元,薯片比饼干贵________元。

14.下面是淘气家1、2月份的水费和电费支出情况,把表格填完整。

1月2月合计水费/元41.830.5________电费/元________95.1180.3合计/元________________________15.比较大小。

人教版小学五年级上册数学全册一课一练汇编

人教版小学五年级上册数学全册一课一练汇编

人教版小学五年级上册数学全册一课一练汇编人教版小学五年级上册数学一课一练全册汇编目录1.1 小数乘整数1.2 小数乘小数(一)1.3 小数乘小数(二)1.4 积的近似数1.5 连乘乘加乘减1.6 整数乘法运算定律推广到小数2.1 小数除以整数(一)2.2 小数除以整数(二)2.3 一个数除以小数(一)2.4 一个数除以小数(二)2.5 商的近似数2.6 循环小数2.7 解决问题(一)2.8 解决问题(二)4.1 用字母表示数(一)4.2 用字母表示数(二)4.3 方程的意义4.4 解方程4.5 列方程解应用题4.6 稍复杂的方程(一)4.7 稍复杂的方程(二)4.8 稍复杂的方程(三)5.1 平行四边形的面积5.2 三角形的面积5.3 梯形的面积5.4 组合图形的面积6.1 统计与可能性6.2 中位数及平均数7 数学广角1.小数乘整数年班姓名一、认真思考填一填。

12.5+2.5+2.5=( )×( )。

4.8×4=( )+( )+( )+( )。

20.57×6的积是( )位小数。

3.把15.6的小数点去掉后,原来的数就扩大到它的( )倍。

40.52扩大( )倍是52。

86缩小为原来的( )是0.086。

5.2.45×16可以转化成245×16,计算后把所得的积缩小到它的( )。

6.一本《成语接龙》14.8元,买2本应付( )元。

二、火眼金睛判一判。

(对的打“√”,错的打“×” )1. 一个因数扩大10倍,另一个因数不变,积也扩大10倍。

( )2. 7.35×4的积是一位小数。

( )3. 5.47×6可以转化成547×6,积的大小不变。

( )4. 4.8×3表示3个4.8的和是多少,也表示4.8的3倍是多少。

( )5.2.5×5与5×2.5的结果相同,读法也相同。

( )三、聚精会神算一算。

北师大版数学五年级上册《期中考试题》附答案

北师大版数学五年级上册《期中考试题》附答案

2023-2024学年五年级上学期期中数学试卷一、冷静思考,正确填空。

(每空1分,共23分。

)1. 用小数乘加、乘减解决分段收费问题。

某停车场规定,2小时以内(含2小时)收费5元,每增加1小时加收1元(不足1小时按1小时计算),爸爸停车4.5小时,4.5小时不够5小时,按()小时计算,前2小时收费()元,后面()小时,每小时加收()元,一共收费()元。

2. 3.25×()=325。

3. 计算8.24×0.6时,先计算824×6=(),再数出因数中共有()位小数,再点上小数点。

4. 一种茶叶每千克售价58.6元,买0.5千克要付()元。

5. 根据第一行的积,写出其他各行的积。

6. 小军和小红看了同一场电影,小军的座位是4排5号,用数对表示为(5,4)。

小红的座位用数对表示为(7,6),那么小红的座位是()排()号。

7. 用简便形式写出下面的循环小数,再写出近似值(保留三位小数)2.666…=______≈_____5.207207…=______≈_____0.0103103…=_____≈_____。

8. 做一条短裙需要0.4米的布,一段5米长的布可以做_____条短裙。

9. 小娟在计算一道数学题目时,将除数2.81中的小数点看丢了,结果是11.52,那么正确的计算结果应该是______。

10. 3÷111的商用循环小数表示是_____,保留两位小数是_______。

二、考考你的判断力。

(对的在括号里打“√”,错的打“×”,5分。

)11. 整数加法的运算律对分数加法同样适用。

()12. 一个数乘小数,积一定大于这个数.()13. 两个因数的积保留两位小数约是6.37,它的准确值可能是6.365。

()14. 2.1595959是循环小数。

()。

15. 27+29+71=27+100.()三、反复比较,慎重选择。

(每题1分,共6分。

)16. 4.2与2.4的和乘它们的差,积是()。

(完整版)苏教版七年级数学上册知识点(详细全面精华),推荐文档

(完整版)苏教版七年级数学上册知识点(详细全面精华),推荐文档

苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

苏州苏州大学实验学校小学数学三年级下册第七单元阶段练习(答案解析) (2)

苏州苏州大学实验学校小学数学三年级下册第七单元阶段练习(答案解析) (2)

一、选择题1.三年级4名学生100米跑的成绩如表:姓名赵军钱进孙兵李冬成绩/秒19.118.919.818.6获得第一名的同学是()A. 赵军B. 钱进C. 孙兵D. 李冬2.磨面机每小时磨面粉0.9吨,照这样计算,1.2小时磨面粉的量()0.9吨。

A. 等于B. 大于C. 小于D. 可能大于也可能小于3.50米赛跑中张辉用了8.2秒,高林用了8.4秒,范刚用了8.8秒,王涛用了8.6秒,他们中成绩最好的是()。

A. 张辉B. 高林C. 范刚D. 王涛4.在学校春季田径运动会中年级组男子50米跑决赛中,6名选手的成绩统计如下:姓名张帆李明刘军黄涛王朝周博成绩/秒8.28.88.98.18.68.4分别获得冠、亚、季军的3位选手依次是()。

A. 刘军、李明、王朝B. 黄涛、张帆、王朝C. 黄涛、张帆、周博5.在100米赛跑中,小明成绩是11.2秒,晓东成绩是10.9秒,他们的成绩()。

A. 小明好B. 晓东好C. 无法比较6.大于4.9而小于5.2的小数有()。

A. 0个B. 2个C. 无数个7.70-29.6-10.4=( )A. 103.3B. 30C. 40.4D. 119.8 8.9.2-6=()A. 8.4B. 4.8C. 3.2D. 0.85 9.2.8-0.8=()A. 0.6B. 2C. 2.9D. 3.6 10.一个游泳圈10.5元,买两个游泳圈需要()元。

A. 21B. 20.10C. 20.511.在100米短跑比赛中,小刚跑了16.5秒,小军跑了16.9秒,小明跑了15.6秒,小林跑了17.1秒,()跑得最快.A. 小刚B. 小军C. 小明D. 小林12.大于0.5而小于0.6的数有()A. 无数个B. 没有C. 1个D. 9个13.百米赛跑,小明跑了15.3秒,小智跑了15.8秒,小慧跑了16.1秒,()最快.A. 小明 B. 小智 C. 小慧14.大于5.3而小于5.5的一位小数有()个。

2023-2024学年河北省石家庄市裕华区冀教版五年级上册期中测试数学试卷(解析+原卷)

2023-2024学年河北省石家庄市裕华区冀教版五年级上册期中测试数学试卷(解析+原卷)

大,则实际的积不会超过估算的积。
【详解】通过分析可知,把 528.7 看作 530,把 24.8 看作 25,两个乘数都估大了,则它的积不会超过
530×25。
故答案为:C
8. 1.03×0.96=9.889,三个同学都判定这道题的计算结果是错误的,理由如下:
①阳阳:积应该比 0.96 大,比 1.03 小。
第一学期第二阶段质量评价 A(1-4 单元)
五年级数学
满分:100 分 时间:60 分钟 (冀教版)
一、计算小能手。(27 分)
1. 直接写得数。
23.1×0.1=
2.01×0.4=
6÷5=
1-0.2÷0.2=
5.4÷2.7=
9.5÷0.05=
0.25×8=
2.5×4×8=
【答案】2.31;0.804;1.2;0
循环小数的简便写法是找出循环节,在循环节的头尾点上循环点。
【详解】7.06×3.5=24.71
☆18.2÷0.65=28
验算:
5.71÷1.2≈4.76
36÷9.9=
3.
6
3
3. 计算下面各题。(能简算的要简算)
9.36×9÷1.8
21÷0.25÷0.4
6.87×5.8+68.7×0.42
【答案】46.8;210;68.7
【答案】A
【解析】
【分析】一个非 0 数乘小于 1 的数,积小于原数;一个非 0 数乘大于 1 的数,积大于原数。
一个非 0 数除以小于 1 的数,商大于被除数;一个非 0 数除以大于 1 的数,商小于被除数。
【详解】A.0.36<1,则 54÷0.36>54;
B.1.8>1,则 54÷1.8<54;

2022秋人教版数学五年级上册期中考试测试卷及部分答案(共六套)

2022秋人教版数学五年级上册期中考试测试卷及部分答案(共六套)

2022秋人教版数学五年级上册期中考试测试卷及答案(一)一、填空(每空1分,共25分)1、3.26×2.8的积是()位小数,5.24的1.02倍是()。

2、1.26868…是()小数,它的循环节是(),可以简写成()。

3、一个两位小数“四舍五入”后约是7.5,这个小数最大是(),最小是()。

4、一支钢笔的单价是7.8元,老师买了n只这样的钢笔,应付()元,50元最多可以买这样的钢笔()支。

5、在小数除法中,要把()化成整数再除。

6、根据2784÷32=87,可以推算出下列各题结果。

3.2×0.87=(),27.84÷3.2=()2784÷3200=()7、在○里填上“﹥”、“﹤”或“=”。

5.6×1.02○5.6 1.26÷0.98○1.26×0.985.6÷1.02○5.678.5×0.99○78.5×(1-0.01)8、抽奖箱中有5个黑球、2个红球和3个黄球,抽到()可能能性大,抽到()的可能性小。

9、小军坐在教室的第3列第4行,用数对(,)表示,明明坐在小军正后方的第一个位置上,明明的位置用数对表示是(,);那么,明明坐在第()列第()行。

10 、1.25小时=()分0.6分()秒二、判断(每题1分,共5分)1、a×1.25一定大于a×0.95 。

()2、求近似数的方法有“四舍五入”法、“进一法”和“去尾法”等。

()3、两个小数相乘积一定是小数。

()4、5.666…与0.060606都是循环小数。

()5、计算小数除法时,商的小数点和被除数的个位对齐。

()三、慎重选择(每题2分,共10分)1、6.8×101=6.8×100+6.8是运用了()A、乘法交换律B、乘法结合律C、乘法分配律D、加法结合律2、13.6÷2.6当商是5时,余数是()A、6B、0.6C、0.06D、0.0063、如果甲×1.1=乙÷1.1(甲、乙≠0)那么A、甲=乙B、甲﹥乙C、甲﹤乙D、无法确定4、盒子里有5个黑球,3个黄球,2个绿球,任意拿出6个,一定有一个()。

2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。

一年级最小的一位数是0

一年级最小的一位数是0

一年级最小的一位数是01、最小的一位数是0还是1?这个问题在很长一段时间存在争论。

先来看看《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”的叙述:“通常在自然数里,含有几个数位的数,叫做几位数。

例如“2”是含有一个数位的数,叫做一位数;“30”是含有两个数位的数,叫做两位数;“405”是含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。

再来听听专家的说明:在自然数的理论中,对“几位数”是这样定义的,“只用一个有效数字表示的数,叫做一位数;只用两个数字(其中左边第一个数字为有效数字)表示的数,叫做两位数……所以,在一个数中,数字的个数是几(其中最左边第一个数字为有效数字),这个数就叫几位数。

这里所谓的最大位数和最小位数通常是在非零自然数的范围内研究的。

所以有9个个位数,分别是:1,2,3,4,5,6,7,8,9。

0不是最小的一位数。

2、为什么0也是自然数?课标教材对“0也是自然数”的规定,颠覆了人们对自然数的传统认识。

于此,中央教科所教材编写组主编陈昌铸如是说:国际上对自然数的定义一直都有不同的说法,以法国为代表的多数国家都认为自然数从0开始,我国教材以前一直都是遵循前苏联的说法,认为0不是自然数。

2000年教-育-部主持召开教材改编会议时,已明确提出将0归为自然数。

这次改版也是与国际惯例接轨。

从教学实践层面来说,将“0”规定为“自然数”也有着积极的现实意义。

2.1 “0”作为自然数的“好处”。

众所周知,数学中的集合被分为有限集合和无限集合两类。

有限集合是含有有限个元素的集合,像某班学生的集合。

无限集合是含有的元素个数是非有限的集合,如分数的集合。

因为自然数具有“基数”的性质,因此用自然数来描述有限集合中元素的个数是很自然的。

但在有限集合中,有一个最主要也是最基本的集合,叫空集{},元素个数为0。

如果不把0作为自然数,那么空集的元素的个数就无法用自然数来表示了。

2024年重庆市中考真题数学试卷(A卷)含答案解析

2024年重庆市中考真题数学试卷(A卷)含答案解析

2024年重庆市中考真题(A卷)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2 -2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C.D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .3-B .3C . 6-D .64.如图,AB CD ∥,165∠=︒,则2∠的度数是( )A .105︒B .115︒C .125︒D .135︒【答案】B【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠=∠=︒,由邻补角性质得23180∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵AB CD ∥,∴3165∠=∠=︒,∵23180∠+∠=︒,∴2115∠=︒,故选:B .5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A .1:3B .1:4C .1:6D .1:9【答案】D【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D .6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A .20B .22C .24D .26【答案】B【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π-B .4π-C .324π-D .8π-根据题意可得2AC AD =∵矩形ABCD ,∴AD BC =在Rt ABC △中,AB =9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )AB C D 由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA =∴D H ∠=∠,10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3【答案】D【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题11.计算:011(3)(2π--+= .12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .【答案】9【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为 .由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 .【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF = .【答案】3【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF = .DG = .∵以AB 为直径的O 与AC ∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是 .把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为 .三、解答题19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【详解】(1)根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE.(不写作法,保留作图痕迹)(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且⊥.求证:四边形AECF是菱形.EF AC证明:∵四边形ABCD是矩形,.∴AB CD∠=∠.∴①,OCF OAE∵点O是AC的中点,∴②.∴CFO AEO≅△△(AAS).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【详解】(1)解:如图所示,即为所求;(2)证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)(3)解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈,2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,∴45BAE ∠=︒,∴cos 40cos AE AB BAE =∠=⨯∴tan 202tan CE BE EBC =∠=25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.∴()4,0A -,设直线AC 的解析式为y =代入()4,0A -,得04m =-解得1m =,∴直线AC 的解析式为y =()当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.∵EFD BAC ∠∠=,BAC ∠∴60EFD ∠=︒∵1EFD BAD ∠=∠+∠=∠∴160α∠=︒-,∵,AB AC EFD BAC =∠=∠∴=45ABC ∠︒,由轴对称知EAB ∠=∠试题31设BAD BAE β∠=∠=,∴90DAC GAF ∠=∠=︒∴GAE EAF GAF ∠=∠-∠∵GE GA =,。

10以内数的比较

10以内数的比较

10以内数的比较
在数学中,比较大小是一个非常基础且重要的概念。

对于10以内
的数,我们可以通过比较它们的大小来增进对数学关系的理解。

下面
让我们来详细探讨一下10以内数的比较。

首先,我们知道10以内的数共有10个,分别是0、1、2、3、4、5、6、7、8、9。

这些数字中最小的是0,最大的是9。

我们可以通过观察
这些数字的排列顺序来更好地理解它们的大小关系。

当我们比较两个不同的数时,可以使用大于(>)、小于(<)、等
于(=)这三个符号来表示它们之间的关系。

比如说,1小于3可以写
成1<3,2大于0可以写成2>0。

在比较大小时,有一些特殊的规律需要注意。

首先,任何一个数都
大于0,因为0是最小的数;所有的数都小于10,因为10是最大的数。

其次,在比较两个两位数时,我们可以将它们从高位开始逐位比较。

比如比较23和45大小,先比较十位数2和4,发现4大于2,所以45
大于23;如果十位数相同,再比较个位数即可。

另外,在比较小数时,我们可以将小数点对齐,然后从左往右逐位
比较。

比如0.3和0.25,先比较十分位,3大于2,所以0.3大于0.25。

总的来说,掌握10以内数的比较规律有助于我们更好地理解数学
关系,为之后的数学学习打下良好的基础。

希望通过本文的讨论,读
者们能够更加熟练地比较10以内数的大小,从而更好地应用于实际生
活和学习中。

苏教版五年级上数学计算练习题(每日必练) (1)

苏教版五年级上数学计算练习题(每日必练) (1)

计算练习一一、直接写得数1—0.01=0。

2×0.3=0。

32÷0。

4=0。

5-0。

05=2。

5+6.5=1÷0。

01=10÷0.5= 2.4×5=二、下列各题怎样算简便就怎样算13.6+(4。

28+6。

4)+5。

72 147。

3-28。

4-71。

6139。

46—(58.74+19。

46) 1.25×7×0。

88.6÷4.5+18。

4÷4。

5 12.4÷0。

25三、竖式计算。

0。

37×2.4= 1。

55÷3。

8≈ 56.5×0.24=(保留一位小数)计算练习二一、直接写得数3.5×0.2=0.72÷0。

9=1-0.01=0。

2÷0。

01=4。

8 + 2 =0.25×40=9.6÷32=1-0。

37=二、下列各题怎样算简便就怎样算(24+9.6÷2.4)×0。

5 3。

83×4.56+3。

83×5。

445。

6÷3。

5 (7.2-0.4)×253.65×10.1 2。

5×0.32×1.25三、竖式计算.93。

6÷0。

052= 0。

59×0.027= 6。

72÷6。

4=计算练习三一、直接写得数4。

3+0。

57=1。

25×16=2÷5=0。

81÷0。

9=5。

5+1。

45=0。

7×1.3=9。

4÷0.01=10.1×2。

3=二、下列各题怎样算简便就怎样算6。

136×86+86×3。

864 53.4÷0.25÷0.4101×5。

3 7.3×4.6+5。

4×7。

37.4×0.99 8.5-0。

2024年高考数学真题(新高考Ⅰ卷)含参考答案

2024年高考数学真题(新高考Ⅰ卷)含参考答案

2024年普通高等学校招生全国统一考试(新课标I 卷)数学(包含参考答案)(适用地区:山东、湖北、江苏、浙江、河北、河南、湖南、广东、福建、安徽、江西)本试卷共10页,19小题,满分150分。

注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}-B.{2,3}C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i -+C.1i -D.1i+3.已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.,则圆锥的体积为()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差2s =X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2N x s,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A .(2)0.2P X >> B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e xy x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案一、选择题(单选):本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的。

数字大比拼比一比数字大小

数字大比拼比一比数字大小

数字大比拼比一比数字大小在生活中,我们经常会遇到各种数字,无论是时间、年龄、长度、重量等等,数字无处不在。

数字大小比较是我们在日常生活中经常要进行的操作,通过比较数字的大小,我们可以更好地理解事物的大小关系,做出正确的判断。

今天,我们就来比一比不同类型的数字大小,看看它们之间的关系。

一、整数比较整数是最基本的数字形式,包括正整数、负整数和零。

在整数比较中,我们通常是根据绝对值的大小来判断大小关系的。

例如,1比-1大,-1000比-100大,0和任何正整数比较都是小的。

整数的大小关系在数轴上也能清晰地展现出来,使我们更直观地理解整数的大小关系。

二、小数比较小数是介于两个整数之间的数字,小数的比较通常依赖于小数点后的数字大小。

例如,0.5比0.3大,0.25比0.2大,0.001比0.0001大。

小数的比较也可以通过转化成分数或百分数来进行,帮助我们更好地理解小数之间的大小关系。

三、分数比较分数是整数和整数的比值,分数的大小比较需要考虑分子和分母的大小关系。

通常情况下,分子相同的情况下,分母越小,分数越大;分母相同的情况下,分子越大,分数越大。

所以5/6比3/4大,2/5比1/3大,7/8比6/7大。

分数的大小比较在实际运用中也有很多场景,如购物打折、比赛分数等。

四、百分数比较百分数是以100为基数的比值,百分数的大小比较也是根据具体的数字大小来进行的。

通常情况下,百分数大的表示比例较大,而小的表示比例较小。

例如,50%比30%大,80%比75%大,200%比150%大。

百分数的大小比较在各种统计数据中经常出现,帮助我们更好地理解数据的分布情况。

五、时间比较时间也是一种特殊的数字形式,时间的大小比较通常是根据时、分、秒的大小关系来判断。

例如,1小时比30分钟大,1分钟比30秒大,1天比12小时大。

时间比较在日常生活中是非常常见的,帮助我们安排时间、理清事件顺序。

综上所述,数字大小比较是我们在日常生活中不可或缺的一部分,通过比较不同类型的数字大小,我们可以更好地理解事物的大小关系,做出更准确的判断。

七年级数学知识点归纳

七年级数学知识点归纳

七年级数学知识点归纳七年级数学知识点归纳第一章有理数1.1正数和负数①把0以外的数分为正数和负数。

0是正数与负数的分界。

②负数:比0小的数正数:比0大的数 0既不是正数,也不是负数1.2有理数1.2.1有理数①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

②所有正整数组成正整数集合,所有负整数组成负整数集合。

正整数,0,负整数统称整数。

1.2.2数轴①具有原点,正方向,单位长度的直线叫数轴。

1.2.3相反数①只有符号不同的数叫相反数。

②0的相反数是0 正数的相反数是负数负数的相反数是正数1.2.4绝对值①绝对值 |a|②性质:正数的绝对值是它的本身负数的绝对值的它的相反数0的绝对值的01.2.5数的大小比较①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

②正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

1.3有理数的加减法1.3.1有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

④加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b)+c=(a+c)+b1.3.2有理数的减法①减去一个数,等于加这个数的相反数。

a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法①两数相乘,同号得正,异号的负,并把绝对值相乘。

②任何数同0相乘,都得0。

③乘积是1的两个数互为倒数。

④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

⑤乘法交换律:两个数相乘,交换因数的位置,积相等。

ab=ba⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

部编版一年级数学上册知识点

部编版一年级数学上册知识点

部编版一年级数学上册知识点一、读数、写数1.读20以内的数。

顺数:从小到大的顺序0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20倒数:从大到小的顺序20 19 18 17……单数:1.3.5.7.9……双数:2.4.6.8.10……(注:既不是单数,也不是双数,是偶数。

在生活中说单双数,在数学中说奇偶数。

)2.两位数(1)我们生活中经常遇到十个物体为一个整体的情况,实际上十个“1”就是一个“10”,一个“10”就是十个“1”。

如:A:11里有(1)个十和(1)个一;11里有(11)个一。

12里有(1)个十和(2)个一;12里有(12)个一13里有(1)个十和(3)个一;13里有(13)个一14里有(1)个十和(4)个一;14里有(14)个一15里有(1)个十和(5)个一;15里有(15)个一……19里有(1)个十和(9)个一;或者说,19里有(19)个一20里有(2)个十;20里有(20)个一B:看数字卡片(11~20),说出卡片上的数是由几个十和几个一组成的。

(2)在计数器上,从右边起第一名是什么位?(个位)第2位是什么位?(十位)个位上的1颗珠子表示什么?(表示1个一)十位上的1颗珠子表示什么?(表示1个十)(3)先读11.12.13.14.15.16.17.18.19.20,再写出来。

如:14,读作:十四,写作:14。

个位上是4,表示4个一,十位上数字是1,表示1个十。

二、比较大小和第几。

1.比方给数字娃娃列队:5.6.10.3.20、17,可以按从大到小的按次排列,也可以按从小到大的按次排列。

(注意做题时,写一个数字,划去一个,做到不重不漏。

)2.任意取20以内的两个数,能够用谁比谁大或谁比谁小说一句话。

如:16比15大,写出来就是16>159比13小,写出来就是9<133.“比”字的用法看“比”字的后面是谁,比几大1就要在几的基础上加1,比几小1就要在几的基础上减1。

2.1比0小得数(1)

2.1比0小得数(1)

(A)(B)问题表示什么数?点的距离叫做数|a|.例如,在数轴上表示数它们到原点的距离有几个单位长度?相等吗?编号 19初一数学第2章知识点知识点1:多重符号的化简:如何进行多重符号的化简?例:=--)3(3--=知识点2:乘方1.乘方的概念,乘方的结果叫什么?2.认识底数,指数3.正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________注意:2)3(-= 23-= 2)3(--=2)32(=322= 2)32(-=月考计算题中肯定要含乘方大家注意了!知识点3:相反意义的量用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。

例:收入200元记作+200,那么-100表示_____________________知识点4,正数和负数的概念,及有理数分类注意:0不是正数也不是负数.有理数分类有2种分类是哪2种?注: 非负数指_____非正数指_______,非负整数指_____非正整数指___例:)2(--, 3.5 ,54, -.35, 5.2-- , 22-,0 这些数中正数有________________ 负数有___________分数有__________________整数有_______________________非正整数____________________,非负整数有_________________知识点5:数轴的概念1.知道数轴的3要素,会判断所给的数轴是否正确.例:下面给出四条数轴,是否有错误?2.,会画数轴并表示点.3.通过数轴如何比较大小?例:画出数轴,在数轴上表示下列各数,并用“>”连接.23-3+5, -2.5, 21, 211-, -|-4|, 0,3.54. 在数轴上,原点右边的点表示______,左边的点表示______. 知识点6:相反数 1. 相反数的概念?2. 互为相反数的2个数在数轴有什么特点?3. 相反数的表示方法,一般的数a 的相反数表示为______. 例.2-的相反数是____知识点7:倒数 1. 倒数概念?2. 如何求一个数的倒数? 知识点8:绝对值 1. 绝对值概念?2. 整数的绝对值是________,负数的绝对值是______,零的绝对值是_____3. 通过绝对值如何比较2个负数的大小?例:绝对值最小的数是_______绝对值等于本身的是______绝对值是其相反数的是_______ 若x =5,那么x=_____用“﹤”“﹥”或“=”填空:-6 6,-1 -10 ,-︱-0.4︱ (-4) 4.绝对值和乘方集合的题目:若2-x +2)5(-y =0,求2y 知识点9:加法与减法1. 加法法则?2.减法法则?3.简化加减混合计算的方法?(计算题考试必考请注意) 例(1) 1—74+51—73+59 (2) 13)18()14(20----+-知识点10:乘法与除法1.乘法法则?2.除法法则?3.多个非零的数相乘除最后结果符号如何确定? 例:计算(1))31(33)31(-⨯÷⨯- (2))54()43(32)21(-⨯-⨯⨯-知识点11:科学记数法科学记数法的概念?注意a 的范围 例:用 科学记数法表示250 200 000 000 把101022.1⨯还原成原数.知识点12:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算. 例(1) )41()2()411()1.0(2223-⨯---÷-+-(2) 431(2)(4)()(1)2-÷-⨯-- (3) 213111()(2)6132-⨯-÷-知识点13:应用题:例: 1. 10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 求这10 筐苹果共超过标准多少千克?10筐苹果一共多少千克?2. .出租车司机小李某天下午在东西走向的中山东路上进行运营。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A)(B)问题(C)表示什么数?点的距离叫做数|a|.例如,在数轴上表示数它们到原点的距离有几个单位长度?相等吗?编号 19初一数学第2章知识点知识点1:多重符号的化简:如何进行多重符号的化简?例:=--)3(3--=知识点2:乘方1.乘方的概念,乘方的结果叫什么?2.认识底数,指数3.正数的任何次幂是_________,零的任何次幂________负数的偶次幂是_________奇次幂是________注意:2)3(-= 23-= 2)3(--=2)32(=322= 2)32(-=月考计算题中肯定要含乘方大家注意了!知识点3:相反意义的量用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。

例:收入200元记作+200,那么-100表示_____________________知识点4,正数和负数的概念,及有理数分类注意:0不是正数也不是负数.有理数分类有2种分类是哪2种?注: 非负数指_____非正数指_______,非负整数指_____非正整数指___例:)2(--, 3.5 ,54, -.35, 5.2-- , 22-,0 这些数中正数有________________ 负数有___________分数有__________________整数有_______________________非正整数____________________,非负整数有_________________知识点5:数轴的概念1.知道数轴的3要素,会判断所给的数轴是否正确.例:下面给出四条数轴,是否有错误?2.,会画数轴并表示点.3.通过数轴如何比较大小?例:画出数轴,在数轴上表示下列各数,并用“>”连接.23-3+5, -2.5,21, 211-, -|-4|, 0,3.54. 在数轴上,原点右边的点表示______,左边的点表示______. 知识点6:相反数 1. 相反数的概念?2. 互为相反数的2个数在数轴有什么特点?3. 相反数的表示方法,一般的数a 的相反数表示为______. 例.2-的相反数是____知识点7:倒数 1. 倒数概念?2. 如何求一个数的倒数? 知识点8:绝对值 1. 绝对值概念?2. 整数的绝对值是________,负数的绝对值是______,零的绝对值是_____3. 通过绝对值如何比较2个负数的大小?例:绝对值最小的数是_______绝对值等于本身的是______绝对值是其相反数的是_______ 若x =5,那么x=_____用“﹤”“﹥”或“=”填空:-6 6,-1 -10 ,-︱-0.4︱ (-4)4.绝对值和乘方集合的题目:若2-x +2)5(-y =0,求2y知识点9:加法与减法1. 加法法则?2.减法法则?3.简化加减混合计算的方法?(计算题考试必考请注意) 例(1) 1—74+51—73+59(2) 13)18()14(20----+-知识点10:乘法与除法1.乘法法则?2.除法法则?3.多个非零的数相乘除最后结果符号如何确定? 例:计算(1))31(33)31(-⨯÷⨯- (2))54()43(32)21(-⨯-⨯⨯- 知识点11:科学记数法科学记数法的概念?注意a 的范围例:用 科学记数法表示250 200 000 000 把101022.1⨯还原成原数. 知识点12:混合计算注意:运算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算. 例(1) )41()2()411()1.0(2223-⨯---÷-+- (2) 431(2)(4)()(1)2-÷-⨯-- (3) 213111()(2)6132-⨯-÷- 知识点13:应用题:例: 1. 10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 求这10 筐苹果共超过标准多少千克?10筐苹果一共多少千克?2. .出租车司机小李某天下午在东西走向的中山东路上进行运营。

如果规定向东为正,向西为负,这天下午他的行程(单位:km )如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多少千米? (2)若汽车耗油量0.4 L/km ,这天下午小李的车共耗油多少升? 3.算24点补充练习22页.一、判断题。

1. 向南走-20米,表示向北走20米; ( )2. 若前进3千米记作+3千米,则-5千米表示后退-5千米; ( )3. 有理数包括正数和负数两部分; ( )4. 0是整数但不是正数; ( )5. 31.25不是分数,所以不是有理数。

( ) 7.符号不同的两个数互为相反数; ( ) 8.数轴上原点两旁的两个点表示的数互为相反数;; ( ) 9.+3和-3都是相反数; ( ) 10.互为相反数的两个数不一定一个是正数,一个是负数。

( ) 二、选择11.下列说法正确的是 ( )A .整数包括正整数和负整数; B.零是整数,但不是正数,也不是负数; C.分数包括正分数、负分数和零; D.有理数不是正数就是负数. 12.下列语句正确的是( )A.最小的有理数是0;B.最大的负数是-1;C.原点右边的数表示正数;D.最小的自然数是1。

13.若有理数m <n,在数轴上点M 表示数m ,点N 表示数n ,则M 与N 的位置关系为( ) A.点M 在点N 的右边; B.点M 在点N 的左边;C.点M 在原点右边,点N 在原点左边D.点M 和点N 都在原点右边。

14.如图,根据有理数a,b,c 在数轴上的位置,下列关系正确的是( )A. c >a >0>b ;B. a >b >0>c ;C. b >0>a >c ;D. b >0>c >a 15.若x =-x ,则x 一定是 ( )A .零 B.负数 C.正数 D.负数或零17.如果正午记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为 。

18.A 市某天的温差为7°C ,如果这天的最高气温为5°C ,这天的最低气温是 。

19.离原点3个单位长度的点有 个,它所表示的有理数是 ; 20.在数轴上的一个点满足两个条件:(1)到原点的距离为421个单位;(2)在原点的左边,则该点表示的数是 。

21.在数轴上表示-5的点与表示2的点的距离是 ;22.数轴上与表示+2的点距离3个单位长度的点有 个,它们分别是 和 ; 23.数轴上一点A 表示的数为-5,将A 先向右移2个单位,再向左移10个单位,则这个点表示的数是 ;24.在数轴上,到原点距离不大于2的所有整数有 ; 25.(1)写出所有不大于4且大于-3的整数有 ; (2)不小于-4的非正整数有 。

(3)比-2大21的数是 ;-3比-6大 。

26.符号是“+”号,绝对值是7的数是 ;绝对值是5.1,符号是“-”号的是 。

绝对值等于4的数是 。

27.(1)若x =5,则x= ; (2)若x =3-,则x= ;(3)若x -=6-,则x= ; 若a +b =4,且a=-1,则b= 。

28. 绝对值小于3的正整数是 ; 绝对值小于5的负整数是 ; 绝对值在2和5之间的整数是 。

29. (1)若m=-21,则-m= ; (2)a-1的相反数是-3,则a= ; (3)若 -(a-7)是负数,则a-7 0 (填“>”或“<” ) 。

30. 数轴上,若点A 和点B 分别表示互为相反数的两个数,并且这两点的距离是6.4,则这两点所表示的数分别是 和 。

编号 20有理数检测题一、填空题(每空2分,共计30分)1、 如果收入350元记作+350元,那么-80元表示_________________。

2、 有理数中,最大的负整数是__________,最小的正整数是 。

3、 5-的相反数是______,4-的倒数是______,4.2-的绝对值是______。

4、 数轴上离原点的距离等于3个单位长度的数有___ __个。

5、 大于-2而小于3的整数分别是_________________。

6、 写上合适的数:_______³(-3)=24,(-1)÷(-1.5)=_______。

7、 (-3)3中底数是______,乘方的结果符号为____ __。

8、长江三峡电站总装机容量将达16780000千瓦,用科学记数法表示 是 千瓦。

9、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________℃。

10、一个数的平方等于81,则这个数是_______。

二、选择题(每题2分,共计20分) 1、 下列说法正确的是( ) A .一个有理数不是正数就是负数 B .一个有理数不是整数就是分数 C .有理数是自然数和负整数D .有理数分为整数、分数、正数、负数、0五类。

在有理数中,倒数等于本身的数有( )A .1个B .2个C .3个D .无数个2、 在有理数中,绝对值等于它本身的数有( ) A .1个 B .2个 C . 3个 D .无穷多个3、 一个数的立方等于它本身,这个数是 ( ) A .0 B .1 C .-1,1 D .-1,1,04、 下列运算正确的个数为( )①(-2)-(-2)=0 ②(-6)+(+4)=-10 ③0-3=3 ④32)61(65=-+ A .0 B .1 C .2 D .35、 下列说法错误的是( )A .一个数同0相乘仍得0B .一个数同1相乘仍得原数C .一个数同-1相乘得原数的相反数D .互为相反数的两数积是1 6、 五个有理数的积为负数,则五个数中负数的个数是( ) A .1 B . C .5 D .1或3或5 7、 两个数的商是正数,,那么这两个数( )A .和为正B .差为正C .积为正D .以上都不是 8、 下列计算正确的是( )A .-22=-4B .-(-2)2=4C .(-3)2=6D .(-1)3=19、 某天股票A 开盘价18元,上午11:30跌1.5元,下午收盘时又涨了0.3元,则股票A 这天收盘价是( )A .0.3元B .16.2元C .16.8元D .18元10、.学校、家、书店依次座落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )A .在家B .学校C . 书店D . 不在上述地方 三、解答题:(4分+6分=10分)1、把下列各数分别填在相应的括号里: -65,+1,4.7,-17, 0, 534,39,722,5,-6,120% 正整数集合:{ …} 整数集合:{ …}分数集合:{ …} 有理数集合:{ …}2、在数轴上表示下列各数:0,–2.5,213,–2,+5,311。

相关文档
最新文档