中考数学一轮复习教案: 相似三角形教案

合集下载

27.2相似三角形(教案)

27.2相似三角形(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。

九年级数学《相似三角形判定-复习课》教案

九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。

帮助学生回忆相似三角形的几种判定方法。

以简单的选择、判断题复习相关知识点。

目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

学生熟悉学习目标学生按照学习目标复习知识点。

帮助学生梳理知识要点。

学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。

以相似三角形的基本图形为主线回顾知识点。

从形的角度帮助学生更好地理解知识点。

议探交流尝试练习:学生完成尝试练习1、2两题。

议探交流:组内相互交流,先对议,再互议。

教师适时巡堂,深入小组,进行个别指导。

学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。

)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。

各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。

相似三角形教案

相似三角形教案

相似三角形教案I. 教学目标通过本教案的学习,学生将能够:1. 掌握相似三角形的定义;2. 理解相似三角形的性质和判定方法;3. 运用相似三角形的性质解决实际问题。

II. 教学准备1. 教师准备:投影仪、幻灯片、黑板、粉笔等教学工具;2. 学生准备:教材、笔、纸等学习用具。

III. 教学过程Step 1: 导入新知1. 教师引导学生回顾已经学过的一些基础概念,如平行线、角等。

2. 引入相似三角形的概念,让学生尝试给出相似三角形的定义。

Step 2: 相似三角形的定义与性质1. 教师通过幻灯片展示相似三角形的定义,并与学生一起讨论其特点。

2. 学生借助教材,归纳相似三角形的性质,如对应角相等、对应边成比例等。

Step 3: 判断相似三角形的方法1. 教师介绍判定相似三角形的方法,包括AAA(角-角-角)相似判定法、AA(角-角)相似判定法和SAS(边-角-边)相似判定法。

2. 通过幻灯片展示实例,让学生运用这些方法判断相似三角形。

Step 4: 案例分析与讨论1. 教师提供一些实际问题,要求学生分析并运用相似三角形的性质解决。

2. 学生在小组中合作讨论,找出解决问题的方法,并向全班展示他们的解决思路。

Step 5: 练习与巩固1. 教师布置一些练习题,要求学生运用相似三角形的性质进行求解。

2. 学生独立完成练习,并检查答案。

Step 6: 拓展与应用1. 教师推荐一些与相似三角形相关的拓展阅读资料,鼓励学生深入了解这一概念的应用和意义。

2. 学生可以选择阅读其中的一篇文章,并做一份读后感。

IV. 教学反思通过本教案的设计,学生在活动中能够借助幻灯片、小组合作讨论以及个人练习等方式全面了解相似三角形的定义、性质和判定方法。

此外,通过解决实际问题的过程,学生能够培养思维能力和解决问题的策略意识。

教学过程中要注意调动学生积极性,激发他们的学习兴趣,让他们充分参与到教学活动中。

人教版数学九年级中考复习课《相似三角形》教学设计

人教版数学九年级中考复习课《相似三角形》教学设计
c.探讨相似三角形在建筑、设计等领域的应用。
5.写作任务:结合本节课所学内容,撰写一篇关于相似三角形在实际生活中的应用的小论文,要求不少于500字,以提高学生的写作能力和几何应用意识。
注意事项:
1.作业布置要注意分层设计,使不同层次的学生都能得到适当的锻炼和提高;
2.鼓励学生独立思考,遇到问题时积极寻求解决方法,培养自主学习能力;
2.逻辑思维能力:运用相似三角形的性质和判定方法解决具体问题,培养学生的逻辑思维;
3.团队合作能力:分组讨论,共同探究相似三角形的性质和应用,培养学生的团队协作精神;
4.解决问题能力:将相似三角形的知识应用于解决实际生活中的问题,提高学生解决问题的能力。
(三)情感态度与价值观
1.积极主动:鼓励学生积极参与课堂讨论,主动探究相似三角形的性质和应用;
c.相似三角形在实际问题中如何应用?
2.汇报交流:各小组汇报讨论成果,分享解题思路和方法,教师进行点评和指导。
(四)课堂练习
1.设计具有代表性的习题,让学生当堂完成,巩固所学知识。
2.练习题包括:
a.判断两个三角形是否相似,并说明理由;
b.利用相似三角形的知识解决实际问题;
c.证明相似三角形的性质。
3.相似三角形的判定方法:讲解AA、SAS、SSS等判定方法,结合实例进行解释,使学生理解并掌握。
4.相似三角形的应用:介绍相似三角形在实际问题中的应用,如测量物体的高度、计算图形的面积等。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
a.相似三角形的性质有哪些?
b.如何判断两个三角形是否相似?
(2)终结性评价:通过课后作业、测试等形式,评价学生对相似三角形知识的掌握程度;

相似三角形 复习课教案

相似三角形 复习课教案

相似三角形复习课教案一、教学目标1、使学生理解相似三角形的概念,掌握相似三角形的判定定理和性质定理。

2、能够熟练运用相似三角形的知识解决实际问题,提高学生的逻辑推理和综合运用能力。

3、通过复习,培养学生的数学思维和创新意识,激发学生学习数学的兴趣。

二、教学重难点1、重点(1)相似三角形的判定定理和性质定理。

(2)相似三角形的应用。

2、难点(1)相似三角形的判定定理的灵活运用。

(2)相似三角形在实际问题中的建模。

三、教学方法讲授法、练习法、讨论法四、教学过程(一)知识回顾1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似比:相似三角形对应边的比叫做相似比。

2、相似三角形的判定定理两角对应相等的两个三角形相似。

两边对应成比例且夹角相等的两个三角形相似。

三边对应成比例的两个三角形相似。

3、相似三角形的性质定理相似三角形对应角相等,对应边成比例。

相似三角形的周长比等于相似比,面积比等于相似比的平方。

(二)例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC所以\(\frac{AD}{AB} =\frac{AE}{AC}\)因为 AD = 3,BD = 2,所以 AB = AD + BD = 5所以\(\frac{3}{5} =\frac{4}{AC}\)解得 AC =\(\frac{20}{3}\)所以 CE = AC AE =\(\frac{20}{3} 4 =\frac{8}{3}\)例 2:如图,在△ABC 中,∠BAC = 90°,AD⊥BC 于 D,E 为AC 的中点,ED 的延长线交 AB 的延长线于点 F。

求证:\(\frac{AB}{AC} =\frac{DF}{AF}\)证明:因为 AD⊥BC,∠BAC = 90°所以∠ADB =∠ADC = 90°,∠BAD +∠DAC = 90°,∠DAC+∠C = 90°所以∠BAD =∠C又因为 E 为 AC 的中点,所以 DE = EC所以∠EDC =∠C所以∠BAD =∠EDC又因为∠FDB =∠FDA +∠ADB =∠FDA + 90°,∠FAD =∠FDA +∠BAD所以∠FDB =∠FAD所以△FDB∽△FAD所以\(\frac{AB}{AC} =\frac{BD}{AD} =\frac{DF}{AF}\)(三)课堂练习1、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,且\(\frac{AD}{BD} =\frac{AE}{EC}\),求证:DE∥BC。

中考数学一轮复习 第22讲 相似三角形及其应用教案-人教版初中九年级全册数学教案

中考数学一轮复习 第22讲 相似三角形及其应用教案-人教版初中九年级全册数学教案

第22讲: 相似三角形及其应用一、复习目标1. 复习相似三角形的概念。

2. 复习相似三角形的性质。

3. 复习相似三角形的判定。

4. 复习相似三角形的应用,用相似知识解决一些数学问题。

二、课时安排1课时三、复习重难点重点:运用相似三角形的判定定理分析两个三角形是否相似。

难点:正确运用相似三角形的性质解决数学问题。

四、教学过程(一)知识梳理相似图形的有关概念比例线段平行线分线段成比例定理相似三角形的判定相似三角形及相似多边形的性质位似相似三角形的应用(二)题型、技巧归纳考点1比例线段技巧归纳:本题考查的是平行线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键考点2相似三角形的性质及其应用技巧归纳:1. 利用相似三角形性质求角的度数或线段的长度;2. 利用相似三角形性质探求比值关系.考点3三角形相似的判定方法及其应用技巧归纳:判定两个三角形相似的常规思路:①先找两对对应角相等;②若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;③若找不到角相等,就判断三边是否对应成比例,否则可考虑平行线分线段成比例定理及相似三角形的“传递性”.考点4位似技巧归纳:本题考查位似变换和坐标与图形的变化的知识,解题的关键根据已知条件求得两个正方形的边长。

(三)典例精讲例1 如图已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE =6,BD=3,则BF=( )A.7 B.7.5C.8 D.8.5[解析] 因为a ∥b ∥c ,所以AC CE =BD DF ,∴46=3DF,DF =4.5,BF =7.5. 例2 如图△ABC 是一X 锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这X 硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G 、H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM HG AD BC(2)求这个矩形EFGH 的周长.[解析] (1)证明△AHG ∽△ABC ,根据相似三角形对应高的比等于相似比,证明结论. (2)设HE =x ,则HG =2x ,利用第一问中的结论求解. 解:(1)证明:∵四边形EFGH 为矩形, ∴EF ∥GH. ∴∠AHG =∠ABC. 又∵∠HAG =∠BAC , ∴△AHG ∽△ABC ,∴AM AD =HGBC.(2)由(1)得AM AD =HGBC .设HE =x ,则HG =2x ,AM =AD -DM =AD -HE =30-x.可得30-x 30=2x 40,解得x =12,2x =24.所以矩形EFGH 的周长为2×(12+24)=72 (cm).例3、如图在矩形ABCD 中,AB =6,AD =12,点E 在AD 边上,且AE =8,EF ⊥BE 交CD 于F.(1)求证:△ABE ∽△DEF ; (2)求EF 的长.[解析] (1)由四边形ABCD 是矩形,易得∠A =∠D =90°,又由EF ⊥BE ,利用同角的余角相等,即可得∠DEF =∠ABE ,则可证得△ABE ∽△DEF ;(2)由(1)△ABE ∽△DEF ,根据相似三角形的对应边成比例,即可得BE EF =ABDE ,又由AB =6,AD =12,AE =8,利用勾股定理求得BE 的长,由DE =AD -AE ,求得DE 的长,继而求得EF 的长.解:(1)证明:∵四边形ABCD 是矩形, ∴∠A =∠D =90°,∴∠AEB +∠ABE =90°. ∵EF ⊥BE ,∴∠AEB +∠DEF =90°, ∴∠DEF =∠ABE ,∴△ABE ∽△DEF ; (2)∵△ABE ∽△DEF ,∴BE EF =ABDE.∵AB =6,AD =12,AE =8, ∴BE =AB 2+AE 2=10,DE =AD -AE =12-8=4, ∴10EF =64, 解得EF =203.例4 如图正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC =3√2,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( )A 、16 B 、13 C 、12 D 、23[解析]延长A′B′交BC 于点E ,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.∵在正方形ABCD 中,AC =32, ∴BC =AB =3.延长A′B′交BC 于点E , ∵点A′的坐标为(1,2), ∴OE =1,EC =3-1=2=A′E, ∴正方形A′B′C′D′的边长为1,∴正方形A′B′C′D′与正方形ABCD 的相似比是13.故选B.(四)归纳小结本部分内容要求熟练掌握相似三角形的概念、性质、判定。

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案相似三角形的性质教案一、教学目标:1. 理解相似三角形的概念;2. 掌握相似三角形的判定方法;3. 掌握相似三角形的性质;4. 运用相似三角形的知识解决实际问题。

二、教学重点和难点:1. 相似三角形的判定方法;2. 相似三角形的性质。

三、教学内容和教学过程:1. 引入新课教师用两个相似的三角形拼接成一个平行四边形的图形,让学生通过观察推测相似三角形的特点。

2. 概念解释教师向学生解释相似三角形的概念:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。

3. 判定方法让学生尝试找出判定相似三角形的方法,并与同桌分享。

教师引导学生总结出判定相似三角形的方法:考察两个三角形的对应角是否相等以及对应边是否成比例。

4. 性质解释让学生想象两个相似三角形的比例关系,观察和分析两个相似三角形之间的性质差异。

教师引导学生总结出相似三角形的性质:(1)对应角相等性质:相似三角形的三个对应角都相等。

(2)对应边成比例性质:相似三角形的三个对应边都成比例。

(3)相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。

5. 实际应用教师给出一些实际问题,让学生运用相似三角形的知识解决问题,如计算高塔的高度、测量不可直接测量的距离等。

四、课堂练习在黑板上列出一些相似三角形的题目,让学生在课堂上解答,并让他们互相交流讨论解题思路。

五、板书设计相似三角形定义:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。

性质:1. 对应角相等性质:相似三角形的三个对应角都相等。

2. 对应边成比例性质:相似三角形的三个对应边都成比例。

3. 相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。

六、教学反思通过本节课的教学,学生能够理解并掌握相似三角形的概念、判定方法和性质。

通过实际应用的练习,学生也能够灵活运用相似三角形的知识解决问题。

初中数学相似教案

初中数学相似教案

初中数学相似教案教学目标:1. 理解相似三角形的定义和性质;2. 学会运用相似三角形解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 相似三角形的定义和性质;2. 相似三角形的判定;3. 相似三角形的应用。

教学步骤:一、导入(5分钟)1. 引导学生回顾已学的三角形相关知识,如三角形的分类、三角形的性质等;2. 提问:同学们,你们知道什么是相似三角形吗?有没有谁能举个例子来说明一下?二、新课讲解(15分钟)1. 讲解相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形;2. 讲解相似三角形的性质:相似三角形的对应边成比例,对应角相等;3. 讲解相似三角形的判定:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似;4. 举例说明相似三角形的应用,如解决实际问题中的测量问题、几何图形的构造等。

三、课堂练习(15分钟)1. 请同学们完成教材上的练习题,巩固相似三角形的定义和性质;2. 教师选取部分学生的作业进行讲解和解析,解答学生的疑问。

四、课后作业(5分钟)1. 请同学们完成教材上的课后作业,加深对相似三角形的理解和应用;2. 教师布置一些相关的拓展题目,提高学生的思维能力。

教学评价:1. 课堂讲解:教师对学生的学习情况进行观察和评估,了解学生对相似三角形知识的掌握程度;2. 课堂练习:教师对学生的练习情况进行批改和评价,及时发现和纠正学生的错误;3. 课后作业:教师对学生的作业情况进行批改和评价,了解学生对相似三角形知识的应用能力。

教学反思:本节课通过讲解相似三角形的定义、性质和判定,以及应用,使学生掌握了相似三角形的基本知识。

在教学过程中,要注意引导学生主动参与,积极思考,通过举例和练习题来巩固所学知识。

同时,还要注重培养学生的逻辑思维能力和解决问题的能力,提高他们对数学学科的兴趣和信心。

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。

2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。

3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。

二、教学重难点:1.教学重点:相似三角形的性质。

2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。

三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。

例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。

(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。

(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。

记作ΔABC∼ΔDEF。

(2)相似三角形的性质:相似三角形的对应边成比例。

即有如下比例关系:AB/DE=BC/EF=AC/DF。

3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。

例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。

(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。

代入已知条件,得6/9=8/EF=10/DF。

由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。

例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。

(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。

代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。

相似三角形教案

相似三角形教案

相似三角形教案相似三角形教案一、教学目标:1. 知识与技能:掌握相似三角形的概念;了解相似三角形的性质;能够判断两个三角形是否相似;能够应用相似三角形的性质解决实际问题。

2. 过程与方法:通过实例引入,提供多种不同的教学方法,如讲解、讨论、实例分析等,激发学生的学习兴趣;通过课堂练习和作业的形式,培养学生的分析问题和解决问题的能力。

3. 情感态度与价值观:培养学生的计算能力和分析能力,增强对数学的兴趣;培养学生的逻辑思维能力和创造力,注重培养学生的合作精神和团队意识。

二、教学重点与难点:1. 教学重点:相似三角形的性质及其应用。

2. 教学难点:如何判断两个三角形是否相似;如何应用相似三角形的性质解决问题。

三、教学过程与方法:1. 导入新知识:通过示意图引入相似三角形的概念和性质,让学生对相似三角形有初步的认识。

2. 讲解与示范:讲解相似三角形的判定方法和性质,并通过示例进行演示,让学生理解和掌握相似三角形的性质。

3. 实例分析:让学生通过分析实际生活中的例子,找出相似三角形的特点,并运用相似三角形的性质解决实际问题。

4. 讨论与合作:组织学生进行小组讨论,共同解决相似三角形的问题,培养学生的合作意识和团队精神,激发学生的思考和创造力。

5. 总结与归纳:让学生总结相似三角形的判定方法和性质,进行知识归纳和概念澄清,确保学生对相似三角形有深入的理解。

6. 拓展与巩固:通过练习题和作业的形式,巩固学生对相似三角形知识的掌握和运用能力,培养学生的分析和解决问题的能力。

四、教学资源:1. 教学课件:显示相似三角形的示意图和相关概念。

2. 教学实例:提供多个真实生活中的示例,让学生进行分析和解决问题。

五、教学评估:1. 课堂练习:在教学过程中进行课堂练习,检测学生对相似三角形的掌握程度。

2. 作业评价:布置相关的作业,检测学生对相似三角形的应用能力和解决问题的策略。

六、教后反思:通过本节课的教学,学生能够初步掌握相似三角形的概念和性质,并能够运用相似三角形的性质解决实际问题。

初中数学_相似三角形复习教学设计学情分析教材分析课后反思

初中数学_相似三角形复习教学设计学情分析教材分析课后反思

九年级下学期中考复习《相似三角形复习》教学设计相似三角形复习课教学设计一、课标解读课标要求:1.了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.了解相似三角形判定定理的证明.2.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.3.会利用图形的相似解决一些简单实际问题.数学学习是经历数学活动的过程,学生的数学学习活动是生动活泼的、主动的、富有个性的,动手实践、自主探索、合作交流是主要的学习方式.教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生成为学习的主人.二、教材分析(一)地位与作用《相似三角形》是继图形的全等之后对图形形状内容的研究,是对图形全等知识的进一步拓广,是从特殊到一般的发展.《相似三角形》又是学习锐角三角函数、投影与视图,圆的知识的基础,例如锐角三角函数的定义、圆的有些性质的证明,都与相似三角形有密切联系.另外,在物理学、工程设计、测量、绘图等许多方面,都要用到相似三角形的知识.相似三角形有关知识的考查在中考中占有重要地位.因此学好相似三角形既是进一步学习的需要,也是工作实践的需要.本节课是九年级下学期中考复习课,学生已经在初三时学过相似三角形的有关知识,回顾相似三角形的定义、判定和性质,不仅可以帮助学生系统地构建知识体系,而且也可以进一步明确它们之间的联系与区别. 更重要的是为后面综合运用相似三角形,全等三角形等知识解决问题做好铺垫.学生在综合运用所学知识解决问题的过程中感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验,提高应用数学的意识和合作交流的能力.(二)教学目标1.回顾相似三角形的定义、判定和性质,进一步明确它们之间的联系与区别.2.在综合运用相似三角形的判定定理及性质定理解决问题的过程中,感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验.(三)教学重点、难点教学重点:熟悉相似三角形的基本构图.综合运用相似三角形的判定定理及性质定理解决问题.教学难点:灵活运用相似三角形、全等三角形、圆等知识解决问题.三、学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法.学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大胆创新的精神.四、评价设计通过基础演练,即时检测达成目标1,通过综合运用达成目标2.五、学习过程:(一)基础演练【教师活动】出示问题1.如图,(1)已知∠A =∠D ,要使△ABC∽△DEF ,还需添加一个条件,你添加的条件是(2)已知AB BC k DE EF ==,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是2.如图,已知△ABC ∽△DEF ,(1)你能得到哪些结论?(2)若AM ,DN 分别是BC ,EF 边上的中线,AB =6,AM =4,DE =5, DN =3.已知两个相似三角形的面积比等于4:9,则它们的周长比是【学生活动】独立思考并完成问题.【设计意图】以有代表性的习题为载体,引导学生在问题解决中查缺补漏,形成知识链,建构知识体系,使学生对所学知识进行整体把握.并且从理性上明晰:数学图形的研究通常是从定义、性质、判定、应用几个大方面着手,不但弄清了知识脉络,而且积累了数学研究的方法和经验,真正提高了学生的数学能力和数学素养.【问题应对】学生已经在初三时学过相似三角形的定义,性质,判定,但对于它们的联系和区别有些模糊,通过追问:还可以怎样做?你的依据是什么? 帮助学生形成完整的知识链.(二)即时检测【教师活动一】出示问题1. 如图,在△ABC 中,AB =9,AC =6,点D 在AB上,且AD =4,点E 在AC 上,连接DE ,使△ADE 与△ABC 相似,则AE = .2.如图,在△ABC 中,点D 在AB 上,下列条件能使△ACD 和△ABC 相似的有①∠ACD =∠B ②∠ADC =∠ACB③AC 2=AD •AB ④ 3. △ABC 中,若∠ACB =90°,于D ,(1)写出图中与∆ABC 相似的三角形 .(2)若AD =9,BD =4,则CD = .【学生活动】独立思考并完成问题.【设计意图】通过设置问题,既检测学生运用相似三角形的性质定理和判定定理解决问题,又帮助学生把有关相似的基本图形、基本策略、基本经验进行了简明扼要的整理,有效提高了课堂效率,促进了目标达成.【问题应对】第1题学生可能只想到平行相似一种情况,可以追问学生:还有不同的答案吗?若还有学生存在困难,可让学生分析“△ADE 与△ABC 相似”和“△ABC ∽△DEF ”两种表示三角形相似的方法有何不同?帮助学生得出正确答案.问题2中的④学生可能选错,通过问题让学生明确要证两三角形相似,已经具备了公共角相等,如AC CD AB BC =CD AB ⊥果添加两组边成比例的条件,要注意公共角必须成为夹角.第3题在学生回答准确的情况下再提出:图中还有哪些比例中项的数学式子?帮助学生熟悉常用的几种式子,公共边的平方等于共线边的乘积.【教师活动二】相似中的基本构图有哪些联系?插入微视频.【设计意图】微视频的加入,不但提高了学生的听课效果,而且更完整清晰地再现了各个基本图形及之间的联系.三、综合运用【教师活动一】出示问题1.已知点B ,E ,C 在同一条直线上,∠B =∠AED =∠C =90°,AE =ED ,AB =6,BC =8,求CD .变式训练一上题中,若AE 与ED 不相等,BE =3,其它条件不变,求CD .变式训练二等边∆ABC 的边长为3,点P 为AB 上一点,AP =1,点E 为CB 上一点,∠CPE =60°,求BE 长.【学生活动】独立思考,完成问题.【教师活动一】反思:通过上面的问题,有什么想法?一条直线上只要有三个等角,就能得到两个三角形相似.如何验证你的发现?我们把这种基本构图称为一线三等角,由一线三等角可以得到两三角形相似,从而求出线段的长度.变式训练三Array在∆ABC中,AB=6,AC=BC=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPE=∠A,设点P的运动时间为t秒,当以点C为圆心,CE为半径的圆与AB相切时,求t的值.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】设计习题组,让学生亲身经历发现问题、分析问题、解决问题的过程,提炼解决这类问题常用的基本思路,基本构图.通过变式训练,使学生多角度、多层次,灵活的运用所学知识解决问题,让学生体会变化中的不变,弄清条件改变,但解题的思路不变.这也是解决一题多变问题常用的方法.这一环节的题目设计由易到难,循序渐进,最终是为了促进目标2的达成.【问题应对】题目设计由易到难,学生可能没有意识到题目之间的联系,解决后面的问题有困难,可以适时追问,例如:全等和相似有什么联系?这道题和上一道题有什么联系?通过问题引导学生在变式训练中体会变与不变,“优化”解题策略,挖掘知识背后的思想、方法、规律.【教师活动二】出示问题2.链接中考(2015威海中考)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】链接中考题目,拉近了教学与中考的距离,让学生明确相似三角形的有关知识在中考中的常见命题思路,该题第一步考查全等,第二步考查相似.学生在综合运用所学知识解决问题的过程中,进一步体会两道题的条件改变,但解题思路不变.【问题应对】解决这样的综合题学生可能有困难,可以在学生独立思考的基础上进行小组合作,展示交流.四、盘点收获【教师活动】回顾本节课的学习,你有哪些新的收获?说说你的体会.【学生活动】小组内畅谈收获【设计意图】通过这个环节的设计让学生及时盘点所学知识,所积累的经验和方法,便于今后更好的学习.【问题应对】学生在总结时如果有遗漏,要及时补充.五、达标检测【教师活动】1. 如图,已知AB∥EF∥CD,AC、BD相交于点E,AB=6cm,CD=12cm,求EF.F F EDCBA2. (选作)如图,路灯距地面8m ,身高1.6m 的小明从距离路灯的底部O 点20m 的点A 处,沿AO 所在直线行走14m 到达B 点时,影长如何变化?【学生活动】独立完成检测 【设计意图】通过这个环节的设计及时反馈本节课学生的学习情况,便于今后更好的改进教学.第二题供学有余力的学生选作,体现了分层教学.《相似三角形复习》学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法. 学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大MN O B A胆创新的精神.《相似三角形复习》效果分析知识体系,使学生对所学知识进行整体把握。

初中数学复习相似三角形教案

初中数学复习相似三角形教案

初中数学复习相似三角形教案一、教学目标:1.知识目标:复习相似三角形的概念和性质,学习相似三角形的判定条件。

2.能力目标:能够判断两个三角形是否相似,并根据相似比例求解问题。

3.情感目标:培养学生对数学的兴趣和学习积极性,培养学生的观察和推理能力。

二、教学重点和难点:1.教学重点:相似三角形的判定条件及应用。

2.教学难点:理解和运用相似三角形的判定条件。

三、教学方法:1.情景导入法:通过提问或展示一个实际生活中的问题,引起学生的兴趣。

2.归纳法:通过对已学知识进行归纳总结,加深学生的理解。

3.合作学习法:通过小组合作学习,让学生互相合作、共同探讨问题,提高学生的思考能力。

四、教学过程1.情景导入(10分钟)教师可通过一个有趣的问题导入,如:小明的房子与小刚的房子相似吗?为什么?请学生们思考并讲解。

2.知识点讲解(20分钟)步骤1:复习相似三角形的定义和性质。

-复习相似三角形的定义:如果两个三角形的对应角相等,那么这两个三角形是相似的。

-复习相似三角形的性质:相似三角形的对应边成比例,对应角相等。

步骤2:讲解相似三角形的判定条件。

-边比例判定定理:如果两个三角形的三条边各对应边的比例相等,那么这两个三角形是相似的。

-AA判定法:如果两个三角形的两个对应角相等,那么这两个三角形是相似的。

步骤3:示例讲解。

-通过示例,引导学生理解判定条件的应用。

3.拓展探究(20分钟)步骤1:学生小组合作学习。

-学生们分小组进行合作探究,每组一份练习题,完成后进行讨论。

步骤2:学生展示和讲解。

-每组选择一位学生代表进行展示和讲解。

-其他学生进行提问和讨论。

-教师对学生的答案进行点评和指导。

4.知识运用(20分钟)步骤1:课堂练习。

-教师出示一些练习题,让学生独立完成。

-教师巡视课堂,提供必要的帮助和指导。

步骤2:学生讲解和讨论。

-随机点名学生讲解答案和解题思路。

-其他学生进行提问和讨论。

5.归纳总结(10分钟)-教师引导学生对本节课所学内容进行归纳总结。

相似三角形的判定数学教学教案(10篇)

相似三角形的判定数学教学教案(10篇)

相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。

2、能运用相似三角形的概念判断两个三角形相似。

3、理解“相似三角形的对应角相等,对应边成比例”的性质。

重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。

知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。

2、相似三角形的对应角相等,对应边成比例。

3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。

2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。

3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。

教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。

以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。

那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。

问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。

2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。

注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。

初中数学相似的教案

初中数学相似的教案

初中数学相似的教案一、教学目标:1. 让学生理解相似三角形的概念,掌握相似三角形的性质和判定方法。

2. 培养学生运用相似三角形解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 相似三角形的定义2. 相似三角形的性质3. 相似三角形的判定方法4. 相似三角形在实际问题中的应用三、教学重点与难点:1. 重点:相似三角形的概念、性质、判定方法和应用。

2. 难点:相似三角形的判定方法和在实际问题中的应用。

四、教学过程:1. 导入:通过复习平行线、相交线等基础知识,引导学生进入本节课的主题——相似三角形。

2. 新课讲解:(1)讲解相似三角形的定义:两个三角形的对应角度相等,对应边成比例,则这两个三角形相似。

(2)讲解相似三角形的性质:相似三角形的对应角度相等,对应边成比例。

(3)讲解相似三角形的判定方法:① AA相似判定法:若两个三角形的两个角分别相等,则这两个三角形相似。

② SSS相似判定法:若两个三角形的三边分别成比例,则这两个三角形相似。

③ SAS相似判定法:若两个三角形的两边及其夹角分别相等,则这两个三角形相似。

3. 例题讲解:通过举例,让学生掌握相似三角形的判定方法和应用。

4. 课堂练习:让学生独立完成练习题,巩固所学知识。

5. 总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生的学习兴趣。

六、课后作业:1. 完成练习册上的相关题目。

2. 调查生活中相似三角形的应用,下节课分享。

七、教学反思:通过本节课的教学,学生应该能够掌握相似三角形的概念、性质、判定方法和应用。

在教学过程中,要注意引导学生积极参与,鼓励他们提出问题和解决问题。

同时,注重培养学生的逻辑思维能力和团队合作能力,使他们在解决实际问题时能够灵活运用所学知识。

九年级相似三角形 教案

九年级相似三角形 教案

九年级相似三角形教案教案标题:九年级相似三角形教案目标:1. 理解相似三角形的概念和性质;2. 能够判断两个三角形是否相似;3. 能够应用相似三角形的性质解决实际问题。

教学准备:1. 教学工具:投影仪、计算器;2. 教学资源:相似三角形的教学PPT、练习题。

教学过程:一、导入(5分钟)1. 利用投影仪展示一些有趣的图形,引起学生的兴趣,然后提问:“你们知道什么是相似的图形吗?”2. 让学生分享他们对相似图形的理解,然后引导他们思考相似三角形的特点。

二、概念讲解(15分钟)1. 利用PPT向学生详细解释相似三角形的概念和性质,包括比例边、对应角相等等。

2. 通过示例演示如何判断两个三角形是否相似,引导学生发现相似三角形的判定条件。

三、练习与讨论(20分钟)1. 分发练习题给学生,让他们独立完成,并在完成后进行讨论。

2. 针对练习题中的难点问题,进行重点讲解和解答。

四、应用拓展(15分钟)1. 引导学生思考并讨论相似三角形在实际问题中的应用,如影子长度、塔楼高度等。

2. 分组让学生自主设计一个实际问题,并运用相似三角形的知识解决。

五、总结与展望(5分钟)1. 对本节课的内容进行总结,强调相似三角形的重要性和应用价值。

2. 展望下节课的内容,引发学生对下一步学习的兴趣。

教学反思:1. 在导入环节,通过展示有趣的图形可以激发学生的学习兴趣,吸引他们的注意力。

2. 在概念讲解环节,通过示例演示可以帮助学生更好地理解相似三角形的判定条件。

3. 在练习与讨论环节,可以让学生在小组内相互讨论,促进合作学习和思维碰撞。

4. 在应用拓展环节,设计实际问题让学生运用知识解决,可以增强他们的应用能力和创新思维。

5. 在总结与展望环节,要对本节课的重点内容进行简明扼要的总结,让学生明确学习目标。

初中数学相似怎么讲课教案

初中数学相似怎么讲课教案

教案:初中数学相似三角形教学教学目标:1. 知识与技能:使学生理解相似三角形的定义,掌握相似三角形的性质,能够运用相似三角形的性质解决一些实际问题。

2. 情感与态度:培养学生对数学的兴趣,培养学生的探索精神和合作意识。

3. 教学重点与难点:重点是相似三角形的性质,难点是相似三角形的性质的运用。

教学准备:1. 教学工具:黑板、粉笔、多媒体教学设备。

2. 教学素材:三角形图形、实例问题。

教学过程:一、创设情境,引入新课1. 引导学生复习已学过的相似多边形的性质,并提出问题:“在两个相似多边形中,对应边的长度比有什么特点?”2. 学生回答后,教师总结:“对应边的长度比相等,这是相似多边形的一个重要性质。

”二、自主探究,学习相似三角形的性质1. 教师出示一组相似三角形,引导学生观察并总结相似三角形的性质。

2. 学生分组讨论,总结出相似三角形的性质:(1)对应边的长度比相等;(2)对应角的度数相等;(3)对应角的平分线、中线、高线互相重合。

三、巩固练习,运用相似三角形的性质解决问题1. 教师出示练习题,要求学生运用相似三角形的性质解决问题。

2. 学生独立解答,教师巡回指导。

四、课堂小结,总结相似三角形的性质1. 教师引导学生总结相似三角形的性质。

2. 学生总结出相似三角形的性质:(1)对应边的长度比相等;(2)对应角的度数相等;(3)对应角的平分线、中线、高线互相重合。

五、布置作业,巩固所学知识1. 教师布置作业,要求学生运用相似三角形的性质解决问题。

2. 学生独立完成作业,教师批改并给予反馈。

教学反思:本节课通过引导学生复习已学过的相似多边形的性质,引入相似三角形的学习。

在自主探究环节,学生通过观察、讨论,总结出相似三角形的性质。

在巩固练习环节,学生运用相似三角形的性质解决问题,增强了应用意识。

整节课教师注重引导学生主动参与,培养学生的探索精神和合作意识,达到了预期的教学目标。

但在教学过程中,要注意关注学生的学习情况,及时给予指导和反馈。

相似三角形性质教案

相似三角形性质教案

相似三角形性质教案
一、教学目标:
1. 知识与技能目标:了解相似三角形的性质,并能够运用相似三角形的性质解决实际问题。

2. 过程与方法目标:通过引入问题和解决问题的方式进行课堂教学,并通过示范、练习、讨论等方式帮助学生理解和掌握相似三角形的性质。

二、教学重点与难点:
1. 知识重点:相似三角形的性质。

2. 知识难点:通过图像和文字说明相似三角形的性质。

三、教学过程:
1. 引入问题:讲师出示一个问题,比如:“如何判断两个三角形相似?”让学生思考并讨论答案。

2. 导入知识:通过讨论和引导,引出相似三角形的定义和判定条件。

3. 介绍相似三角形的性质:
a. 相似三角形的对应角相等。

b. 相似三角形的对应边成比例。

c. 相似三角形的对应边比例为常数。

4. 示范与练习:
a. 讲师示范解题,通过图像和文字说明如何应用相似三角形的性质解决问题。

b. 学生在教师指导下进行练习,巩固相似三角形的性质。

5. 拓展练习:讲师出示一些复杂的相似三角形问题,让学生通过运用相似三角形的性质解决问题。

6. 总结回顾:讲师和学生一起回顾相似三角形的性质,并总结运用相似三角形性质解决问题的方法。

四、教学用具:
1. PPT演示或黑板。

2. 课堂练习题。

3. 学生作业本。

五、评价和反馈:
1. 教师观察学生在课堂上的表现,并进行评价。

2. 布置相应的作业,检查学生对相似三角形性质的掌握情况。

初中数学《相似三角形》教案

初中数学《相似三角形》教案

相似三角形一、知识概述(一)相似三角形1、对应角相等,对应边成比例的两个三角形,叫做相似三角形.温馨提示:①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的西个条1,即不、小②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛.2、相似三角形对应边的比叫做相似比.温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ ABCs/iABC'的对应边的比,即相似比为k,则左A'B'C'号=^AABC的相似比后,当且仅当它们全等时,才有k=k=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.温馨提示:①定理的基本图形有三种情况,如图其符号语言:•.•DE〃BC, .•.△ABC S/XA DE;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”:③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行, 想相似(二)相似三角形的判定1、相似三角形的判定:判定定理(1):两角对应相等,两三角形相似.判定定理(2):两边对应成比例且夹角相等,两三角形相似.判定定理(3):三边对应成比例,两三角形相似.温馨提示:①有平行线时,用上节学习的预备定理:②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理(1)或判定定理(2):③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.温馨提示:①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2, 一般不用判定定理3判定两个直角三角形相似;②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.③如图,可简单记为:在RtAABC中,CD_LAB,则左ABCs/\CBDs/kACD.(三)三角形的重心1、三角形三条中线的交点叫做三角形的重心.2、三角形的重心与顶点的距离等于它与对边中点的距离的两倍.二、重点难点疑点突破1、寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角:相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边:(2)相似三角形中,一对最长的边(或最短的边)一定是对应边:对应边所对的角是对应角; 对应边所夹的角是对应角.2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来:对一些出现频率较高的图形,要善于归纳和记忆:对相似三角形的 判定思路要善于总结,形成一整套完整的判定方法.如:(1) “平行线型”相似三角形,基本图形见上节图.“见平行,想相似”是解这类题的基本 思路:(2) “相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等 角,找另一对等角或夹等角的两边成比例''是解这类题的基本思路:(3) “旋转型”相似三角形,如图.若图中Z1 = Z2, ZB=ZD(或NCNE), KO A ADE<-A ABC,该图可看成把第一个图中的AADE 绕点A 旋转某一角度而形成的・温馨提示:从基本图形入手能较顺利地找到解决问题的思路和方法,能帮助我们尽快地找到添加的 辅助线.以上“平行线型”是常见的,这类相似三角形的对应元素有较明显的顺序,“相交线 型”识图较困难,解题时要注意从复杂图形中分解或添加辅助线构造出基本图形.三、解题方法技巧点拨1、寻找相似三角形的个数例1、()将两块完全相同的等腰直角三角形摆成如图的样子,假设图形中所有点、线都在同一平而内,D回答下列问题:(1) 图中共有多少个三角形?把它们一一写出来:(2) 图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来.分析:(1)在ZiABC内,有五个三角形,加上Z\ABC与AAFG,共有七个三角形.(2)这是依据相似三角形判定定理来解决的计数问题.由于“不包括全等”,图中还剩五个非直角三角形,考虑到题设中两个三角形摆放的随意性,Z1不一定等于N2,而ZB=Z C=45°, N3、N4都为钝角,又排除AABD与Z\ACE相似,还剩三个三角形,这三个三角形相似.解:⑴共有七个三角形,它们是△ ABD、AABE. AADE. 2XADC、AAEC> AABC与左AFG.(2)有相似三角形,它们是△ ABE^ADAE, ADAE^ADCA, AABE<^>ADCA(或左ABEs^ DAE^ADCA).点拨:①解决这类计数问题,一定要依据图形与定理,全而、周密思考,做到不重不漏, 这类题有利于发散思维的培养和创新意识的形成:②有兴趣的同学可继续探索一下本题中BD、DE、EC三条线段有何关系?2、画符合要求的相似三角形例2、()在大小为4x4的正方形方格中,AABC 的顶点A 、B 、C 在单位正方形的顶点上,请 在图中画出一个左A1B1C1,使得△ AiBiCi<-AABC (相似比不为1),且点A 、Bi 、G 都在单 位正方形的顶点上.分析:设单位正方形的边长为1,则AABC 的三边为庭=2,皿=、而W A 轮=135。

三角形相似的判定教案范文

三角形相似的判定教案范文

三角形相似的判定教案范文一、教学目标:知识与技能:1. 学生能够理解相似三角形的概念,并掌握判定两个三角形相似的方法。

2. 学生能够运用相似三角形的性质解决实际问题。

过程与方法:1. 学生通过观察、操作、交流等活动,培养观察能力、推理能力和解决问题的能力。

2. 学生能够运用几何画板等软件工具,直观地演示和验证相似三角形的判定方法。

情感态度价值观:1. 学生培养对数学的兴趣和好奇心,体验数学的乐趣。

2. 学生通过合作交流,培养团队协作能力和沟通能力。

二、教学内容:1. 相似三角形的定义:学生通过观察两个形状相同的三角形,理解相似三角形的概念,即两个三角形的对应角度相等,对应边成比例。

2. 判定两个三角形相似的方法:a. AA相似定理:如果两个三角形的两个角相等,则这两个三角形相似。

b. SSS相似定理:如果两个三角形的三边成比例,则这两个三角形相似。

c. SAS相似定理:如果两个三角形的两边及其夹角相等,则这两个三角形相似。

3. 相似三角形的性质:a. 相似三角形的对应边成比例。

b. 相似三角形的对应角度相等。

c. 相似三角形的面积比等于对应边长的比的平方。

三、教学重点与难点:重点:1. 学生掌握相似三角形的定义和判定方法。

2. 学生能够运用相似三角形的性质解决实际问题。

难点:1. 学生理解并运用AA相似定理、SSS相似定理和SAS相似定理判定两个三角形相似。

2. 学生运用相似三角形的性质解决实际问题。

四、教学方法与手段:1. 教学方法:采用问题驱动法、案例教学法、合作交流法等。

2. 教学手段:几何画板软件、实物模型、PPT演示等。

五、教学过程:1. 导入:通过展示两个形状相同的三角形,引发学生对相似三角形的兴趣,引导学生思考如何判断两个三角形是否相似。

2. 新课导入:介绍相似三角形的定义,引导学生通过观察、操作、交流等活动,理解相似三角形的概念。

3. 判定方法的学习:a. 引导学生通过几何画板软件演示AA相似定理,让学生直观地感受判定两个三角形相似的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B C D E G F A
B C E D O A x y B C E A H M 初三数学复习教案
课 题:相似三角形(2)
教学目的:综合运用相似三角形的性质,判定定理探究一些以相似为背景的综合性考题。

教学重点:注意数形结合、分类讨论以及转化的思考方法。

教学过程:例题分析
例1.如图,将两块完全相同的等腰直角三角形摆放成如图所示的样子,假设图形中的所有点、线都在同一平面内,回答下列问题: (1)图中共有多少个三角形?把它们一一写出来;
(2)图中有相似(不包括全等)三角形吗?如果有,把它们一
一写出来。

例2.如图,等腰梯形ABCD 中,AD∥B C ,AD=3cm ,BC=7cm ,∠B=60°,P 为下底BC 上一点(不与B 、C 重合),连结AP ,过P 点作PE 交DC 于E ,使得∠APE=∠B
(1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB 的长;
(3)在底边BC 上是否存在一点P ,使得DE :EC=5:3?如果
存在,求BP 的长;如果不存在,请说明理由.
例3.已知:如图,BC 为半圆O 的直径,AD ⊥BC ,垂足为D ,过点B 作弦BF 交AD 于点E ,
交半圆O 于点F ,弦AC 与BF 交于点H ,且AE=BE.
求证:(1)︵AB =︵AF ;
(2)AH ·BC=2AB ·BE.
例4.如图矩形ABCD 的边长AB=2,AD=3,点D 在直线2932+-=x y 上,AB 在x 轴上。

(1)求矩形ABCD 四个顶点的坐标; (2)设直线2932+-=x y 与y 轴的交点为E ,M (x ,0)为x 轴上的一点(x >0),若ΔEOM ∽ΔCBM ,求点M 的坐标; (3)设点P 沿y 轴在原点O (0,0),与H (0,-6)点之间移动,问过P 、A 、B 三点的抛物线的顶点是否在此矩形的内部,请说名理由。

例5.已知如图,ΔABC 的内接矩形EFGH 的一边在BC 上,高AD=16,BC=48。

(1)若EF :FH=5:9,求矩形EFGH 的面积; (2)设EH=x ,矩形EFGH 的面积为y ,写出y 与x 的函数关系式; (3)按题设要求得到的无数多个矩形中,是否能够找到两个不同的矩形,使它们的面积之和等于ΔABC 的面积?若能找到,请你求出它们的边长EH ,若找不到,请你说明理由。

D C B H
E A P B E
F C
A D (1) A C
E
(2) B
例6.如图(1),AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AD 和BC 相交于E ,EF ⊥BD ,垂足为F ,我们可以证明EF CD AB 1
11=+成立(不要求证明),若将图中的垂直改为斜交,如图(2),
AB ∥CD ,AD ,BC ,相交于点E ,过E 作EF ∥AB ,交BD 于F ,则:
(1)EF CD AB 1
11=+还成立吗?如果成立,请给出证明;
如果不成立,请说明理由;
(2)若AB 、CD 是方程0)12(22=++-m x m x 的两根,设EF 为y ,求y 与m 之间的关系式及m 的取值范围。

(3)请给出ABD S ∆,BED S ∆,BDC S ∆间的关系式,并给出证明。

例7.如图1,已知AB 是⊙O 的直径,AB 垂直于弦CD ,垂足为M ,弦AE 与CD 交于F ,则有结论AD 2=AE·AF 成立(不要求证明).
(1)若将弦CD 向下平移至与⊙O 相切于B 点时,如图2,则AE .AF 是否等于AG 2?如果不相等,请探求AE·AF 等于哪两条线段的积?并给出证明.
(2)当CD 继续向下平移至与⊙O 相离时,如图3,在(1)中探求的结论是否还成立,并说明理由
二.同步检测 1.在梯形ABCD 中AD ∥BC,AC 与BD 交于点O ,如果AD:BC=1:3,下列结论正确( ) A.AOD COD S S ∆∆=9 B.AOD ABC S S ∆∆=9 C.AOD BOC S S ∆∆=9 D. AOD DBC S S ∆∆=9 2.已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比为1:4,那么两底的比为( ) A.1:2 B.1:4 C.1:8 D:1:16 3.一油桶高0.8m ,桶内未盛满油,一根木棒长1m ,从桶该小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m ,则桶内油面的高度为__________m 。

4.如图,PA 为圆的切线,A 为切点,PBC 为割线,∠APC 的平分线交AB 于点D ,交AC 于点E ,求证:(1)AD=AE ; (2)AB ·AE=AC ·DB . 5.已知如图,矩形ABCD 中,CH ⊥BD 于点H ,P 为AD 上的一个动点(点P 与点A 、D 不重合),CP 与BD 交于点E ,若CH=60/13,DH :CD=5:13,设AP=x ,四边形ABEP 的面积为y 。

(1)求BD 的长; (2)求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)当四边形ABEP 的面积是ΔPED 面积的5倍时,连接PB ,判断ΔPAB 与ΔPDC 是否相似?如果相似,求出相似比;如果不相似,请说明理由。

A B C D E F
A P
D
C
B F
B C
D E H F A
G
K 6.如图,在矩形ABCD 中,E 为AD 的中点,FE ⊥EC 交AB 于F ,连接FC (AB >AE )。

(1)ΔAEF 与ΔEFC 是否相似?若相似,证明你的结论;若不相似,请说明理由。

(2)设k BC AB =,是否存在这样的k 值,使得ΔAEF ∽ΔBCF ?若存在,
证明你的结论并求出k 值;若不存在,请说明理由。

7.如图,已知点P 是边长为4的正方形ABCD 内一点,且PB=3,BF ⊥BP ,垂足是B 。

请在射线BF 上找一点M ,使以点B 、M 、C 为顶点的三角形与∆ABP 相似(请注意:全等三角形是相似图形的特例)。

8.如图,在∆ABC 中,点E 、F 在BC 边上,点D 、G 分别在AB 、AC 上,四边形DEFG 是矩形,若矩形DEFG 的面积与∆ADG 的面积相等,设∆ABC 的BC 边上的高AH 与DG 相交于点K 。

求BC DG 的值。

9.如图,正∆ABC 的边长为a ,D 为AC 边上的一个动点,延长AB 至E ,使BE=CD ,连接DE ,交BC 于点P 。

(1)求证:DP=PE ; (2)若D 为AC 的中点,求BP 的长。

10.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,对角线AC ⊥BD ,垂足为E , AD=BD ,过点E 作EF ∥AB 交AD 于F 。

求证:(1)AF=BE ; (2)EC AE AF •=2 C E D P A B A D E F B C。

相关文档
最新文档