传感器的信号有哪几种类型
传感器的种类
传感器的种类(一)电阻式电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。
主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。
(二)变频功率变频功率传感器通过对输入的电压、电流信号进行交流采样,再将采样值通过电缆、光纤等传输系统与数字量输入二次仪表相连,数字量输入二次仪表对电压、电流的采样值进行运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。
(三)称重称重传感器是一种能够将重力转变为电信号的力→电转换装置,是电子衡器的一个关键部件。
能够实现力→电转换的传感器有多种,常见的有电阻应变式、电磁力式和电容式等。
电磁力式主要用于电子天平,电容式用于部分电子吊秤,而绝大多数衡器产品所用的还是电阻应变式称重传感器。
电阻应变式称重传感器结构较简单,准确度高,适用面广,且能够在相对比较差的环境下使用。
因此电阻应变式称重传感器在衡器中得到了广泛地运用。
(四)电阻应变式传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。
电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。
半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。
(五)压阻式压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。
其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。
当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。
(六)热电阻热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
汽车电子信号的五大类型
当今汽车系统中存在五种基本类型的电子信号,把这五种基本的汽车电子信号称为“五要素”。
“五要素”可以看成是控制系统中各个传感器,控制电脑和其它设备之间相互通迅的基本语言,就像英语的字母,它们都有不同的“发音”。
正是“五要素”中各自不同特点,构成用于不同通信的目的。
当今汽车电子信号的五大基本类型:(1)直流(DC)信号在汽车中产生直流(DC)信号的传感器或电源装置有--蓄电池电压或控制电脑(PCM)输出的传感器参号电压。
模拟传感器信号--发动机冷却水温度传感器、燃油温度传感器、进气温度传感器、节气门位置传感器、废气温再循环压强和位置,翼板式或热丝式空气流量计、真空和节气门开关,以及通用汽车、克莱斯勒汽车和亚洲汽车的进气压力传感器。
(2)交流(AC)信号在汽车中产生交流(AC)信号的传感器和装置有:车速传感器(VSS)、防滑制动轮速传感器、磁电式曲轴转角(CKP)和凸轮轴(CMP)传感器、从模拟压力传感器(MAP)信号得到的发动机真空平衡波形、爆震传感器(KS)。
(3)频率调制信号在汽车中产生可变频率信号的传感器和装置有:数字式空气流量计、福特数字式进气压力传感器、光电式车速传感器(VSS)、霍尔式车速传感器(VSS)、光电式凸轮轴和曲轴转角(CKP)传感器、霍尔式凸轮轴(CAM)和曲轴转角(CKP)传感器。
(4)脉宽调制信号在汽车中产生脉宽调制信号的电路或装置有:初级点火线圈、电子点火正时电路、废气再循环控制(EGR)、净化、涡轮增压和其它控制电磁阀、喷油嘴、怠速控制马达和电磁阀。
(5)串行数据(多路)信号若汽车中具备有自诊断能力和其它串行数据送给能力的控制模块,则串行数据是由发动机控制电脑(PCM),车身控制电脑(BCM)和防滑制动系统(ABS)或其控制模块产生。
汽车电子信号的五个判定依据已经知道了汽车电子信号的“五要素”--直流、交流、频率、调制、脉宽调制和串行数据信号。
现在再回头看一下汽车电子语言的难题--五个“判据”即五种判定尺度。
数码相机传感器类型介绍
数码相机传感器类型介绍传感器是数码相机中最核心的部件之一,它承担着将光信号转换为数字信号的重要任务。
相机传感器的类型多种多样,不同的传感器类型在像素、噪点、动态范围等方面都有所不同。
本文将介绍几种常见的数码相机传感器类型。
一、CMOS传感器CMOS传感器即互补金属氧化物半导体传感器,是目前数码相机中最常见的传感器类型。
CMOS传感器具有很高的像素密度,可以实现更高的分辨率。
此外,CMOS传感器具有低功耗、高帧率和良好的性价比等优势。
相比于其他类型的传感器,CMOS传感器对电源的需求更低,延长了相机的续航时间。
二、CCD传感器CCD传感器即电荷耦合器件传感器,是早期数码相机中常见的传感器类型。
CCD传感器通过将光信号转换为电荷信号来进行图像采集,后续再将电荷信号转换为数字信号。
CCD传感器在传感器尺寸较小时,可以获得较低的噪点和较宽的动态范围。
然而,CCD传感器相比于CMOS传感器来说更加昂贵,功耗也更高,限制了其在现代数码相机中的广泛应用。
三、FOVEON传感器FOVEON传感器是Sigma相机上采用的一种特殊传感器,它是基于颜色分隔原理工作的。
FOVEON传感器利用层层叠加的感光元件,每一层元件对应一种颜色的光信号。
这种结构允许FOVEON传感器准确获取图像中的颜色信息,从而提供更具真实感的图像效果。
然而,FOVEON传感器在像素密度和高ISO性能方面相对较低,限制了其在高端相机中的应用。
四、BSI传感器BSI传感器即背照式传感器,是近年来相机中的新兴传感器技术。
与传统的传感器不同,BSI传感器通过将电路面朝上直接与光接触,从而提高了光的接收效率。
BSI传感器在低光条件下具有更好的表现,能够提供更低的噪点和更高的动态范围。
此外,BSI传感器还具有更高的像素密度和更快的数据传输速度,进一步提升了相机的性能。
总结:不同类型的数码相机传感器各具特点,在选择相机时需要根据个人需求和使用场景作出合理的选择。
汽车电子信号的五大类型
当今汽车系统中存在五种基本类型的电子信号,把这五种基本的汽车电子信号称为“五要素”。
“五要素”可以看成是控制系统中各个传感器,控制电脑和其它设备之间相互通迅的基本语言,就像英语的字母,它们都有不同的“发音”。
正是“五要素”中各自不同特点,构成用于不同通信的目的。
当今汽车电子信号的五大基本类型:(1)直流(DC)信号在汽车中产生直流(DC)信号的传感器或电源装置有--蓄电池电压或控制电脑(PCM)输出的传感器参号电压。
模拟传感器信号--发动机冷却水温度传感器、燃油温度传感器、进气温度传感器、节气门位置传感器、废气温再循环压强和位置,翼板式或热丝式空气流量计、真空和节气门开关,以及通用汽车、克莱斯勒汽车和亚洲汽车的进气压力传感器。
(2)交流(AC)信号在汽车中产生交流(AC)信号的传感器和装置有:车速传感器(VSS)、防滑制动轮速传感器、磁电式曲轴转角(CKP)和凸轮轴(CMP)传感器、从模拟压力传感器(MAP)信号得到的发动机真空平衡波形、爆震传感器(KS)。
(3)频率调制信号在汽车中产生可变频率信号的传感器和装置有:数字式空气流量计、福特数字式进气压力传感器、光电式车速传感器(VSS)、霍尔式车速传感器(VSS)、光电式凸轮轴和曲轴转角(CKP)传感器、霍尔式凸轮轴(CAM)和曲轴转角(CKP)传感器。
(4)脉宽调制信号在汽车中产生脉宽调制信号的电路或装置有:初级点火线圈、电子点火正时电路、废气再循环控制(EGR)、净化、涡轮增压和其它控制电磁阀、喷油嘴、怠速控制马达和电磁阀。
(5)串行数据(多路)信号若汽车中具备有自诊断能力和其它串行数据送给能力的控制模块,则串行数据是由发动机控制电脑(PCM),车身控制电脑(BCM)和防滑制动系统(ABS)或其控制模块产生。
汽车电子信号的五个判定依据已经知道了汽车电子信号的“五要素”--直流、交流、频率、调制、脉宽调制和串行数据信号。
现在再回头看一下汽车电子语言的难题--五个“判据”即五种判定尺度。
传感器分类方法有几种类型
传感器分类方法有几种类型传感器分类方法有几种类型
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
传感器的分类方式有很多种,根据不同的原理来区分:
1、按被测物理量分:如:力,压力,位移,温度,角度传感器等;
2、按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;
3、按照传感器转换能量的方式分:
(1)能量转换型:如:压电式、热电偶、光电式传感器等;
(2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;
4、按照传感器工作机理分:
(1)结构型:如:电感式、电容式传感器等;
(2)物性型:如:压电式、光电式、各种半导体式传感器等;
5、按照传感器输出信号的形式分:
(1)模拟式:传感器输出为模拟电压量;
(2)数字式:传感器输出为数字量,如:编码器式传感器。
6、根据能量转换原理可分为:
(1)有源传感器:有源传感器将非电量转换为电能量,如电动势、电荷式传感器等;
(2)无源传感器:无源程序传感器不起能量转换作用,只是将被测非电量转换为电参数的量,如电阻式、电感式及电容光焕发式传感器等。
传感器教案中器件的分类
传感器教案中器件的分类引言本文将介绍传感器教案中常见的器件分类。
在传感器教学中,了解不同种类的器件及其特点对于学生研究和实际应用有着重要的意义。
分类一:模拟传感器模拟传感器是一类将物理量转换为模拟电信号输出的器件。
常见的模拟传感器包括温度传感器、压力传感器、光敏传感器等。
模拟传感器的输出信号是连续变化的,一般为电压或电流。
它们通常需要与模拟电路配合使用,以将模拟信号转换为数字信号进行处理或显示。
分类二:数字传感器数字传感器是一类将物理量转换为数字信号输出的器件。
与模拟传感器不同,数字传感器的输出信号是离散的数字值。
常见的数字传感器有温湿度传感器、气体传感器、陀螺仪等。
数字传感器通常具有较高的精确度和抗干扰能力,并且可以直接与数字电路进行连接,方便数字信号的处理和存储。
分类三:智能传感器智能传感器是集成了处理器和存储器的传感器。
它们具有自主处理和决策的能力,能够对采集到的数据进行实时分析和反馈。
智能传感器可以通过通信接口与其他设备或系统进行数据交换,实现更复杂的功能。
例如,智能温度传感器可通过网络上传温度数据到云平台,实现远程监测和控制。
分类四:功率传感器功率传感器是一类用于测量电力系统中功率参数的器件。
常见的功率传感器有电流传感器和电压传感器。
电流传感器用于测量电流大小,而电压传感器用于测量电压值。
功率传感器在电力系统的维护和管理中起着重要的作用,可以帮助提高能源利用效率和保障电力系统的安全运行。
结论通过对传感器教案中器件的分类介绍,我们可以更好地理解不同种类的传感器及其特点。
模拟传感器、数字传感器、智能传感器和功率传感器在实际应用中各具优势,适用于不同的场景和需求。
传感器种类
传感器种类感知世界的神奇工具——传感器,是现代科技中不可或缺的一部分。
传感器以其敏锐的感知能力,广泛应用于各个领域,包括工业、医疗、汽车、环境监测等。
传感器的种类繁多,根据其工作原理和应用领域的不同,可以分为多种类型。
光学传感器光学传感器是利用光学原理和材料进行测量和控制的一类传感器。
包括光电传感器、光纤传感器、激光传感器等。
光学传感器适用于光学领域和精密测量领域,广泛应用于照明、图像识别、光学通信等方面。
声学传感器声学传感器是通过感知声波信号来进行测量和控制的传感器。
常见的声学传感器有麦克风、声纳、超声波传感器等。
声学传感器被广泛运用于音频采集、声音控制、超声波成像等领域。
温度传感器温度传感器是测量温度值的传感器,根据测量原理可以分为接触式和非接触式温度传感器。
常见的温度传感器有热电偶、热敏电阻、红外线温度传感器等。
温度传感器在工业控制、农业、医疗等领域有着重要的应用。
加速度传感器加速度传感器是用来测量物体运动加速度的传感器,常用于惯性导航、结构健康监测、智能手机陀螺仪等领域。
加速度传感器可以分为压阻式、电容式和压电式等多种类型。
湿度传感器湿度传感器是测量大气湿度水平的传感器,用来确定空气湿度,广泛应用于气象观测、温室控制、空气质量监测等领域。
常见的湿度传感器有电容式湿度传感器、电阻式湿度传感器等。
传感器种类繁多且不断发展,随着科技的进步和创新,传感器在未来将会有更广泛的应用领域和更高的精确度要求。
传感器的发展不仅推动着科技的进步,也改变着我们的生活方式,让我们可以更加便捷、智能地感知和控制周围的世界。
传感器分类
传感器分类传感器是一种能够感知和测量物理量并将其转化为电信号的设备。
它们在现代科技中扮演着重要的角色,广泛应用于工业、农业、医疗、交通等领域。
根据工作原理和应用范围的不同,传感器可以分为多个分类。
首先,按照测量的物理量可以将传感器分类为温度传感器、压力传感器、光传感器、湿度传感器、加速度传感器、陀螺仪传感器、磁力传感器、电流传感器、电压传感器、位移传感器等。
这些传感器能够感知和测量特定的物理量,并将其转化为电信号输出。
其次,按照工作原理的不同,传感器可以分为电阻式传感器、电容式传感器、电感式传感器、压阻式传感器、磁阻式传感器、霍尔传感器等。
这些传感器利用电阻、电容、电感、压阻、磁阻等原理实现对物理量的测量和感知。
再次,根据传感器的应用范围不同,可以将传感器分为工业传感器、农业传感器、医疗传感器、交通传感器等。
工业传感器用于工业生产中的自动化控制和检测;农业传感器主要用于农作物的生长环境监测和农业机械的智能化控制;医疗传感器用于医疗设备的监测和患者的生理参数测量;交通传感器用于交通管理和车辆控制中。
此外,根据传感器的工作方式不同,可以将传感器分为主动传感器和被动传感器。
主动传感器包括主动式红外传感器、主动式超声波传感器等,它们需要发射信号并接收返回的信号来达到测量的目的;被动传感器包括被动式红外传感器、光敏电阻等,它们只需接收环境中发出的信号进行测量。
另外,根据传感器的输出信号类型可以将传感器分为模拟传感器和数字传感器。
模拟传感器输出连续变化的模拟信号,常见的有电压信号和电流信号;数字传感器输出离散的数字信号,常见的有脉冲信号和串行数据信号。
综上所述,传感器根据测量的物理量、工作原理、应用范围、工作方式和输出信号类型的不同可以进行多种分类。
这些传感器在现代科技中发挥着重要的作用,为我们提供了丰富的数据和信息,推动着科技的迅猛发展。
随着科技的不断进步,传感器的应用领域将会更加广泛,功能和性能也将不断提升,为人们的生活带来更多的便利和创新。
传感器复习思考题
1、什么是测试?什么是测量?说明二者的区别。
测试是人类认识客观世界的手段,是科学研究的基本方法,首先是检测出被测对象的有关信息,然后加以处理,最后将其结果提供给观察者或输入其他信息处理装置、控制系统。
测量是以确定被测物属性量值为目的的全部操作。
区别:测试技术是属于科学范畴,是具有实验性质的测量,也可以理解为测量和实验的综合。
2、说明测试过程和测试系统的一般组成。
测试过程:以适当的方式激励被测对象、信号的检测和转换、信号的调理,分析与处理,显示与记录,以及必要时以电量形式输出测量结果。
测试系统:被测对象,传感器,信号调理,传输信号处理,显示记录,反馈、控制,激励装置。
3、什么是信号的频率成分?信号的基本属性是什么?这里所说的信号是指动态信号,称简谐波为动态信号的频率成分,可分为两类:一类是频率相离散的简谐波,称为离散频率成分;另一类是频率相连续的简谐波,称为连续频率成分。
基本属性:信号可以分解为许多乃至无穷多个不同频率的简谐波,或者说信号由许多乃至无穷多个简谐波叠加而成。
4、信号有哪些分类方式?如何分类?(1)按频率成分是否具有确定性,将信号分为两类:即确定性信号与非确定性信号。
而确定性信号根据频率成分离散与否分为两大类:第一类是周期信号和准周期信号;第二类是非周期信号。
(2)可分为连续信号和离散信号。
(3)能量信号和功率信号。
5、什么是能量信号,什么是功率信号?(7页)有一电压信号x(t),加到电阻R上,其瞬时功率为P(t)=x^(t)/R,当R=1时,P(t)=x^(t)。
瞬时功率对时间积分就是信号在该积分时间内的能量。
人们不考虑信号实际的量纲,而把信号x(t)的平方x^(t)及其积分分别称为信号的功率和能量。
能量信号:当x(t)满足时,则认为信号的能量是有限的,并称为能量有限信号,简称能量信号。
功率信号:若信号在区间(-∞,+ ∞)的能量是无限的,,但它在有限区间(t ,t )的平均功率是有限的,,这种信号称为功率有限信号,或功率信号。
传感器的主要知识点
绪论一、传感器的定义、组成、分类、发展趋势能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件构成。
如果传感器信号经信号调理后,输出信号为规定的标准信号(0~10mA,4~20mA;0~2V,1~5V;…),通常称为变送器,分类:按照工作原理分,可分为:物理型、化学型与生物型三大类。
物理型传感器又可分为物性型传感器和结构型传感器。
按照输入量信息:按照应用范围:传感器技术: 是关于传感器的研究、设计、试制、生产、检测和应用的综合技术.发展趋势: 一是开展基础研究,探索新理论,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化、多功能化与智能化。
1.发现新现象;2.发明新材料;3.采用微细加工技术;4.智能传感器;5.多功能传感器;6.仿生传感器。
二、信息技术的三大支柱现在信息科学(技术)的三大支柱是信息的采集、传输与处理技术,即传感器技术、通信技术和计算机技术。
课后习题1、什么叫传感器,它由哪几部分组成?它们的作用与相互关系?传感器(transducer/sensor):能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置(国标GB7665—2005)。
通常由敏感元件和转换元件组成。
敏感元件:指传感器中能直接感受或响应被测量并输出与被测量成确定关系的其他量(一般为非电量)部分。
转换元件:指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的可用输出信号(一般为电信号)部分。
信号调理电路(Transduction circuit) :由于传感器输出电信号一般较微弱,而且存在非线性和各种误差,为了便于信号处理,需配以适当的信号调理电路,将传感器输出电信号转换成便于传输、处理、显示、记录和控制的有用信号。
第一章传感器的一般特性1.传感器的基本特性动态特性静态特性2.衡量传感器静态特性的性能指标(1)测量范围、量程(2)线性度%100max⨯∆±=⋅SF L y δ 传感器静态特性曲线及其获得的方法传感器的静态特性曲线是在静态标准条件下进行校准的。
传感器与测试技术 3 信号的分类与描述
T0 / 2 x(t)dt
T0 / 2
各谐波分量的幅值和初相角分别为:
An an2 bn2
n
arctan(
an bn
)
3.2 周期信号的频谱
② 与谐波形式相应的频谱
频谱图的纵坐标分别为An和φn,横坐标为ω。 其中 幅值谱图, An—ω图;
相位谱图,φn—ω图。 式中ω0——基频;
nω0——n次谐频; An sin (nω0t +φn)——n次谐波。 各谐波成分的频率都是ω0的整数倍,因此谱线是离散的。
1 w(t) 0
t T 2 t T 2
3.3 非周期信号的频谱
解: W ( f )
w(t)e j2πftdt
T /2
[cos(2πft) jsin(2πft)]dt
T / 2
2
T /2
c os (2πf t)dt
T
s in(πf T )
0
πf T
T sin c(πfT)
其中森克函数:sincx=sinx/x。 随着x的增加,森克函数以2为周期作衰减振荡;它是偶函数, 并且在n(n=1, 2, …)处为0。
x(t)e dt
T0 / 2
(an jbn ) / 2 cn ejn
幅值谱 相位谱
cn
an2
bn 2
/
2
1 2
An
n
arctan
bn an
3.2 周期信号的频谱
▪ 例2-2 对如图所示周期方波,以复指数展开形式求频谱,并做 频谱图。
解:
周期方波
1
c0 T0
T0 / 2 x(t)dt 0
瞬变信号可以看成周期无穷大的周期信号,即
测量类传感器输出的信号,听说过四个你就是行家了
测量类传感器输出的信号,听说过四个你就是行家了测量类传感器有很多种,我们经常听见的都测距、位移、模拟量等,这些传感器有个共同的特征,就是可以实时的给出被测物位置或者位移的信息。
那么测量类传感器都有哪些类型的输出?这些输出又有什么特点呢?今天小编就和大家一起来看看。
模拟量电压:模拟量电压信号输出的传感器通常输出电压为0-10V,也有0-5V的,模拟量电压输出的信号优点就在于数据处理转换起来比较方便,电压与距离信息如下图所示;还有就是模拟量电压的输出速度比较快。
通常分辨率为在整个范围内分为2的11次方到2的13次方,如果精度特别高的,分辨率会更好,数据位会更多。
模拟量电压的缺点就是其信号容易受到外界噪声的干扰(相对于电流型)。
需要专门的模拟量电压模块进行数据采集。
输出电流与距离的关系模拟量与PLC连接方法模拟量电流:模拟量电流用的最多的就是4-20mA,其输出原理及分辨率等都和模拟量电压一样。
优点如下:速度快,不容易受到外部噪声干扰。
缺点:数据处理转换起来相对于电压型麻烦一点。
需要专门的模拟量电流模块进行数据采集。
输出电流与距离的关系串口485:串口485的信号质量好,精确度高,传输距离远。
但是速度慢,而且对于使用者而言,需要使用收发报文的方式进行信号处理,相对来说较为麻烦一点,尤其对于接触不多的人比较难以理解。
需要专门的485通讯模块采集信号。
串口模块串口232:串口232信号信号质量好,精确度高,速度比485的快。
但是传输距离近,而且对于使用者也同样存在稍微难理解的问题,对于接触不多的工作人员比较难以掌握。
需要专门的232模块进行输出采集。
IO-LINK输出:这种是目前比较时髦的一种输出类型,很多传感器厂家都在生产IO-LINK模块,通常带IO-LINK输出信号的传感器先连接到这个IO-LINK的模块上,然后模块通过总线的形式与上位机通讯。
IO-LINK的优点在于:传输效率高,精确度好,可以随时对传感器进行设置,不仅可以监控传感器的输出状态,还可以监控传感器是否损坏(一般的直接接到PLC的传感器我们只能知道是否接收到其输出信号,但是传感器是否损坏我们是不知道的)。
传感器和几种信号的处理
2. 传感器的分类
常见的传感器分类方法有三种:
按传感器检测的物理量分类 按传感器工作原理分类 按传感器输出信号的性质分类
传感器和几种信号的处理
按传感器所检测的物理量分类有:
位移、角度、转速、温度、压力、流量、物 位、气体成份、电量等传感器。
传感器和几种信号的处理
按传感器工作原理分类 :
传感器和几种信号的处理
也可将几对光电藕合器封装在一起,如: TIP521-4
传感器和几种信号的处理
有些光电藕合器采用了两个反向并联的 发光二极管,可以支持交流输入,如: TPL320
传感器和几种信号的处理
有些光电藕合器中的光敏三极管基极引 出在外,可通过设置偏置来改善线性、调 整电流传输率CTR等,相应的型号有 4N25/4N28
在开关或继电器闭合与断开时,还存在抖 动问题,它是由于机械触点的弹性作用所 致。解决这类问题的方法很多,常用RC 吸收电路或双稳态电路消除
传感器和几种信号的处理
7.2.2 隔离技术
现场开关与计算机输入接口之间,一般有较长 传输线路,这就容易引入干扰。 为提高系统可靠性,输入端常采用具有安全保 护和抗干扰双重作用的隔离技术。 隔离双方无直接电路联系,各自用独立电源和 公共接地端。 常见的隔离技术有:
敏感元件是能够灵敏地感受被测变量,并作出响应 的元件。
传感器和几种信号的处理
例如
弹性膜盒能感受压力的高低而引起形变, 形变程度就是对压力高低的响应,因此, 弹性膜盒是一种压力敏感元件。 铂电阻能感受温度的升降而改变其阻值, 阻值的变化就是对温度升降的响应,所 以铂电阻就是一种温度敏感元件。
传感器和几种信号的处理
传感器和几种信号的处理
五种常用的传感器的原理和应用
五种常用的传感器的原理和应用当今社会,传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。
可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。
今天带大家来全面了解传感器!一、传感器定义传感器是复杂的设备,经常被用来检测和响应电信号或光信号。
传感器将物理参数(例如:温度、血压、湿度、速度等)转换成可以用电测量的信号。
我们可以先来解释一下温度的例子,玻璃温度计中的水银使液体膨胀和收缩,从而将测量到的温度转换为可被校准玻璃管上的观察者读取的温度。
二、传感器选择标准在选择传感器时,必须考虑某些特性,具体如下:1.准确性2.环境条件——通常对温度/湿度有限制3.范围——传感器的测量极限4.校准——对于大多数测量设备而言必不可少,因为读数会随时间变化5.分辨率——传感器检测到的最小增量6.费用7.重复性——在相同环境下重复测量变化的读数三、传感器分类标准传感器分为以下标准:1.主要输入数量(被测量者)2.转导原理(利用物理和化学作用)3.材料与技术4.财产5.应用程序转导原理是有效方法所遵循的基本标准。
通常,材料和技术标准由开发工程小组选择。
根据属性分类如下:·温度传感器——热敏电阻、热电偶、RTD、IC等。
·压力传感器——光纤、真空、弹性液体压力计、LVDT、电子。
·流量传感器——电磁、压差、位置位移、热质量等。
·液位传感器——压差、超声波射频、雷达、热位移等。
·接近和位移传感器——LVDT、光电、电容、磁、超声波。
·生物传感器——共振镜、电化学、表面等离子体共振、光寻址电位测量。
·图像——电荷耦合器件、CMOS·气体和化学传感器——半导体、红外、电导、电化学。
·加速度传感器——陀螺仪、加速度计。
霍尔传感器的类型
霍尔传感器的类型霍尔传感器是一种非接触式传感器,它利用霍尔效应来测量磁场的强度和方向,从而将电信号转换为磁信号。
霍尔传感器广泛应用于医疗、机械、工业自动化等领域。
根据其工作原理和结构,霍尔传感器可以分为不同类型。
本文将介绍几种常见的霍尔传感器类型。
1. 顺磁性霍尔传感器顺磁性霍尔传感器也称为磁电传感器,其工作基于顺磁性效应。
其结构通常是在一个铁磁性钢圈上覆盖一层金属或半导体霍尔元件。
当有参考磁场作用于钢圈时,会引起霍尔元件产生电压,进而输出电信号。
2. 垂直磁场霍尔传感器垂直磁场霍尔传感器的结构类似于顺磁性霍尔传感器,但它们是在一块硅芯片上制成的,而不是钢圈。
在硅芯片上,有一定数量的霍尔元件和电路被固定在磁场垂直于芯片的表面上。
当磁场垂直于芯片表面时,霍尔元件会产生电压信号。
3. 旋转速度霍尔传感器旋转速度霍尔传感器通常被用来测量旋转物体的速度和方向。
它由霍尔元件、磁铁和磁环组成。
当旋转的物体与霍尔元件之间的磁铁和磁环交替产生北极和南极磁场时,霍尔元件会产生电压信号。
由于旋转速度与电压信号呈正比关系,因此可以根据电压信号确定旋转速度。
4. 三维霍尔传感器三维霍尔传感器可以测量空间磁场的三个方向。
它的结构是在一块半导体芯片上镶嵌有三个方向的霍尔元件和电路。
当空间磁场作用于三个方向的霍尔元件上时,可以测量空间磁场的三个方向。
5. 焦耳效应霍尔传感器焦耳效应霍尔传感器是一种热电传感器,它通过测量电流和温度之间的关系来确定磁场的强度和方向。
在霍尔元件上,通过引入电流,使其受热,从而产生焦耳效应。
然后,通过测量电势差和电流数值之间的关系,可以测量磁场强度和方向。
总结来说,霍尔传感器是一种非常有用的传感器,在许多领域都有广泛的应用。
不同类型的霍尔传感器可以根据实际需要进行选择。
通过了解不同类型的霍尔传感器及其工作原理,可以更好地了解霍尔传感器的应用和优势。
光电传感器的种类其工作原理
光电传感器的种类其工作原理
光电传感器是一种利用光电效应来检测光信号的传感器。
它可以将光信号转换为电信号,用于测量、检测或控制。
根据工作原理的不同,光电传感器可以分为以下几种主要类型:
1. 光敏电阻传感器:光敏电阻传感器是一种利用光敏电阻的电阻值对光强度变化进行测量的传感器。
光敏电阻工作原理基于光电效应,当光照强度增加时,光敏电阻的电阻值减小,反之亦然。
2. 光电二极管传感器:光电二极管传感器是一种利用光电二极管对光信号进行检测的传感器。
光电二极管工作原理是利用PN结反向偏置时产生的光电流来测量光强度。
3. 光电三极管传感器:光电三极管传感器是一种利用光电三极管对光信号进行检测的传感器。
光电三极管工作原理类似于光电二极管,但相比之下具有更高的灵敏度和响应速度。
4. 光电开关传感器:光电开关传感器包括发光器和接收器两部分,通过光束在两者之间的中断或遮挡来进行光信号的检测。
该传感器工作原理是当光束中断时,接收器检测到的光强度减小,通过判断光强度的变化来实现开关的触发。
5. 光电编码器传感器:光电编码器传感器利用光电调制器和接收器进行光信号的编码和解码。
工作原理是通过在编码盘上产生特定的光模式,接收器检测到的光信号模式来确定位置或运动状态。
总的来说,光电传感器的工作原理都是基于光电效应,利用光信号的特性进行测量和控制。
具体的工作原理和性能特点会根据不同的光电传感器类型而有所不同。
传感器按工作原理分类
传感器按工作原理分类
传感器按工作原理分类可以分为以下几种:
1. 感应型传感器:根据感应现象来工作,包括电感传感器、电容传感器和磁阻传感器等。
电感传感器通过检测电感变化来测量物理量,电容传感器则是利用电容变化来检测物理量,而磁阻传感器则是通过磁阻的变化来测量物理量。
2. 光学传感器:利用光学原理来检测物理量的传感器,包括光敏传感器、光电传感器和光纤传感器等。
光敏传感器是利用光的变化来检测物理量,光电传感器则是通过光电效应来测量物理量,而光纤传感器是利用光纤的光信号变化来检测物理量。
3. 声学传感器:基于声音原理来工作的传感器,如麦克风和声压传感器等。
麦克风是将声音转换成电信号的传感器,而声压传感器则是通过测量气体或液体的声压来检测物理量。
4. 温度传感器:用于测量温度的传感器,包括热电偶、热敏电阻和红外线传感器等。
热电偶通过测量两个不同材料的接触温度差来测量温度,热敏电阻则是通过温度引起的电阻变化来检测温度,而红外线传感器则是通过测量物体辐射出的红外线来测量温度。
5. 加速度传感器:用于测量物体加速度的传感器,常见的有压电传感器和微机械加速度计等。
压电传感器通过测量压电材料受力产生的电荷来检测加速度,微机械加速度计则是通过微机械结构的变形来测量加速度。
以上仅为部分按工作原理分类的传感器,实际上还有其他种类的传感器,如压力传感器、湿度传感器等。
不同类型的传感器有不同的工作原理和应用领域。
传感器的种类及选用原则
传感器的种类及选用原则一、传感器的种类国家标准GB/T 7665-2005对传感器的定义为“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
”它是一种检测装置,能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的输出,满足信息的传输、存储、显示、记录和控制要求。
常用传感器的分类有以下4种:1.按传感器的物理量分类按传感器的物理量可分为位移、力、速度、温度、流量和气体成分等传感器。
2.按传感器工作原理分类按传感器工作原理可分为电阻、电容、电感、电压、霍尔、光电、光栅和热电偶等传感器。
3.按传感器输出信号的性质分类按传感器输出信号的性质可分为:输出为开关量(“1”和“0”)的开关型传感器;输出为模拟量的模拟型传感器;输出为脉冲或代码的数字型传感器。
4.按其用途分类1)压力检测。
压力传感器、触力传感器、微压传感器、压差传感器等。
2)温度检测。
热电阻温度传感器、热电偶温度传感器等。
3)液位检测。
光电式液位传感器、机械浮子液位传感器、伸缩液位传感器等。
4)电流检测。
电磁式电流传感器、霍尔磁平衡式电流传感器等。
5)速度检测。
脉冲编码速度传感器、永磁发电速度传感器等。
6)位置检测。
电位计位置传感器、编码器位置传感器等。
二、传感器选用的一般原则现代传感器在原理和结构上千差万别,如何根据具体的测量对象、测量目的以及测量环境合理地选用传感器。
1.根据测量对象与测量环境确定传感器类型即使是测量同一物理量,也有多种原理的传感器可供选用。
哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件加以考虑。
2.灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。
因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。
但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声就容易混入,也会被传感器放大,影响测量精度。
因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入干扰信号。
传感技术种类
传感技术种类繁多,以下是一些常见的分类:
根据传感器功能划分,可以分为物理型传感器、化学型传感器、生物型传感器三类。
根据传感器工作原理,可分为结构型和物性型两大类。
结构型传感器是利用物理学场的定律(例如,电磁场、力场等)构成的传感器;物性型传感器是利用材料本身的物性(例如,热电效应、光敏效应等)工作的传感器。
根据传感器输出信号类型,可分为模拟传感器和数字传感器。
模拟传感器输出模拟信号,数字传感器输出数字信号。
根据传感器输出信号是否需要经过转换,可分为能量转换型和能量控制型两类。
能量转换型传感器输出的是传感器本身的能量信号,通常不需另加放大电路即可直接测量;能量控制型传感器输出的是受控于输入信号的能量信号,必须配用一定的转换电路才能输出信息。
根据传感器结构特点,可分为紧凑型、厚膜型、薄膜型、平面型、小型化、集成化、智能化等类型。
根据传感器材料,可分为半导体传感器、陶瓷传感器、石英传感器、光导纤维传感器、电解质传感器等。
根据传感器工作状态,可分为接触式和非接触式两类。
接触式传感器需要与被测物体直接接触;非接触式传感器则不需要与被测物体接触,而是通过波束、射线、红外线、超声波等能量方式与被测物体相互作用。
总之,传感技术的种类非常多,具体使用时需要根据实际需求选择适合的种类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.传感器的信号有哪几种类型?
答:第一模拟信号,其信号强弱表示被测量的大小。
第二数字信号,其频率快慢表示被测量的大小。
2. 与发动机单独控制相比,集中控制有哪些优点?
答:集成速度越来越高,微机处理速度的不断提高和存储容量的增加使其控制控制功能大大增强,并具有各种备用功能;结构、线路简单,成本低,维修方便,控制效果好。
2.电子控制单元有哪些功能?
答:(1)接收传感器或其他装置的输入信息,给传感器提供参考(基准)电压:2V、5V、9V、12V(个别8V),家输入的信息转变为计算机所能接受的信号。
(2)存储、计数、分析处理信息,存储处理程序,存储该车型的特性参数,存储运算中的数据(随存随取)及故障信息。
(3)运算分析。
根据信息参数求出执行命令数值,将输出的信号与标准值对比并查出故障。
(4)输出执行命令。
把弱信号变为强的执行命令,输出故障信息。
(5)自我修正功能(自我适应功能)
4. 汽车电控系统由哪几部分组成?
答:汽车电子控制系统是自动控制系统中的一种,它主要由信号输入装置即传感器(Sensor)、电子控制单元(ECU、ECM、ECA)、执行器(Actuator)等组成。