(优选)应用总结电子元器件失效分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、失效模式与失效机理 失效模式与失效机理的对应关系
失效模式与失效机理
失效模式
开路
主要失效机理
EOS、ESD、电迁移(EM)、应力迁移(SM)、腐 蚀、键合点脱落、紫斑、机械应力、热变应力
短路(漏电) 参漂 功能失效
pn结缺陷、pn结穿钉、EOS、介质击穿(TDDB效应、 针孔缺陷)、水汽、金属迁移、界面态、离子导电
氧化层电荷、钠离子玷污、表面离子、芯片裂纹、过 载流子(HC)、辐射损伤
EOS、ESD、Latch-Up
失效模式与失效机理
各相关失效机理的概念和定义简述如下: 3.1、过电应力EOS——指元器件承受的电流、电压应力或功率超过其
允许的最大范围。 过电应力的来源:
(1)电浪涌损伤 瞬间 瞬时功率很大
电浪涌来源有
失效模式与失效机理
(3)多余金属物引起短路 管脚浸锡时在管脚根部残留的焊锡碴或者是印制板上留下的多余锡
碴、导线头、细金属丝、金属屑等可动多余物,容易引起集成电路输出 对电源或对地短路,这种短路引起的过大电流会损伤集成电路。
失效模式与失效机理
(4)电烙铁或仪器设备漏电引起的电损伤 集成电路或晶体管的引出端与漏电的电烙铁、仪器或设备机壳相碰
失效分析的主要内容
2.3、判断失效原因 失效可能由一系列的原因造成,如设计缺陷、材料质量问题、制造过 程问题、运输或储藏条件不当、在操作时的过载等,而大多数的失效包 括一系列串行发生的事件。
2.4、研究失效机理 在确定失效机理时,需要选用有关的分析、试验和观测设备对失效样 品进行仔细分析,验证失效原因的判断是否属实,并且能把整个失效的 顺序与原始的症状对照起来,有时需要用合格的同种元器件进行类似的 破坏性试验,观察是否产生相似的失效现象,通过反复验证(模拟实验 ),确定真实的失效原因,以电子元器件失效机理的相关理论为指导, 对失效模式、失效原因进行理论推理,并结合材料性质、有关设计和工 艺的理论及经验,提出在可能的失效条件下导致该失效模式产生的内在 原因或具体物理化学过程,如有可能,更应以分子、原子学观点加以阐 明或解释。
,或者在仪器设备上更换元器件以及修补焊点等,都会带来电损伤。最 容易被损伤的集成电路有:带有MOS电容的集成电路、MOS电路、微波集 成电路、STTL•和LSTTL电路、单稳电路和振荡器、A/D和D/A电路、高精 度运算放大器、LSI和VLSI电路。其中单稳电路和振荡器在调试时发生的 这种电损伤很不容易发现,因为损伤的表现形式往往是表现为单ຫໍສະໝຸດ Baidu电路 的脉冲宽度发生漂移;振荡器的振荡频率发生漂移,调试人员往往把这 种现象错误地认为是没有将电路调试好。
自激振荡。 6-2 CMOS电路输入缓慢变化的脉冲时容易引起振荡。输入缓慢变化
当更改定时元件R.C后,参数可以恢复正常,但这种“恢复正常”的 电路,工作一段时间后又会出现上述的参数漂移现象。
失效模式与失效机理
(5)CMOS电路发生可控硅效应(闩锁效应) CMOS电路的静态功耗极小,但可控硅效应被触发后功耗会变得很大
(50~200毫安),并导致电路发生烧毁失效。CMOS电路的硅芯片内部,在 VDD与VSS之间有大量寄生可控硅存在,并且所有输出端和输入端都是它 的触发端,在正常条件下工作,由于输入和输出电压满足下式要求: VDD>Vout>Vss VDD>Vin>Vss。
2.2、确定失效模式 失效的表面现象或失效的表现形式就是失效模式。失效模式的确定通 常采用两种方法,即电学测试和显微镜观察。 立体显微镜观察失效样品的外观标志是否完整,是否存在机械损伤, 是否有腐蚀痕迹等; 金相显微镜和扫描电子显微镜等设备观察失效部位的形状、大小、位 置、颜色,机械和物理特性等,准确的扫描失效特征模式。 电学测试判断其电参数是否与原始数据相符,分析失效现象可能与失 效样品中的哪一部分有关。
(优选)应用总结电子元器件失效分析
内部资料
无锡华润矽科微电子有限公司
失效分析的主要内容
二、失效分析的主要内容-思路
2.1、明确分析对象 明确分析对象及失效发生的背景。在对委托方提交的失效样品进行具 体的失效分析操作之前,失效分析人员应该和委托方进行沟通,了解失 效发生时的状况,确定在设计、生产、检测、储存、传送或使用哪个阶 段发生的失效,如有可能要求委托方详细描述失效发生时的现象以及失 效发生前后的操作过程。
2-2 T0-5型金属管壳封装的集成电路,电测试时容易出现管脚插错或 管脚间相碰短路。这种意外情况有时也会导致集成电路内部某些元器件 的电损伤。
2-3 电路调试时,不慎出现“试笔头”桥接短路管脚,这种短接有时 会造成电损伤。
2-4 在电子设备中设置的“检测点”,如果位置设置不当又无保护电 路时,维修时就可能将不正常的电压引入该端而损伤器件。
所以正常工作条件下CMOS电路不会发生可控硅效应。但在某些特殊 情况下,上述条件就会不满足,凡是出现以下情况之一,可控硅效应(闩 锁)就可能发生,发生闩锁的CMOS电路如果无限流保护就会被烧毁。
失效模式与失效机理
(6)CMOS电路振荡引起功率过荷 6-1 当CMOS电路的任何一个输入端发生浮空时,CMOS电路都会发生
失效分析的主要内容
2.5、提出预防措施及设计改进方法 根据分析判断、提出消除产生失效的办法和建议,及时地反馈到设 计、工艺、使用单位等各个方面,以便控制乃至完全消除失效的主要失 效模式的出现。 这需要失效工程师与可靠性、工艺、设计和测试工程师一起协作, 发挥团队力量,根据失效分析结果,提出防止产生失效的设想和建议, 包括材料、工艺、电路设计、结构设计、筛选方法和条件、使用方法和 条件、质量控制和管理等方面。
失效模式与失效机理
(2)操作失误造成的电损伤 2-1 双列直插式封装的集成电路当测试时不慎反插,往往就会造成电
源和地两端插反,其结果是集成电路电源与地之间存在的PN结隔离二极 管就会处于正偏(正常情况是反偏),出现近100毫安的正向电流,这种电 过应力损伤随着通电时间的增长而更加严重。这种损伤如果不太严重, 虽然电路功能正常,只表现出静态功耗增大,但这种受过损伤的电路, 可靠性已严重下降,如果上机使用,就会给机器造成隐患。
相关文档
最新文档