一次函数与一元一次不等式教案
一次函数与方程、不等式详细教案
一次函数与方程、不等式详细教案第一章:一次函数的概念与性质1.1 一次函数的定义介绍一次函数的定义:形式为y = kx + b(k、b为常数,k≠0)的函数。
强调一次函数的图像为直线。
1.2 一次函数的斜率与截距解释斜率k的意义:直线的倾斜程度。
解释截距b的意义:直线与y轴的交点。
1.3 一次函数的图像特点描述一次函数图像的形状、方向和位置。
第二章:一次函数的图像与解析式2.1 一次函数图像的绘制利用斜率和截距绘制一次函数的图像。
2.2 一次函数解析式的求解介绍求解一次函数解析式的方法:观察图像或给定的点。
2.3 一次函数图像与解析式的关系解释图像与解析式之间的联系。
第三章:一次函数的应用3.1 线性方程的解法介绍解线性方程的方法:代入法、消元法等。
3.2 实际问题中的一元一次方程举例说明一元一次方程在实际问题中的应用。
3.3 一次函数与不等式介绍一次函数与不等式的关系:图像与解集。
第四章:一元一次不等式的解法4.1 不等式的基本性质介绍不等式的加减乘除性质。
4.2 一元一次不等式的解法介绍解一元一次不等式的方法:同解变形、图像法等。
4.3 不等式的应用举例说明一元一次不等式在实际问题中的应用。
第五章:一次函数与方程的综合应用5.1 实际问题中的一次函数与方程组举例说明一次函数与方程组在实际问题中的应用。
5.2 一次函数与方程的综合解法介绍一次函数与方程的综合解法:代入法、图像法等。
5.3 一次函数与方程的拓展应用探讨一次函数与方程在其他领域的应用。
第六章:一次函数的图像与几何性质6.1 一次函数图像的交点介绍如何求出两条一次函数图像的交点。
强调交点在解析几何中的应用。
6.2 一次函数图像与坐标轴的交点解释一次函数与x轴、y轴的交点求解方法。
6.3 一次函数图像的距离和角度介绍如何利用一次函数图像求解两点间的距离和角度。
第七章:一次函数图像的变换7.1 一次函数图像的平移介绍如何对一次函数图像进行上下、左右平移。
19.2.3.1一次函数与一元一次方程、不等式教案
在今天的教学过程中,我发现学生们对一次函数与一元一次方程、不等式的关系掌握得还算不错。在导入新课环节,通过提问方式引起学生的兴趣,他们能够积极参与,分享自己在生活中遇到的相关问题。但在新课讲授环节,我发现有些学生对一次函数图像与一元一次方程之间的联系还不够理解,需要我在这里多花一些时间进行讲解和举例。
-举例:在计算成本问题时,学生需将问题抽象为一次函数y=2x+3(成本=固定成本+变动成本),然后根据实际问题求解方程或不等式。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数与一元一次方程、不等式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数关系的问题?”比如,买东西时,如何根据总价和数量来确定单价。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数与一元一次方程、不等式的奥秘。
19.2.3.1一次函数与一元一次方程、不等式教案
一、教学内容
本节课选自教材第19章第2节第3小节,主题为“一次函数与一元一次方程、不等式”。教学内容主要包括以下三个方面:
1.一次函数与一元一次方程的关系ห้องสมุดไป่ตู้引导学生理解一次函数图像上的点都满足一元一次方程,反之亦然。
2.一次函数与一元一次不等式的关系:探讨一次函数图像在不同区间内的取值情况,从而引出一元一次不等式的概念。
2.在实践活动和小组讨论中,部分学生的依赖性较强,需要我多关注并引导他们独立思考。
3.学生在分析问题时容易忽视细节,导致结论不准确,我需要在教学中加强训练学生的观察能力和逻辑思维能力。
针对今天的课堂教学,我认为在今后的教学中,可以从以下几个方面进行改进:
初中八年级数学教案一元一次不等式与一次函数的关系
一元一次不等式与一次函数地关系教学目的知识与技能1.认识一元一次不等式与一次函数问题地转化关系.2.会用图象法解一元一次不等式与一元一次方程,会用数形结合地思想方法解决问题.过程与方法1.经历探索,思考等教学活动与思维过程,发展学生地合情推理能力,能有条理地,清晰地阐述观点.2.让学生体验并掌握数形结合地思想与解决问题地方法,提高解决问题地能力.3.体会解决问题地多种途径,发散学生地思维.情感,态度与价值观在探究过程中发展学生地合作交流意识与独立思考精神,增强学生对数学思维,数学方法地好奇心与兴趣.重点难点重点理解一次函数地图象与一元一次不等式,一元一次方程地关系,运用此关系求解问题.难点理解一元一次不等式,一元一次方程地图象解法.教学过程一,创设情境,导入新知师:妳会解一元一次方程-2x+8=0吗?生:会,x=4.师:我们现在看一次函数y=-2x+8.当x取什么值时,y为0?生:当x=4时,y=0.师:这个函数当x=4时,y=0,也就是这个函数地图象与x轴地交点坐标为(4,0),与x轴交点地横坐标为4.这个4一方面是方程地解,另一方面又是一次函数与x轴交点地横坐标,它们地数值是相同地,会不会是巧合,还是确实有联系?我们这节课就来研究这个问题.二,共同探究,获取新知教师多媒体出示:1.解方程:2x+6=0.2.已知一次函数y=2x+6,问x取什么值时,y=0?师:这两个问题有什么关系呢?学生讨论后回答:第二个问题中,y=0,也就是2x+6=0时,就成了第一个问题,所以它们地实质是一样地.师:大家回答得非常好!请大家画出y=2x+6地图象,看方程2x+6=0地解与这个图象又有什么关系.学生作图,教师巡视指导.教师多媒体出示:生:方程地解等于图象与x轴交点地横坐标.师:对.因为任何一个一元一次方程都可以写成y=kx+b地形式,所以解一元一次方程kx+b=0都可以转化成求函数y=kx+b中y=0时x地值,从图象上看,就是一次函数y=kx+b地图象与x轴交点地横坐标.三,层层推进,深入探究师:根据上面妳们画出地y=2x+6地图象,妳能说出一元一次不等式2x+6>0与2x+6<0地解集吗?学生合作交流生:当2x+6>0时就是一次函数y=2x+6中y地值大于0,而y>0在坐标平面上表现地就是图象在x轴上方.师:同学们回答得很好!那么x在什么范围时,图象在x轴地上方呢?生:因为图象与x轴地交点坐标是(-3,0),由图象知,当x>-3时,y>0,即2x+6>0地解集是x>-3.师:2x+6<0地解集呢?生:它对应地是图象在x轴下方地部分,当x<-3时,图象在x轴下方,所以2x+6<0.师:谁能总结一下呢?生:一元一次不等式kx+b>0(或kx+b<0)地解集,就是使一次函数y=kx+b取正值(或负值)时x地取值范围.师:很好!从图象上看,kx+b>0地解集就是使直线y=kx+b位于x轴上方地部分相应地x地取值范围;kx+b<0地解集就是使直线y=kx+b位于x轴下方地部分相应地x地取值范围.四,例题讲解例画出函数y=-3x+6地图象,结合图象:(1)求方程-3x+6=0地解.(2)求不等式-3x+6>0与-3x+6<0地解集.解:(1)画出函数y=-3x+6地图象,如图所示,图象与x轴交点B地坐标为(2,0).所以,方程-3x+6=0地解就是交点B地横坐标:x=2.(2)结合图象可知,y>0时x地取值范围是x<2;y<0时x地取值范围是x>2.所以,不等式-3x+6>0地解集是x<2,不等式-3x+6<0地解集是x>2.五,课堂小结师:今天妳学到了什么新地内容?还有哪些疑问?学生回答,教师补充完善.教学反思在导入课题时,我让学生解一元一次方程与一元一次不等式,它们不理解为什么让它们做这些七年级地题目,讲到后面时它们豁然开朗,为自己地发现欣喜不已.在学习了本节课后,我带领它们用数形结合地方法探索并归纳了一次函数地图象与一元一次方程,一元一次不等式地关系,一元一次方程,一元一次不等式地图象解法,使学生初步认识到了这些知识地关联.。
一元一次不等式与一次函数优秀教案
一元一次不等式与一次函数【课时安排】2课时【第一课时】【教学目标】一、教学知识点。
(一)一元一次不等式与一次函数的关系。
(二)会根据题意列出函数关系式,画出函数图像,并利用不等关系进行比较。
二、能力训练要求。
(一)通过一元一次不等式与一次函数的图像之间的结合,培养学生的数形结合意识。
(二)训练大家能利用数学知识去解决实际问题的能力。
三、情感与价值观要求。
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
【教学重点】了解一元一次不等式与一次函数之间的关系。
【教学难点】自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答。
【教学方法】研讨法。
即主要由学生自主交流合作来解决问题,老师只起引导作用。
【教学准备】投影片两张。
【教学过程】一、创设问题情境,引入新课。
[师]上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?本节课我们来研究不等式的有关应用。
二、新课讲授。
(一)一元一次不等式与一次函数之间的关系。
[师]大家还记得一次函数吗?请举例给出它的一般形式。
[生]如y=2x -5为一次函数。
[师]在一次函数y=2x -5中, 当y=0时,有方程2x -5=0; 当y >0时,有不等式2x -5>0; 当y <0时,有不等式2x -5<0。
由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式。
下面我们来探讨一下一元一次不等式与一次函数的图像之间的关系。
(二)做一做。
请大家讨论后回答:[生](1)当y=0时,2x -5=0,∴x=25,∴当x=25时,2x -5=0。
(2)要找2x -5>0的x 的值,也就是函数值y 大于0时所对应的x 的值,从图像上可知,y >0时,图像在x 轴上方,图像上任一点所对应的x 值都满足条件,当y=0时,则有2x-5=0,解得x=25。
6.6一次函数、一元一次方程和一元一次不等式教学设计
5.拓展延伸,提升能力
-设计富有挑战性的拓展题目,激发学生的求知欲,提升学生的数学思维能力。
-结合现实问题,引导学生运用所学知识解决实际问题,培养学生的创新意识。
6.关注情感,营造氛围
-关注学生的情感需求,营造轻松、愉快的学习氛围,降低学生对数学的恐惧感。
(四)课堂练习,500字
在课堂练习阶段,我将设计不同难度的习题,帮助学生巩固所学知识,形成技能。
首先,我设计一些基础题,让学生独立完成,检验学生对一次函数、一元一次方程和一元一次不等式的基本概念和性质的掌握程度。然后,我逐步提高题目难度,让学生在练习中提高解题能力。
在练习过程中,我关注学生的解题方法,引导学生总结解题策略。对于学生在解题过程中遇到的问题,我及时给予解答,帮助学生突破难点。
(2)在实际问题中,如何将一元一次方程和一元一次不等式应用于求解?
5.思考题:请同学们思考以下问题,下节课分享自己的观点:
(1)一次函数、一元一次方程和一元一次不等式在实际生活中的应用有哪些?
(2)如何运用所学知识解决现实生活中的问题?
作业要求:
1.请同学们认真完成作业,书写工整,保持卷面整洁。
2.对于拓展题和小组合作探究题,同学们可以互相讨论、交流,但需独立完成作业。
-掌握一元一次不等式的符号规则,如不等式两边加减、乘除同一正数时不等号方向的变化。
-学会使用数轴、区间表示不等式的解集,并能够通过图像直观理解不等式的解。
-能够将现实生活中的不等关系抽象为一元一次不等式,并求解。
(二)过程与方法
在教学过程中,注重以下方法与过程:
1.通过情境导入、问题引导的方式,激发学生对一次函数、一元一次方程和一元一次不等式的探究兴趣。
一次函数与一元一次方程和不等式教案
《19.2.3一次函数与方程、不等式》教学设计陈静雯教材人教版《数学》八年级下册学习目标知识与技能1.初步理解一次函数与一元一次方程、一元一次不等式、二元一次方程(组)的内在联系,明白方程(组)、不等式与函数三者之间相互转化,相互渗透.2.通过画函数图像、观察函数图像,体会数形结合思想.3.能结合利用函数、方程、不等式的相关知识解决实际问题.过程与方法通过对一次函数与一次方程、一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力;情感态度与价值观通过对一次函数与一次方程、一次不等式关系的探究,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心。
教学重点理解一次函数与一次方程、一次不等式的关系;教学难点根据一次函数的图象求一元一次方程的解和一次不等式的解集,发展学生数形结合的思想和辩证思维能力。
教具多媒体教学过程问题与情境师生互动时间活动一复习引入问题:1、什么是二元一次方程?2、一次函数与二元一次方程是什么关系?活动二探究新知知识点一.一次函数与二元一次方程(一)例:一次函数y=0.5x+15,二元一次方程y-0.5x=15,观察例子问题:1、二元一次方程中,当x=0时,y=?,点(0,15)与一次函数y=0.5x+15的图像有什么关系?2、二元一次方程中,当x=4时,y=?,点(4,17)与一次函数y=0.5x+15的图像有什么关系?3、二元一次方程的有多少个解?一次函数的图像有几个点?教师提问并且结合例子补充说明学生观察回答让学生观察例子,从特殊值入手,探索一次函数的点与二元一次方程的解之间的关系,学生观察回答问题3分钟9分钟教师总结:以二元一次方程的解为坐标的点,落在对应的一次函数的图像上,无数个解对应无数个点,点动成线,构成一次函数的图像。
知识点二.一次函数与一元一次方程(一)例:下面三个方程有什么共同特点?你能从函数的角度对解这三个方程进行解释吗?(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.问题:1、三个方程有什么共同特点?什么不同点?2、从函数的角度出发,对解这三个方程进行解释?3、一次函数问题如何转换为一次方程问题?总结:用函数的观点看:解一元一次方程ax +b =k 就是求当函数值为k 时,对应的自变量的值.(二)练一练知识点三.一次函数与一次不等式(一)例:下面三个不等式有什么共同特点?你能从函数的角度对解这三个不等式进行解释吗?能把你得到的结论推广到一般情形吗?(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.学生分组讨论教师巡视启发学生学生代表发言,师生共同评价学生自主做练习,学生代表回答问题教师提出问题学生思考回答师生点评9分钟4分钟9分钟问题:1、三个不等式的相同点和不同点是什么?2、结合一次函数与方程,谈谈如何从函数的角度,解释一次函数与不等式?3、一次函数问题如何转换成一次不等式问题?总结:1、不等式ax+b>c的解集就是使函数y =ax+b 的函数值大于c的对应的自变量取值范围,2、不等式ax+b<c的解集就是使函数y =ax+b 的函数值小于c的对应的自变量取值范围.(二)练一练:活动三、作业与小结1.谈谈本节课你学到了什么?2.作业师生共同归纳总结学生自主完成学生在教师的引导下回顾这节课所学内容3分钟3分钟。
一次函数与一元一次方程及不等式复习教案
一次函数与一元一次方程及不等式复习教案沂南三中张继学联系电话: 131********一、【教材分析】二、【教学流程】合运用是8.3、根据图象,你能直接说出一元一次方程x+3=0的解吗?4、直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1C.x<1 D.x≤15、已知直线y=2x+k与x轴的交点为(-2,0),则关于不等式2x+k<0的解集是()A.x>-2 B.x≥-2C.x<-2 D.x≤-26、已知函数y=x-3,当x时,y>0,当x时,y<0.7、已知一次函数y=kx+b的图象如图所示,则不等式kx+b>0解集是()A.x>-2 B.x<-2C.x>-1 D.x<-18、如图是一次函数y=kx+b(k≠0)的图象,则关于x的方程kx+b=0的解为;关于x的不等y=x+3的图象与x轴交点坐标为(-3,0 ),这说明方程x+3=0的解是x=-3.让学生体会解一元一次不等式与求一定条件下自变量的取值范围的关系.解一元一次不等式从函数值的角度看,就是寻求使一次函数y=ax+b的值大于或小于零的自变量的取值范围.通过图象让学生认识不等式的解集与图象3xxy3式kx+b>0的解集为;关于x的不等式kx+b <0的解集为 .9、根据下列一次函数的图像,直接写出下列不等式的解集(1)3x+6>0 (3) –x+3 ≥0(2)3x+6 ≤0 (4) –x+3<0上点的坐标的联系学生独立完成问题,然后师生共同归纳得到,解一元一次不等式从形的角度看,就是确定直线y=kx+b在x轴上(或下)部分所有点的横坐标所构成的集合。
归纳总结:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值.当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.1.直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()学生是能灵活运用一元一次方程、一元一-2 y=3x+6y=-x+3三、【板书设计】四、【教后反思】学生的认识是在不断实践、摸索中得以提高的,同样老师的教学能力也是通过不断的反思和反思之后的再实践得以提升的。
一次函数与一元一次方程,不等式
19.2.3 一次函数与方程、不等式龙湖中学郭燕一、教学目标1.知识与技能:①使学生理解并掌握一次函数与一元一次方程,一元一次不等式的相互联系。
②是学生能初步运用函数的图像来解释一元一次方程、一元一次不等式的解集,并通过函数图像来回答一元一次方程、一元一次不等式的解集。
2.过程与方法:通过对一次函数与一元一次方程,一元一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力。
3.情感态度与价值观:探究活动中,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心。
二.教学重难点:1.重点:①理解一次方程,一元一次不等式与一次函数的转化关系及本质联系。
②掌握用图像求解方程不等式的方法。
2.难点:根据一次函数的图像求解方程和不等式三.教学过程:1.探究一次函数与方程的关系问题1(1)解方程2x-4=0(2)当自变量x取何值时,函数y=2x-4的值为0?(3)画出函数y=2x-4的图像,并确定它与x轴的交点坐标。
(4)第(1)(2)问题有何关系?(1)(3)呢?[从上述问题中,你能发现一次函数与一元一次方程的关系吗?]问题(2)(3)可以看作是同一个问题的两种形式,问题(1)(2)是从数的角度看,问题(3)是从形的角度看。
学生按要求探究,并总结结论从数的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的y为0时x 的值。
从形的角度看,一元一次方程2x-4=0的解是一次函数y=2x-4的图像与x轴交点的横坐标。
2.新知构建①填写表格,使得以下的一元一次方程问题与一次函数问题是同一问题。
你能从函数的角度解方程2x+1=3吗?学生独立思考后,画出一次函数y=2x+1的图像,从数的角度,y=2x+1的函数值为3时,自变量x 的值是这个方程的解;从图像上可以看出,直线y=2x+1上纵坐标为3的点的横坐标为1,是这个方程的解。
任何以x 为未知数的一元一次方程,都可以化成ax+b=0(a,b 为常数,a ≠0)的形式,因此,方程2x+1=3的解,也可以看成直线y=2x-2与x 轴交点的横坐标。
2023年一次函数与一元一次不等式说课稿
2023年一次函数与一元一次不等式说课稿2023年一次函数与一元一次不等式说课稿1一、教材分析(说教材):1、教材所处的地位和作用:本节内容在全书及章节的地位是:《一元一次不等式、一元一次方程、一次函数》是苏科版八下第七章第七节内容。
在此之前,学生已学习了一元一次不等式、一元一次方程、一次函数基础上,这为过渡到本节的学习起着铺垫作用。
本节内容在初中数学学习阶段中,占据重要的`地位,以及为其他学科和今后高中数学学习打下基础。
2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:认识并理解一元一次不等式、一元一次方程、一次函数的内在联系及在解决问题时的不同作用。
(2)、过程与方法通过用一元一次不等式、一元一次方程、一次函数解决问题,培养学生用联系变化的观点看问题的意识及数形结合的解题能力。
(3)情感、态度与价值观通过对解决实际问题的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:本课中一元一次不等式、一元一次方程、一次函数的内在联系是重点,灵活使用一元一次不等式、一元一次方程、一次函数解决实际问题是本课的难点,下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:二:教学策略:教法:据本节课教学内容和八年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,让学生的知识形成网状结构,使知识能相互交融,培养学生触类旁通的能力。
学法:建构主义教学构想的核心思想是:通过问题的解决来学习。
根据本节课的特点,采用自主探究、合作交流的探究式学习方法。
一次函数与一元一次方程的关系--教学设计(杨子延)
《一元一次不等式与一次函数(1)》教案课题:一元一次不等式与一次函数(1)教材:北师大版八年级下册第二章第五节授课老师:深圳市宝安中学杨子廷一、教学内容分析二、教学目的2、数学思考目标:通过对一次函数与一元一次不等式关系的探究及相关实际问题的解决,体会数形结合的思想。
3、问题解决目标:能利用一次函数与一元一次不等式的内在关系,解决实际问题。
三、教学重点重点:通过观察函数图象解一元一次不等式。
四、教学难点五、教学准备教法分析:基于本节课的内容特点和初二年级学生的年龄特征,遵循“让学生主动积极参与学习,发挥其学习的主体性”的教学理念,我决定采用“启发引导、自主学习、合作探究”的教学模式,充分发挥教师的主导作用和学生的主体作用。
六、教学流程框图七、教学过程设计知在周一的“防止踩踏”疏散课上,初一(4)班的同学在警报响起3秒后疏散距离y (米)与时间x (秒)满足关系式是y=2x-5。
1.作函数52-=x y 的图象:解:列表;描点,连线; x 52-=x y2.观察图象回答问题:(1)x 取何值时,y=0? (2) x 取何值时,y >0? (3)x 取何值时,y <0?发现:以(2.5,0)为界,右边函数图象在x 轴的上方,所以当x>2.5时,y>0,左边函数图象在x 轴的下方,所以当x<2.5时,y<0。
为基础,探讨新的内容。
10分钟 2、思考讨论、探索新知问题一:观察你画出52-=x y 的图象,回答下列问题。
(1)x 取何值时,2x -5=0? (2)x 取何值时,2x -5>0? (3)x 取何值时,2x -5< 0?练习1、如图,是函数y=-2x -6的图象,看图回答下列问题:(1)当x 时,-2x -6 >0; (2)当x 时,-2x -6 < 0;练习2、观察你画出52-=x y 的图象,回答下列问题:x 取何值时, y>3 ? 变式:x 取何值时, y < -2 ?学生求解一元一次方程和不等式,发现x 的取值范围相同,更有的同学直接发现两种情况只是问法不同。
一元一次不等式与一次函数的关系 优秀课教案
2.5 一元一次不等式与一次函数 第1课时 一元一次不等式与一次函数的关系1.学会使用图象法解一元一次不等式;(重点)2.理解并掌握一元一次不等式与一次函数之间的关系,能够运用其解决问题.(重点,难点)一、情境导入小华准备将平时的零用钱储存起来,他已经存有300元,现在起每月存50元.小华的同学小丽以前没有存过零用钱,在听说小华存零用钱后,表示从现在起每月存70元,争取超过小华.根据以上信息,你能帮助小丽计算出她需要多久才能超过小华吗?二、合作探究 探究点一:不等式的解集 如图,函数y =2x 和y =-23x +4的图象相交于点A . (1)求点A 的坐标; (2)根据图象,直接写出不等式2x ≥-23x +4的解集.解析:(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边部分的x 的取值范围即可.解:(1)由⎩⎪⎨⎪⎧y =2x ,y =-23x +4,解得⎩⎪⎨⎪⎧x =32,y =3.∴点A 的坐标为(32,3);(2)由图象得不等式2x ≥-23x +4的解集为x ≥32.方法总结:通过联立两直线解析式求交点坐标的方法,求出交点坐标.求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应函数值的大小.探究点二:一元一次不等式与一次函数的关系【类型一】 根据一次函数的值求一元一次不等式的解集一次函数y =kx +b (k ≠0)中两个变量x 、y 的部分对应值如下表所示: x…-2-112…y … 8 5 2 -1 -4 … 那么关于x 的不等式kx +b ≥-1的解集是________.解析:由表格得到函数的增减性后,再得出y =-1时,对应的x 的值即可.当x =1时,y =-1,根据表可以知道函数值y随x 的增大而减小,∴不等式kx +b ≥-1的解集是x ≤1.故答案为x ≤1.方法总结:此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解决本题的关键.【类型二】 根据一次函数图象求不等式的解集如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x 的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>2解析:先利用正比例函数解析式确定A 点坐标,然后观察函数图象得到,当1<x <2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x =1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.第2课时平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形【类型一】利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC 的中点,请判断线段BE ,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形;(2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12BC =6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。
一次函数与一元一次方程、一元一次不等式的教学设计
《13.3一次函数与一次方程、一次不等式》(第一课时)安徽省合肥市庐阳中学陈光宇教具安排学生课堂自主探究材料、多媒体课件。
课时安排这节内容安排两个课时,本节课是第一课时,主要通过探究活动领悟一次函数与一元一次方程、一次不等式之间的联系。
教学过程设计问题与情境师生活动设计意图复习旧知、学前热身小明的爸爸应邀来到合肥投资,在庐阳工业园投资300万元成本建成一个小型家电生产工厂。
建成投产后,不考虑材料费等其他因素,每年盈利75万元。
回答下面两个问题,1:该工厂投产几年刚好收回成本?2:该工厂从哪一年后盈利开始超过300万元以上?师:从小学到现在我们学过哪些解决问题的方法?生:小学的算术法和初中学过的方程、不等式。
师:怎样利用函数图象解决上面的问题呢?贴切的生活情境可以让大多数同学想到解决问题的方法,除了能激发学生的求知欲,也让学生初步感受一次方程和一元一次不等式与一次函数是有联系的,引入课题。
合作交流、探究新知活动一:探究一次函数与一元一次方程之间的联系。
1.解方程 3x+6=0。
2.直线y=3x+6与x轴交点的坐标是什么?3.讨论:图象与方程的解之间的关系。
4.不解方程:你能说出方程3x+6=6的解吗?学生口答三个问题。
师:课前让大家准备了任意的一次函数的图象,观察你的图象,在图象中也有类似的联系吗?学生举例说明。
师:将刚才的思考概括为一般形式呢?归纳:一次函数y=kx+b(k、b为常数,k≠0)与x轴交点的横坐标就是方程kx+b=0的解。
一元一次方程kx+b=0(k、b为常数,k≠0)的解就是一次函数y=kx+b(k0)与x轴交点的横坐标。
引题分解难度,给学生提供了思考的角度和方向。
通过学生反复实践和教师引导,学生从“形”到“数”,或者从“数”到“形”,自己探究一次函数的图象与一元一次方程解的关系,体验知识生成的过程。
5.合作交流(一)你还能利用图象求出哪些一元一次方程的解?6.合作交流(二)通过以上探究,你能总结一次函数与一元一次方程之间的联系吗?师:请写出几个这样的一元一次方程和同伴进行交流。
一元一次不等式与一次函数教案
一元一次不等式与一次函数教案第一章:引言1.1 学习目标理解一元一次不等式与一次函数的概念掌握一元一次不等式与一次函数的关系1.2 教学内容介绍一元一次不等式与一次函数的定义解释一元一次不等式与一次函数的关系1.3 教学活动引入一元一次不等式与一次函数的概念通过实例解释一元一次不等式与一次函数的关系第二章:一元一次不等式的解法2.1 学习目标学会解一元一次不等式2.2 教学内容介绍一元一次不等式的解法讲解解一元一次不等式的步骤2.3 教学活动讲解解一元一次不等式的步骤学生分组练习解一元一次不等式第三章:一次函数的图像3.1 学习目标学会绘制一次函数的图像3.2 教学内容介绍一次函数的图像讲解绘制一次函数图像的方法3.3 教学活动讲解绘制一次函数图像的方法学生分组练习绘制一次函数图像第四章:一元一次不等式与一次函数的应用4.1 学习目标学会应用一元一次不等式与一次函数解决实际问题4.2 教学内容介绍一元一次不等式与一次函数的应用讲解一元一次不等式与一次函数在实际问题中的应用4.3 教学活动讲解一元一次不等式与一次函数在实际问题中的应用学生分组练习解决实际问题5.1 学习目标复习一元一次不等式与一次函数的知识点5.2 教学内容5.3 教学活动进行复习测试,巩固所学知识第六章:一元一次不等式的应用举例6.1 学习目标学会使用一元一次不等式解决实际问题。
6.2 教学内容通过实例讲解一元一次不等式在实际问题中的应用。
分析并解决实际问题。
6.3 教学活动分析实际问题,引导学生运用一元一次不等式进行解决。
学生分组讨论并练习解决实际问题。
第七章:一次函数的性质7.1 学习目标理解一次函数的性质,包括斜率和截距。
7.2 教学内容介绍一次函数的斜率和截距。
讲解一次函数的性质及其影响因素。
7.3 教学活动讲解一次函数的性质及其影响因素。
学生分组练习分析一次函数的性质。
第八章:一次函数图像的变换8.1 学习目标学会分析一次函数图像的平移变换。
一元一次不等式与一次函数教学设计
一元一次不等式与一次函数(1)教学设计 教学目标:1、能把一次函数的问题转化成不等式的问题来解决2、会观察图象来回答有关一次函数的问题 教学重点:转化的思想的体会与运用以及观察图象回答有关问题教学难点:通过观察一次函数的图象来回答相关问题 教学过程:一、课前小测1、不等式的解集是2.不等式的解集为 ;3、不等式513-≥+x x 解集是 4、已知:函数32+=x y 中,当x 时,0=y 设计意图:帮助学生复习解不等式以及一次函数中的代入求值。
二、学习新知【知识点一】把一次函数的问题转化成解不等式来解决1、已知一次函数42-=x y ,当x_______时,y >0;2、已知一次函数2+-=x y ,当x_______时,y <0;3、已知一次函数421-=x y ,22+-=x y 当x_______时,21y y ≤。
设计意图:通过这一组题让学生掌握利用等量代换把一次函数的问题转化成解不等式来解决,并逐步领会到转化的思想。
【知识点二】观察图象,回答问题1、已知一次函数42+=x y 的图象如图1所示, 观察图象并回答问题:(1)当x_______时,y >0;(2)当x_______时,y <0。
2、已知一次函数52-=x y 的图象如图2所示, 观察图象并回答问题:(1)当x_______时,y >0;(2)当x_______时,y <0。
设计意图:这两小题较知识点一的多了一个图象,其它要求没变,学生可看图,也可不看图,让学生体会到只要给出了一次函数的解析式,就可以忽略图形,借用解图1y=2x+4不等式来解决问题。
【知识点三】观察图象,求出解析式,回答问题1、已知一次函数的图象如图3所示,观察图象并回答问题:(1)当x_______时,y >0;(2)当x_______时,y <0。
设计意图:此题关键是没有一次函数的解析式,若要想通过解不等式来解决问题,就要求出解析式,这对学生来讲,就要先掌握好待定系数法,而且计算量都比较大,所以能否通过观察图象来解决问题,避免烦琐的运算,就是留给学生思考的问题。
一次函数与一元一次不等式实用教案
-=y 一次函数与一元一次不等式【教学目标】知识与技能:理解一次函数与一元一次不等式的关系掌握用函数图象求一元一次不等式的解集的方法。
过程与方法:渗透由特殊到一般和转化的数学思想方法,提高发现问题、分析问题、解决问题的能力。
【教学重点】 用函数的知识求一次不等式的解集。
【教学难点】 一次函数图象与一元一次不等式的关系。
【教学互动设计】〈一〉创设情景 导入新课大家对一次函数与一元一次方程之间的联系都有了一定的了解,通过一次函数的图象,我们可以直接看出对应的一元一次方程的解。
那么,一次函数与一元一次不等式又有何关系呢?我们能否通过看一次函数的图象得到一元一次不等式的解集呢?这就是我们今天要探讨的内容。
〈二〉合作交流 解读探究(课前导案,学生在课前进行学习讨论)一次函数与一元一次不等式的关系 ﹝展示﹞已知函数62+-=x y 的图象如图所示,根据图象回答:⑴当x= 时,y=0,即方程062=+-x 的解为 思考:⑵当x 时,y >0,即不等式062>+-x 的解集为⑶当x 时,y <0,即不等式062<+-x 的解集为总结:当y=0时,正好是图象与轴的交点当y>0时,图象位于轴方当y<0时,图象位于轴方学生完成展示共同完成课本导学(多媒体展示)解(1)移项得:5x - 3x > 10 - 6合并,得2x > 4化系数为1,得x >2∴原不等式的解是: x>2(2)作出函数y = 2x -4 的图象(如图)从图知观察知,当x>2时y 的值在x轴上方,即y > 0因此当x > 2 时函数的值大于0。
﹝概括﹞任何一元一次不等式都可以化为0b<ax+(a、b>bax+或0为常数且a≠0)的形式,所以解一元一次不等式,可以看作:当一次函数值大(小)于0时,求自变量的取值范围;或者看作:当一次函数图象在x轴上(下)方时,求自变量的取值范围。
〈三〉例题讲解例题:用画函数图象的方法解不等式5x+4<2x+10解法1:原不等式化为3x -6,画出直线y = 3x -6(如图)可以看出,当x<2 时这条直线上的点在轴的下方,即这时y = 3x -6 <0所以不等式的解集为x<2解法二:画出函数y = 2x+10 y = 5x+4图象从图中看出:当x <2时直线y = 5x +4 在y = 2x +10的下方即5x+4 < 2x +10∴不等式5x+4 < 2 x +10 的解集是x < 2师生总结步骤:1把不等号右边划为0 2 画函数图象 3 找与X轴的交点4作答〈四〉随堂练习1.自变量X的取值满足什么条件时,函数y=3X+8的值满中下列条件?(3)y>0 (4)y<22 利用函数图象解出X:(2)6x—4<3x+2〈五〉课堂小结1.一次函数与一元一次不等式的关系2.用函数图象求一元一次不等式的解集的方法。
《一次函数一元一次方程和一元一次不等式》教学设计
6.6 一次函数、一元一次方程和一元一次不等式教学目标:1.经历实际问题中的数量关系的分析、抽象初步体会一元一次不等式与一元一次方程、一次函数的内在联系.2.了解不等式、方程、函数在解决问题过程中的作用和联系.3.通过解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并以此激发学生学习数学的信心和兴趣.教学重点:通过具体实例,初步体会一次函数、一元一次方程和一元一次不等式的内在联系.教学难点:了解不等式、方程、函数在解决问题过程中的作用和联系.教学过程:一、热身训练填空:(1)方程2x+4=0解是_______ ;(2)不等式2x+4>0的解集为________;(3)不等式2x+4<0的解集为________.复习一元一次方程和一元一次不等式的解法.二、探索归纳1.一次函数y=2x+4的图像是一条经过点(,0 ),点( 0 ,)的直线.2.试根据一次函数y=2x+4的图像说出方程2x+4=0的解和不等式2x+4>0、2x+4<0的解.归纳总结:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值.当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.三、例题讲解例一根长25cm的弹簧,一端固定,另一端挂物体.在弹簧伸长后的长度不超过35cm的限度内,每挂1kg质量的物体,弹簧伸长0.5cm.设所挂物体的质量为x kg,弹簧的长度为y cm.写出y与x之间的函数表达式,画出函数图像,并求这根弹簧在所允许的限度内所挂物体的最大质量.你还能用什么方法解决这个问题?尝试用不同的方法解决问题.函数求值和变量范围确定的问题可以通过方程、不等式解决.四、巩固练习1.x取什么值时,函数y=-2(x+1)+4的值是正数?负数?非负数?2.声音在空气中的传播速度(简称音速)y(m/s)与气温x(℃)之间的函数表达式为y=35x+331.求:(1)音速为340m/s时的气温;(2)音速超过340m/s时的气温范围.变式训练:3.试根据一次函数y=2x+4的图像说出方程2x+4=6的解和不等式2x+4>6、2x+4<6的解.尝试:一辆汽车行驶了35km后,驶入高速公路,并以105km/h的速度匀速行驶了x h.试根据上述情境,提出一些问题,并用一次函数、一元一次方程或一元一次不等式求解.五、课堂小结这节课你有什么收获?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持年级八年级课题一次函数与一元一次不等式课型新授教学媒体多媒体
教学目标知识
技能
1.认识一元一次不等式与一次函数问题的转化关系
2.学会用图象求解不等式
3.进一步理解数形结合思想
过程
方法
1.培养提高从不同方向思考问题的能力
2.经历不等式与函数关系问题的探究过程,学习用联系的观点看待问题情感
态度
积极参与活动,形成合作交流的意识及独立思考的习惯
教学重点1.理解一元一次不等式与一次函数的转化关系及本质联系。
2.掌握用图象求解不等式的方法
教学难点图象法求解不等式中自变量取值范围的确定
教学过程设计
教学程序及教学内容师生行为设计意图一、情境引入
问题1:解不等式5x+6>3x+10
问题2:当自变量x为何值时,函数y=2x-4的值大于0 思考:以上两个问题是同一个问题吗?
是否能用一次函数图象说明以上问题呢?
二、自主探究
1.画出函数y=2x-4的图象,能否解决问题2
2.由以上问题,你能否说出一次函数与一次不等式之间有何关系?
三、课堂训练
例1:用画函数图象的方法解不等式5x+4<2x+10 学生独立完成问题1
中的不等式可转化为
2x-4>0解得x>2
问题2可转化为
2x-4>0,x>2时函数
y=2x-4的值大于0,
因此为同一的问题
学生尝试画图
教师引导学生观察图
象,可以看出当x>2
时,直线上的点全在
x轴的上方,即x>2
时y=2x-4>0,由此可
发现,通过函数图象
可以求不等式的解集
小组内讨论,并发表
意见
师生共同归纳
由于任何一元一次不
等式都可转化为
ax+b>0或axkb<0(a,
b为常数,a≠0)的形
式,所以解一元一次
不等式可看成:当一
次函数值大于(或小
于)0时,求自变量
相应的取值范围
目的是让学生向
一次函数方向联
想
让学生明确解决
问题应从变化与
对应的观点考虑
通过这一活动动
解法一:原不等式可以化为3x-6<0,画出直线y=3x-6的图象,可以看出,当x<2时这条直线上的点在x 轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2
解法二:将原不等式两边分别看成两个函数,画出直线y=5x+4与直线y=2x+10,它们交点的横坐标为2,当x<2时,对于同一个x ,直线y=5x+4上的点在直线y=2x+10上的相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2
2.练习利用图象解不等式 5-4x>1/2x-4 解法一:(略) 解法二:(略)
3.教材126页练习题1、2 四、小结归纳
本节我们学会了用一次函数图象来解一元一次不等式,虽说方法未必简单,但我们从函数的角度重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要。
五、作业布置
(一)教材129页习题14.7 3、4、9、 (二)补充作业
1.如图,直线b kx y +=交坐标轴于点A 、B 两点,则不等式0>+b kx 的解集是( )
A .2->x
B .3>x
C .2-<x
D .3<x
2.如图是甲乙两家商店销售同一种产品的销售价y (元)与所销售量x (件)之间的函数图像。
下列说法: ① 售2件时甲乙两家售价一样;
学生通过画图,观察,寻找答案,教师指导归纳,板书
教师归纳:两种解不等式的方法都是把不等式转化为比较直线上点的位置的高低
让学生按例题要求用两种方法求解,注意一定画图
学生回忆所学内容,讨论他们之间的关系
使学生熟悉一元一次不等式与一次函数值大于彧小于0时,自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用。
两种解法无好坏之分,目的都是加深
理解函数图象与不等式的关系 巩固新知,让学生熟知图象及不等式两种方法
培养学生小结意识
x
2
-6
o y
② 买1件时买乙家的合算; ③ 买3件时买甲家的合算;
④ 买乙家的1件售价约为3元, 其中正确的说法是( )
A .①②
B .②③④
C .②③
D .①②③
3.如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量( ) A .小于3吨 B .大于3吨 C .小于4吨 D .大于4吨
4.已知函数21-=kx y 与b x y +-=32相交于点
)1,2(-A .
(1)求k ,b 的值,在同一坐标系中画出这两个函数的图象; (2)利用函数图象,求出当x 取何值时,①21y y <;②
21y y >;③01<y 且02>y
课 一次函数与一元一次不等式
一、一次函数与一元一次不等式 二、例题 三、练习
教 学 反 思。