一元一次不等式组教案公开课教案修订版
一元一次不等式组教学设计(教案)
一元一次不等式组教学设计(教案)教学目标:1. 理解一元一次不等式组的定义及其解法。
2. 能够列出和解答一元一次不等式组。
3. 能够应用一元一次不等式组解决实际问题。
教学重点:1. 一元一次不等式组的定义。
2. 一元一次不等式组的解法。
教学难点:1. 一元一次不等式组的解法。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入一元一次不等式概念,复习相关知识。
2. 提问:一元一次不等式有什么特点?如何解一元一次不等式?二、探究(15分钟)1. 介绍一元一次不等式组的概念。
2. 通过示例,引导学生理解一元一次不等式组的特点。
3. 讲解一元一次不等式组的解法。
三、练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 解答学生遇到的问题,给予指导和帮助。
四、应用(10分钟)1. 给出实际问题,让学生应用一元一次不等式组解决。
2. 引导学生思考如何将实际问题转化为一元一次不等式组。
五、总结(5分钟)1. 回顾本节课所学内容,让学生总结一元一次不等式组的概念和解法。
2. 强调一元一次不等式组在实际问题中的应用。
教学反思:本节课通过导入、探究、练习、应用和总结等环节,让学生掌握一元一次不等式组的概念和解法。
在教学过程中,注意引导学生主动参与,培养学生的动手操作和思考能力。
通过实际问题的解决,让学生感受数学与生活的联系,提高学生的应用能力。
在教学设计中,可根据学生的实际情况,适当调整教学内容和教学时间。
六、案例分析(10分钟)1. 提供具体的案例,让学生分析案例中的不等式组。
2. 引导学生将案例中的实际问题转化为不等式组。
3. 一起讨论如何求解案例中的不等式组。
七、解题策略(10分钟)1. 介绍解一元一次不等式组的策略。
2. 通过示例,讲解如何运用解题策略解不等式组。
3. 强调在解题过程中要注意的问题。
八、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
一元一次不等式组教案公开课教案
一元一次不等式组教案公开课教案The pony was revised in January 2021§9.3一元一次不等式组肖慧教学目标知识与技能:1、了解一元一次不等式组及其解集的概念。
2、会利用数轴求不等式组的解集。
过程与方法:1、培养学生分析实际问题,抽象出数学关系的能力。
2、培养学生初步数学建模的能力。
情感态度价值观:加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。
感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯。
教学重难点重点:不等式组的解法及其步骤。
难点:确定两个不等式解集的公共部分。
教法与学法分析教法:启发式、讨论式和讲练结合的教学方法。
学法:实践、比较、探究的学习方式。
教学课型新授课教学用具多媒体课件教学过程一、复习引入一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容。
1、不等式的三个基本性质是什么?2、一元一次不等式的解法是怎样的?3、情境引入:这个星期的星期天是我母亲的生日,肖老师想买一束康乃馨送给妈妈.要求:这束花不低于20元,又少于40元如果你是花店售货员,你会拿什么价格的康乃馨给我选择呢二、讲授新知探究新知:题中一共有两种数量关系,讲解时应注意引导学生自主探究发现。
题中的x 应同时满足两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。
同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何观察数轴上对应解集的范围。
记着20≤X<40(引导发现,此就是不等式组的解集。
)不等式解集的概念:不等式组中的几个不等式解集的公共部分。
由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。
学生回答后教师总结步骤:分别求出每个不等式的解集;找出它们的公共部分。
三、例题讲解教师提出问题,有了上面的铺垫,我们来完整的解一元一次不等式组。
数学《一元一次不等式》教学设计(通用6篇)
数学《一元一次不等式》教学设计数学《一元一次不等式》教学设计(通用6篇)作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一份好的教学设计是什么样子的呢?下面是小编精心整理的数学《一元一次不等式》教学设计,仅供参考,欢迎大家阅读。
数学《一元一次不等式》教学设计篇1【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
《一元一次不等式组》教案
《一元一次不等式组》教案《一元一次不等式组》教案1教学建议一、知识结构本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.二、重点、难点分析本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的根本性质对不等式进行变形、求不等式组中各个不等式解集的公共局部.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的根底.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.1、在构成不等式组的几个不等式中①这几个一元一次不等式必须含有同一个未知数;②这里的“几个〞并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.2、当几个不等式的解集没有公共局部时,我们就说这个不等式组无解.3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种根本情况:①其中第〔4〕个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。
所以说这个不等式组无解或说其解集为空集。
②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。
三、教法建议1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共局部.求公共局部的过程一定要结合数轴来讲。
2.这节课的讲解自始至终要突出解不等式组的根本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的根底,因此讲新课之前要复习提问这些内容。
一元一次不等式组教案
一元一次不等式组教案第一章:一元一次不等式概念引入1.1 教学目标让学生理解一元一次不等式的概念。
学生能够写出一元一次不等式的标准形式。
学生能够解一元一次不等式。
1.2 教学内容引入不等式的概念,解释不等式的意义。
介绍一元一次不等式的定义和标准形式。
演示如何解一元一次不等式。
1.3 教学方法使用实例和图形来帮助学生理解一元一次不等式的概念。
通过练习题让学生巩固一元一次不等式的解法。
分组讨论和分享,促进学生之间的交流和合作。
1.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式的理解程度。
观察学生在解题过程中的思路和方法,评估他们的解题能力。
第二章:一元一次不等式组的解法2.1 教学目标让学生理解一元一次不等式组的概念。
学生能够解一元一次不等式组。
2.2 教学内容引入一元一次不等式组的概念,解释不等式组的解法。
介绍解一元一次不等式组的基本原则和步骤。
2.3 教学方法使用实例和图形来帮助学生理解一元一次不等式组的解法。
通过练习题让学生巩固一元一次不等式组的解法。
分组讨论和分享,促进学生之间的交流和合作。
2.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式组的解法理解程度。
观察学生在解题过程中的思路和方法,评估他们的解题能力。
第三章:一元一次不等式组的图像表示3.1 教学目标让学生理解一元一次不等式组的图像表示方法。
学生能够通过图像来解一元一次不等式组。
3.2 教学内容介绍一元一次不等式组的图像表示方法。
解释如何通过图像来解一元一次不等式组。
3.3 教学方法使用图形和实例来帮助学生理解一元一次不等式组的图像表示方法。
通过练习题让学生巩固一元一次不等式组的图像解法。
分组讨论和分享,促进学生之间的交流和合作。
3.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式组的图像解法的理解程度。
观察学生在解题过程中的思路和方法,评估他们的解题能力。
第四章:一元一次不等式组的应用4.1 教学目标让学生理解一元一次不等式组在实际问题中的应用。
一元一次不等式教案(精选9篇)
一元一次不等式教案(精选9篇)篇1:一元一次不等式教案实际询问题与一元一次不等式教案教学目标1、会从实际询问题中抽象出数学模型,会用一元一次不等式解决实际询问题;2、通过观看、实践、争辩等活动,经受从实际中抽象出数学模型的过程,积存利用一元一次不等式解决实际询问题的阅历,渗透分类争辩思想,感知方程与不等式的内在联系;3、在乐观参与数学学习活动的过程中,初步熟识一元一次不等式的应用价值,形成实事求是的态度和独立思考的适应。
教学难点弄清列不等式解决实际询问题的思想方法,用去括号法解一元一次不等式。
学询问重点查找实际询问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出询问题某学校方案购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,同时多买都有确信的优待.甲商场的优待条件是:第一台按原报价收款,其余每台优待25%;乙商场的优待条件是:每台优待20%.假如你是校长,你该如何考虑,如何选择?(多媒体呈现商场购物情景)通过买电脑那个同学特不生疏的生活实例,引起同学深厚的学习爱好,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内沟通,发表自个儿的观点.最终小组汇报,派代表论述理由.2、在同学充分发表意见的基础上,师生共同归纳出以下三种选购方案:(1)啥状况下,到甲商场购买更优待?(2)啥状况下,到乙商场购买更优待?(3)啥状况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,假如到甲商场购买更优待.询问题1:如何列不等式?询问题2:如何解那个不等式?在同学充分争辩的基础上,老师归纳并板书如下:解:设购买x 台电脑,假如到甲商场购买更优待,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优待.4、让同学自个儿完成方案(2)与方案(3),并汇报完成状况.老师最终作适当点评.鼓舞同学大胆猜想,对争论的询问题发表见解,进行探究、合作与沟通,涌现出多样化的解题思路.老师准时予以引导、归纳和总结,让同学感知不等式的建模。
一元一次不等式组教案(公开课教案)
§9.3 一元一次不等式组肖慧教学目标知识与技能:1、了解一元一次不等式组及其解集的概念。
2、会利用数轴求不等式组的解集。
过程与方法:1、培养学生分析实际问题,抽象出数学关系的能力。
2、培养学生初步数学建模的能力。
情感态度价值观:加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。
感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯。
教学重难点重点:不等式组的解法及其步骤。
难点:确定两个不等式解集的公共部分。
教法与学法分析教法:启发式、讨论式和讲练结合的教学方法。
学法:实践、比较、探究的学习方式。
教学课型新授课教学用具多媒体课件教学过程一、复习引入一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容。
1、不等式的三个基本性质是什么?2、一元一次不等式的解法是怎样的?3、情境引入:这个星期的星期天是我母亲的生日,肖老师想买一束康乃馨送给妈妈.要求:这束花不低于20 元,又少于40元如果你是花店售货员,你会拿什么价格的康乃馨给我选择呢?二、讲授新知探究新知:题中一共有两种数量关系,讲解时应注意引导学生自主探究发现。
题中的x应同时满足两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。
同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何观察数轴上对应解集的范围。
记着20≤X<40(引导发现,此就是不等式组的解集。
)不等式解集的概念:不等式组中的几个不等式解集的公共部分。
由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。
学生回答后教师总结步骤:分别求出每个不等式的解集;找出它们的公共部分。
三、例题讲解教师提出问题,有了上面的铺垫,我们来完整的解一元一次不等式组。
例1 解不等式组(1)3121 28x xx->+⎧⎨>⎩(2)2311 25123x xxx +≥+⎧⎪+⎨-<-⎪⎩以上两个例题第一个有解,第二个无解,第一个例题教师可以让学生先解完再给出解题过程,本例是按规范格式完整地解答了一个一元一次不等式组,要求学生做作业时按此格式书写。
一元一次不等式公开课教案
课题:一元一次不等式(第1课时)
教学任务分析
教学目标
1.知识目标:了解一元一次不等式的概念,掌握一元一次不等式的解法,并能在数轴上表示出不等式的解集.
2.过程与方法:学生能通过类比解一元一次不等式的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式.学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤.
师生共同归纳得出:
1在解方程中易犯的错误,在解不等式时也要注意。
如:去分母时,不能漏乘不含分母的项,分子是多项式的去完分母后要记得加括号
去括号时,利用乘法分配律去乘括号里的每一项,不能漏乘,注意符号
移项时,移项记得要变号
合并同类项时,系数相加减,字母和字母的指数不变
系数化为1时,不要颠倒分子分母的位置。
2移项,合并,谁先谁后,要根据具体题目来定,当两边项数较多时应先合并再移项较好。
3在利用不等式的性质3时,不等号的方向一定要改变(强调要检查)。
步骤 :画数轴,定界点,选方向
教师出示幻灯片,指导学生在数轴上画出不等式解集的方法和注意事项。强调一般情况下,求出不等式的解集和利用数轴表示出不等式的解集二者缺一不可!做到数形结合!
3.情感目标:通过一元一次不等式的学习,培养学生认真、坚持等良好的学习习惯.
教学重点
1.一元一次不等式的概念.
一元一次不等式组教案
一元一次不等式组教案一、教学目标:1. 让学生理解一元一次不等式组的含义。
2. 引导学生掌握解一元一次不等式组的方法。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学内容:1. 一元一次不等式组的定义。
2. 解一元一次不等式组的方法。
3. 一元一次不等式组在实际问题中的应用。
三、教学重点与难点:1. 教学重点:一元一次不等式组的解法及应用。
2. 教学难点:不等式组解法的灵活运用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究。
2. 使用案例分析法,让学生在实际问题中学会应用。
3. 利用小组讨论法,培养学生的合作意识。
五、教学过程:1. 导入新课:通过生活实例引入一元一次不等式组的概念。
2. 讲解概念:讲解一元一次不等式组的定义及特点。
3. 演示解法:利用数轴演示解一元一次不等式组的方法。
4. 练习巩固:学生独立解一些简单的一元一次不等式组,教师进行点评。
5. 拓展应用:让学生尝试解决实际问题,运用一元一次不等式组的知识。
6. 课堂小结:总结本节课所学内容,强调重点和难点。
7. 作业布置:布置一些有关一元一次不等式组的练习题,巩固所学知识。
8. 课后反思:教师对本节课的教学进行反思,为下一节课的教学做好准备。
六、教学评价:1. 采用课堂练习和课后作业相结合的方式进行评价。
2. 关注学生在解不等式组过程中的思维过程和方法,鼓励创新思维。
3. 结合学生的实际应用能力,评价学生对一元一次不等式组的理解和运用。
七、教学拓展:1. 引导学生思考:如何将一元一次不等式组拓展到多元一次不等式组?2. 探讨实际生活中更复杂的不等式组问题,提高学生的应用能力。
3. 介绍一些与一元一次不等式组相关的中考题型,帮助学生提高应试能力。
八、教学资源:1. 教学PPT:制作简洁清晰的教学课件,辅助讲解和展示。
2. 练习题库:准备一定数量的一元一次不等式组练习题,包括基础题和拓展题。
3. 数轴教具:用于演示和解说一元一次不等式组的解法。
一元一次不等式组教案3篇
一元一次不等式组教案3篇Teaching plan of one variable linear inequality group编订:JinTai College一元一次不等式组教案3篇前言:教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
本教案根据教学设计标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:一元一次不等式组教案2、篇章2:一元一次不等式组教案3、篇章3:一元一次不等式组教案篇章1:一元一次不等式组教案教学目标1.能结合实例,了解一元一次不等式组的相关概念。
2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法探索方法,合作交流。
教学过程一、引入课题:1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2.由许多问题受到多种条件的限制引入本章。
二、探索新知:自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、抽象:教师举例说出什么是一元一次不等式组。
什么是一元一次不等式组的解集。
(渗透交集思想)四、拓展:合作解决第4页“动脑筋”1.分组合作:每人先自己读题填空,然后与同组内同学交流。
2.讨论交流,求出这个不等式的解集。
五、练习:P5练习题。
六、小结:通过体课学习,你有什么收获?七、作业:第5页习题1.1A组。
《一元一次不等式组》教案
《一元一次不等式组》教案(1)教学目标1、经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程。
2、知道一元一次不等式组及其解集的意义,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
3、通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点:一元一次不等式组及其解集的意义教学难点:用数轴确定解集教学方法:讨论探索法.教学过程一、创设问题情境,引入新课某种杜鹃花适宜生长在平均气温为17~20℃的山区,已知这一地区海拔每升高100m,气温下降℃,现测出山脚下的气温是23℃。
估计适宜种植这种杜鹃花的山坡的高度。
二、探索活动1、由几个含有的组成的不等式组叫做一元一次不等式组。
答:同一个未知数、一次不等式。
2、不等式组中所有不等式的解集的,叫做这个不等式组的解集。
答:公共部分。
3、求不等式组的的过程,叫做解不等式组。
答:解集4、一元一次不等式组的两个步骤:(1)求出这个不等式组中各个;(2)利用求出这些不等式的解集的公共部分,即求出这个不等式组的。
答:不等式的解集;数轴;解集。
⎪⎩⎪⎨⎧<--+-≥-②① 1213124326x x x x 三、分组讨论如何求一元一次不等式组的解集呢?(1)不等式组⎩⎨⎧-≥>12x x 的解集是 。
(2)不等式组⎩⎨⎧-<-<12x x 的解集是 。
(3)不等式组⎩⎨⎧><14x x 的解集是 。
(4)不等式组⎩⎨⎧-<>45x x 的解集是 。
答:(1);(2)2x <-;(3)1x 4;(4)无解你能得到什么结论?四、例题教学例1、解不等式组21131x x +<-⎧⎨-≥⎩例2、 解不等式组:,并把它的解集在数轴上表示出来。
例3、解不等式:531x 23≤-<。
思路点拨:(1)本题实质是一个不等式组⎪⎪⎩⎪⎪⎨⎧≤->-②① 5312 3312x x然后解不等式①②,再求出解集的公共部分即原不等式组的解。
9.3一元一次不等式组⑴(公开课教案)
初中数学教案授课者:李华授课班级:七年级7班授课时间:5.8 授课地点:实验中学一元一次不等式组的解, 活动2:下列各式中,哪些是一元一次不等式组?22238,(2)-57 1.x x x x +>+<-⎧⎨⎩583,(4)92.x y +>⎧⎨>-⎩83,(5)3 2.x x >-⎧⎨>⎩13,(6)842,7 1.x x x +>⎧⎪-<≥⎨⎪+⎩221,(1)2 3.x x x +-<-≥⎧⎨⎩√×√××3235,(3)1-7.x x<+>⎧⎪⎨⎪⎩×观察与思考2.动手操作求下列不等式组的解集:3. 总结求公共部分的规律活动3:四、例题讲解教师提出问题,学生独立思考后分组探索,教师深入小组参与活动,观察指导学生,并倾听学生的讨论。
分为四组,分别让学生合作探究,总结出相关规律。
此次活动中关注:(1)学生的参与意识;(2)能否利用数轴找出不等式的解集;(3)能否抓住解不等式的规律:同大取大,同小取小;大小小大中间找,大大小小找不到在学生亲自动手实践的基础上,老师再次总结出规律。
先自主探究解题步骤,后具体解题,可以居高临下地看待一元一次不等式组的解法,并且达到进一步熟悉解题步骤,熟练地利用数轴正确地查找公共部分。
培养学生们的总结概括能力和语言表达能力.培养了学生参与意识和合作交流的意识培养同学们概括.总结能力和参与意识,进一步巩固了所学知识,激发学生的学习兴趣及时巩固练习,加深对知识的理解与记忆. ⎩⎨⎧>>73)1(x x 1(2)4x x >-⎧⎨>⎩3(3)7x x <⎧⎨<⎩1(4)4x x <-⎧⎨<⎩3(5)7x x >⎧⎨<⎩1(6)4x x >-⎧⎨<⎩3(7)7x x <⎧⎨>⎩1(8)4x x <-⎧⎨>⎩练习五、课堂小结这节课你学到了什么?1、概念2、一元一次不等式组的解法六、作业及课后巩固:1、必做题:课本第147页习题9.3第2题的(1)-(4) 2、选做题:解不等式3≤2x-1≤5,你觉得该怎样思考这个问题,你有解决的办法吗?对于例题,解不等式并非新内容.注重解题步骤的归纳教师板演例题,书写完整的解题步骤,强调格式。
人教初中数学七下《一元一次不等式组》教案 (公开课获奖)
9.3 一元一次不等式组教学任务分析教学过程设计一、 创设情境,探究不等式组的含义,引出本节内容. 活动1 问题某校今年冬季烧煤取暖时间为4个月.如果每月比方案多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比方案少烧5吨煤,那么取暖用煤总量缺乏68吨.该校方案每月烧煤多少吨?学生活动设计:学生根据已有的不等式的知识进行独立思考.条件有:取暖时间为4个月,未知量是方案每月烧煤的数量〔x 〕.当每月比原方案多烧5吨煤时,每月实际烧煤〔x +5〕吨,这时总量4〔x +5〕>100;当每月比原方案少烧5吨煤时,实际每月烧〔x -5〕吨煤,有4〔x -5〕<68.进而归纳不等式组的概念.教师活动设计:这是一个实际问题,请学生先理解题意,搞清条件和未知元素,从而确定用哪一个知识点来解决问题,即把实际问题转换为数学模型,从而求解.此时引导学生发现x 的值要同时满足上述两个不等式,进而引导学生归纳一元一次不等式组的概念.把两个不等式合起来,就组成了一元一次不等式组〔此时可以与方程组类比理解〕.活动2 类比方程组的解,如何确定不等式⎩⎨⎧<->+68)5(4100)5(4x x 的解集.学生活动设计:学生独立思考,容易分别解出两个不等式组,得到⎩⎨⎧<>2220x x ,在解出后进行讨论,然后交流如何确定这个不等式组的解集,经过分析发现x 的值必须同时满足x >20,x <22两个不等式,于是可以发现x 的取值范围应该是20<x <22;或者运用数轴,如图1,从数轴上容易观察,同时满足上述两个不等式的x 的值应是,两个不等式解集的公共局部,因此解集为20<x <22.图1教师活动设计:组织学生进行分析、讨论,引导学生发现不等式组中两个不等式解集的公共局部,就是不等式组的解集.在学生寻找解集的过程中,特别引导学生利用数轴来确定不等式的解集,同时让学生讨论归纳用数轴确定解集的方法:先分别画出解集,然后观察解集的公共局部,最后写出解集.在这个过程中,教师应注重让学生体会不等式组的解集在数轴上的表达.学生完成对活动1的解决过程.解:设该校方案每月烧煤x 吨,根据题意,得⎩⎨⎧<->+)2(68)5(4)1(100)5(4x x .由〔1〕得x >20. 由〔2〕得x <22.所以不等式组的解集是20<x <22. 即该校方案每月烧煤20到22吨.最后师生共同归纳不等式组的解集以及解不等式组:一般地,几个不等式的解集的公共局部,就是这个不等式组的解集. 求不等式组的解集的过程,就是解不等式组. 二、 知识应用、稳固提高,使学生进一步理解不等式组的概念以及解不等式组的方法. 活动3 解以下不等式组,并利用数轴确定其解集.〔1〕⎩⎨⎧-<++>-148112x x x x 〔2〕⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x 〔3〕⎪⎪⎩⎪⎪⎨⎧+>+<+33222)6(21x x x学生活动设计:学生独立思考,自主解决问题,可以找三位同学进行板演,然后进行交流. 〔1〕⎩⎨⎧-<++>-148112x x x x解不等式①,得 x >2.解不等式②,得x >3.在同一条数轴上表示不等式①、②的解集如图2:图2因此,原不等式组的解集是x >3.〔2〕⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x解不等式①,得x ≤1.解不等式②,得x <4.在同一条数轴上表示不等式①、②的解集如图3:图3① ②①②所以,原不等式组的解集为x ≤1.〔3〕⎪⎪⎩⎪⎪⎨⎧+>+<+33222)6(21x x x解:解不等式①,得x <-2.解不等式②,得x >0.在同一条数轴上表示不等式①、②的解集,如图4:所以,原不等式组无解. 教师活动设计:鼓励学生自己解决问题,在交流的过程中,注重学生主体性的发挥,让学生充分表达自己的看法,特别是如何确定不等式的解集的.三、 拓展创新、应用提高,培养学生的创新能力与应用意识.活动4:3个小组方案在10天内生产500件产品〔每天生产量相同〕,按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?学生活动设计:学生小组合作,在独立思考的根底上讨论交流,寻找解决问题的方法.从问题中可以发现有两个关键性的描述:〔1〕按原来的生产速度,不能完成任务;〔2〕按现在的生产速度可以提前完成任务.这两句话要注意理解,可以通过讨论来达成共识.教师活动设计:鼓励学生首先进行独立思考,然后讨论.引导学生发现上述两个关键性的描述并进行理解:不能完成任务的意思是按原来的生产速度产量小于500,可以提前完成任务的含义是按现在的生产速度产量大于500,进而设出未知数,列出不等式组〔解答〕设每个小组原来每天生产x 件产品,那么有⎩⎨⎧>+⨯<⨯500)1(103500103x x 由不等式①得3216<x .由②得3215>x .于是32163215<<x . 又x 为整数,所以x =16,即每个小组原来每天生产16件产品.①②①②四、归纳总结、布置作业. 小结:本节课你获得了什么知识?解决了什么问题?解决问题的过程中用了什么方法? .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习1.计算: (1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.D CA BD CABDC A B[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕E DC A B PA.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔〕A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,那么其腰长为〔x+2〕cm,根据题意,得2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
一元一次不等式组(公开课课件)
形式
一元一次不等式组通常表 示为“{①,②,③...}”, 其中①,②,③...是一元 一次不等式。
特点
一元一次不等式组中至少 包含两个不等式,且每个 不等式只含有一个未知数 。
一元一次不等式组的解集
定义
满足一元一次不等式组中 所有不等式的未知数的取 值范围称为该不等式组的 解集。
性质
解集具有封闭性,即满足 所有不等式的解都在解集 中。
求法
通过解每个不等式,找出 满足所有不等式的解,再 确定解集。
一元一次不等式组的分类
分类标准
简单型
根据一元一次不等式组中不等式的个数和 形式,可以将一元一次不等式组分为简单 型、线性型、多项式型等。
由两个一元一次不等式组成的不等式组, 如“{2x > 3, x < 5}”。
线性型
多项式型
由两个或多个线性一元一次不等式组成的 不等式组,如“{3x + 2 > 0, 4x - 1 < 5}” 。
VS
解集关系
一元一次不等式组的解集与相应的一元一 次方程组的解集存在一定的包含关系,可 以根据方程组的解来推断不等式组的解。
一元一次不等式组在实际问题中的应用
资源分配问题
例如,在有限资源下如何分配任 务以达到最优效果。
最优化问题
例如,在一定条件下如何选择方案 以达到最优目标。
经济问题
例如,在预算限制下如何选择商品 或服务以实现最大效益。
生产问题
总结词
企业生产过程中的资源配置问题
详细描述
生产问题涉及到企业生产过程中的资源配置,如原材料、设备和人力资源的分配。一元 一次不等式组可以用来解决生产中的成本和效率问题,例如优化生产流程以降低成本和
9.3.1一元一次不等式组(教案)
1.理论介绍:首先,我们要了解一元一次不等式组的基本概念。一元一次不等式组是由几个含有同一个未知数的一元一次不等式组合而成的。它在解决实际问题中起着重要作用,帮助我们确定未知数的取值范围。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过解一元一次不等式组来确定某个学生在数学和英语两门课程中的最低及格分数要求。
其次,在新课讲授环节,我发现学生们对一元一次不等式组的理解还存在一些困难。在讲解重点难点时,我应该更加注意用简洁明了的语言和具体的例子来阐述,让学生更容易理解。此外,我还可以尝试用图表、动画等辅助教学手段,使抽象的知识更加直观。
在实践活动环节,学生们分组讨论和实验操作的积极性很高,但我发现部分学生在讨论过程中还是过于依赖同学,缺乏独立思考。在今后的教学中,我应该鼓励学生们独立思考,培养他们解决问题的能力。
三、教学难点与重点
1.教学重点
(1)理解一元一次不等式组的定义及解的概念;
(2)掌握一元一次不等式组的解法步骤,包括同大取大、同小取小、大小小大中间找、大大小小无解了;
(3)能够将一元一次不等式组应用于解决实际问题;
(4)了解一元一次不等式组的解与方程组的解之间的关系。
举例:对于一元一次不等式组如:x>-2和x<5,学生需要理解其解集为-2<x<5。
3.重点难点解析:在讲授过程中,我会特别强调一元一次不等式组的解法和其在实际问题中的应用这两个重点。对于难点部分,如“同大取大、同小取小”的原则,我会通过具体的例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次不等式组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过比较不等式组中的不等式来求解。
一元一次不等式组教学设计(教案)
教案:一元一次不等式组教学设计(教案)教学目标:1. 理解一元一次不等式组的定义及其解法。
2. 学会解一元一次不等式组,并能够应用解集解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 一元一次不等式组的定义及其解法。
2. 解一元一次不等式组的方法和技巧。
教学难点:1. 不等式组的解集的表示方法。
2. 解决实际问题时不等式组的应用。
教学准备:1. 教学PPT或黑板。
2. 教学卡片或练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,复习一元一次不等式的定义及解法。
2. 提问:我们已经学过如何解决一元一次不等式,如何解决一组不等式呢?二、新课讲解(15分钟)1. 讲解一元一次不等式组的定义:一元一次不等式组是由多个一元一次不等式组成的集合。
2. 讲解解一元一次不等式组的方法:先解每个不等式,根据不等式的关系确定3. 举例讲解如何解一元一次不等式组,并展示解集的表示方法。
三、课堂练习(10分钟)1. 分发练习题,让学生独立解决一元一次不等式组的问题。
2. 选取部分学生的作业进行讲解和讨论。
四、解决问题(10分钟)1. 提出实际问题,让学生应用一元一次不等式组的知识解决问题。
2. 引导学生思考如何将实际问题转化为不等式组的问题,并解决之。
2. 布置作业:解决一些一元一次不等式组的问题。
教学反思:通过本节课的教学,学生应该掌握了一元一次不等式组的解法和解集的表示方法,并能够应用解集解决实际问题。
在教学过程中,要注意引导学生思考和探索,培养学生的逻辑思维能力和解决问题的能力。
也要注重练习和应用,让学生在解决实际问题的过程中巩固所学知识。
六、案例分析(10分钟)1. 提供一些实际案例,让学生运用所学的知识分析和解决。
2. 引导学生思考如何将案例中的问题转化为不等式组的问题,并展示解题过程。
七、练习与讨论(10分钟)1. 分发练习题,让学生独立解决一元一次不等式组的问题。
2. 鼓励学生之间进行讨论,分享解题方法和经验。
一元一次不等式组(公开课教案)
一、学习目标:1.经历通过具体问题抽象出不等式组的过程,理解一元一次不等式组、一元一次不等式组的解集、解不等式组等概念。
2.会用数轴确定由两个一元一次不等式组成的不等式组的解集,进一步巩固数形结合思想。
3.会解由两个一元一次不等式组成的不等式组。
二、学习重难点:学习重点:理解不等式组解集的意义,会解一元一次不等式组。
学习难点:借助数形结合的方法找出不等式组的解集。
三、教学过程设计:四、解决问题我来办:(一)复习引入(3--8)(二)归纳小结(5--8)(三)实践练习,小结提升(8-12)举例:经调查,我校学生均有一定的零花钱,八年级(1)班林燕敏同学如果每周比计划多花4元钱,那么一月(按4周算)总量将超过40元,若她计划每周花x元,则x满足怎样的关系式?为响应学校节俭号召,如果她每周比计划少花4元钱,那么一月(按4周算)总量不足20元。
则x又应满足怎样的关系式?这时,你能求出它的值吗?你是如何解决这个问题的?学生代表展示解决提出的问题,全班补充。
1、关于的几个一元一次不等式合在一起,就组成了一元一次不等式组。
(两个?三个?多个怎样?)2、一元一次不等式组里的各个不等式的解集的,叫做这个一元一次不等式组的解集。
求不等式组解集的过程,叫做。
(公共部分——回顾、对比二元一次方程组的说法)学生代表讲解并解释,其他同学可以提出疑义,如若需要,再进行小组讨论。
*1、(1)不等式的解集,在数轴上表示正确的是()(2)解不等式组,并把解集表示在数轴上。
学生代表讲解解题过程,其余学生补充。
2、总结:你能总结出解一元一次不等式组的步骤通吗?(1);(2);(3)。
学生代表演示分析过程和解题过程。
允许其他同学提问和质疑,引导、点评并发问:(1)当遇到一个量要同时满足两个不等式时应如何解决?(类比方程组)(2)说明今后遇到同时满足时可以通过什么来解决?引导、点评学生表现,鼓励学生大胆说出自己的想法,引导学生对研究的问题归纳总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式组教案公开课教案修订版
IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】
§9.3一元一次不等式组
肖慧
教学目标
知识与技能:
1、了解一元一次不等式组及其解集的概念。
2、会利用数轴求不等式组的解集。
过程与方法:
1、培养学生分析实际问题,抽象出数学关系的能力。
2、培养学生初步数学建模的能力。
情感态度价值观:
加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。
感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯。
教学重难点
重点:不等式组的解法及其步骤。
难点:确定两个不等式解集的公共部分。
教法与学法分析
教法:启发式、讨论式和讲练结合的教学方法。
学法:实践、比较、探究的学习方式。
教学课型
新授课
教学用具
多媒体课件
教学过程
一、复习引入
一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容。
1、不等式的三个基本性质是什么?
2、一元一次不等式的解法是怎样的?
3、情境引入:这个星期的星期天是我母亲的生日,肖老师想买一束康乃馨送给妈妈.
要求:这束花不低于20元,又少于40元
如果你是花店售货员,你会拿什么价格的康乃馨给我选择呢
二、讲授新知
探究新知:
题中一共有两种数量关系,讲解时应注意引导学生自主探究发现。
题中的x 应同时满足两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。
同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何观察数轴上对应解集的范围。
记着20≤X<40(引导发现,此就是不等式组的解集。
)
不等式解集的概念:不等式组中的几个不等式解集的公共部分。
由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。
学生回答后教师总结步骤:分别求出每个不等式的解集;找出它们的公共部分。
三、例题讲解
教师提出问题,有了上面的铺垫,我们来完整的解一元一次不等式组。
例1解不等式组
(1)312128
x x x ->+⎧⎨>⎩
(2)231125
123x x x x +≥+⎧⎪+⎨-<-⎪⎩
以上两个例题第一个有解,第二个无解,第一个例题教师可以让学生先解完再给出解题过程,本例是按规范格式完整地解答了一个一元一次不等式组,要求学生做作业时按此格式书写。
第二个不等式组的解法中,学生会先求出两个不等式的解集,再在数轴上表示出每个不等式的解集,如果每个不等式的解集有公共部分,就是该不等式组的解,公共部分就是它的解集;如果每个不等式的解集没有公共部分,就说该不等式组无解。
解:(1)解不等式①,得2x >
解不等式②,得4x >
把不等式①和②的解集在数轴上表示出来:
则原不等式的解集为4x >
(2)解不等式①,得8x ≥
解不等式②,得4
5
x <
把不等式①和②的解集在数轴上表示出来:
在这里引导学生发现,没有公共部分,即无解。
四、课堂练习
这个表格教师应尽量引导学生自主探究完成,教师最后做出总结:同大取大,同小取小,大小小大中间找,大大小小找不了。
2、学以致用
(1)比一比:看谁反应快运用规律求下列不等式组的解集
(2)、根据数轴说出不等式组的解集
解集:解集:解集:解集:
五、课时小结
学生学习了一节后有自己的收获,教师应让学生首先总结,教师再做补充。
(一)概念
⎩⎨⎧>>.7,3)1(x x 1,(2) 4.x x >-⎧⎨>⎩3,
(3)7.x x <⎧⎨
<⎩1,(4) 4.x x <-⎧⎨
<⎩3,(5)7.x x >⎧⎨
<⎩1,(6) 4.x x >-⎧⎨<⎩3,(7)7.
x x <⎧⎨
>⎩1,
(8) 4.
x x <-⎧⎨
>⎩ 第一 第二
第三 第四
1、由几个一元一次不等式所组成的不等式组叫做一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
(二)解简单一元一次不等式组的方法:
1、求不等式组中各个不等式的解集。
2、利用数轴找出两个不等式的公共部分,即求出了不等式的解集。
(三)本节课的思想方法
(1)类比的思想(2)数形相结合的思想
六、总结升华
设a、b是已知实数且a>b,那么不等式组
表一:不等式组解集
这个表格教师应尽量引导学生自主探究完成,教师最后做出总结:皆大取大,皆小取小,大小小大取中间,大大小小是无解。
七、作业布置
必做:课本129练习
板书设计
表二板书设计表。