智能优化算法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能计算读书报告(二)

智能优化算法

姓名:XX

学号:XXXX

班级:XXXX

联系方式:XXXXXX

一、引言

智能优化算法又称为现代启发式算法,是一种具有全局优化性能、通用性强、且适用于并行处理的算法。这种算法一般具有严密的理论依据,而不是单纯凭借专家的经验,理论上可以在一定时间内找到最优解或者近似最优解。所以,智能优化算法是一数学为基础的,用于求解各种工程问题优化解的应用科学,其应用非常广泛,在系统控制、人工智能、模式识别、生产调度、VLSI技术和计算机工程等各个方面都可以看到它的踪影。

最优化的核心是模型,最优化方法也是随着模型的变化不断发展起来的,最优化问题就是在约束条件的限制下,利用优化方法达到某个优化目标的最优。线性规划、非线性规划、动态规划等优化模型使最优化方法进入飞速发展的时代。

20世纪80年代以来,涌现出了大量的智能优化算法,这些新颖的智能优化算法被提出来解决一系列的复杂实际应用问题。这些智能优化算法主要包括:遗传算法,粒子群优化算法,和声搜索算法,差分进化算法,人工神经网络、模拟退火算法等等。这些算法独特的优点和机制,引起了国内外学者的广泛重视并掀起了该领域的研究热潮,并且在很多领域得到了成功地应用。

二、模拟退火算法(SA)

1. 退火和模拟退火

模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。

模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。

模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟

退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图2.1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

图2.1 模拟退火示意图

若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动,若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)。这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

P(dE) = exp( dE/(kT) )

其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。随着温度T的降低,P(dE)会逐渐降低。将一次向较差解的移动看做一次温度跳变过程,以概率P(dE)来接受这样的移动。

2. Bolzman方程

同一温度下,S 处在能量小的状态要比处在能量大的状态概率大,若存在E 1

故P 1 (T k )>P 2 (T k )

若i * 表示S 中最低能量的状态,是关于温度T k 单调递减的,对P i (T k ) 求对温度的导数,则

当T k →0时,

所以:

同理,当T k →0 时

所以可以总结为能量越低越稳定。

3. SA的算法步骤

(1)初始化,任选初始解, i∈S,给定初始温度T_0,终止温度T_f,令迭代指标k=0,T_k=T_0。

(2)随机产生一个邻域解,j∈N(i),计算目标值增量△f=f(j)-f(i)。

(3)若△f<0,令i=j,转第(4)步;否则产生

这种情况下则令i=j。

(4)若达到热平衡(内循环次数大于n(T_k)),转第(5)步,否则转(2)。

(5)k=k+1,则降低T_k,若T_k<T_f,则停止,否则转第(2)步。

程序流程图如下所示:

图2.2 SA算法程序流程图

三、禁忌搜索(TS)

禁忌搜索的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。相对于模拟退火和遗传算法,TS是又一种搜索特点不同的meta-heuristic算法。迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。

禁忌搜索算法是组合优化算法的一种,是局部搜索算法的扩展。禁忌搜索算法是人工智能在组合优化算法中的一个成功应用。禁忌搜索算法的特点是采用了禁忌技术。所谓禁忌就是禁止重复前面的工作。禁忌搜索算法用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点。

禁忌搜索算法实现的技术问题是算法的关键。禁忌搜索算法涉及侯选集合、

相关文档
最新文档