2020_2021学年新教材高中物理第二章电磁感应习题课电磁感应中的动力学能量和动量问题课件人教版必修二

合集下载

专题二十一 电磁感应中的动力学、能量和动量问题

专题二十一 电磁感应中的动力学、能量和动量问题

第十二章 电磁感应专题二十一 电磁感应中的动力学、能量和动量问题核心考点五年考情命题分析预测电磁感应中的动力学问题2023:北京T18,浙江6月T19;2022:海南T18,浙江6月T21; 2021:全国甲T21,湖北T16 高考中常通过导体棒+导轨、导体框等模型考查电磁感应中力与运动、功与能、动量等力电综合问题,选择题和计算题都有考查,近年主要为计算题形式,试题综合性较强,难度较大.预计2025年高考可能会出现导体棒的受力及运动分析、电磁感应与动量定理和动量守恒定律相结合的综合性试题.电磁感应中的能量问题2023:北京T9,上海T19; 2022:全国乙T24; 2021:北京T7; 2019:北京T22电磁感应中的动量问题2023:全国甲T25,湖南T14; 2022:辽宁T15; 2019:全国ⅢT19题型1 电磁感应中的动力学问题1.导体受力与运动的动态关系2.两种运动状态状态特征处理方法平衡态 加速度为零根据平衡条件列式分析非平衡态加速度不为零根据牛顿第二定律结合运动学公式进行分析3.“四步法”分析电磁感应中的动力学问题命题点1“单棒+导轨”模型1.如图所示,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上.t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动.t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g.求:(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.答案(1)Blt0(Fm -μg)(2)B2l2t0m解析(1)设金属杆进入磁场前的加速度大小为a,由牛顿第二定律得F-μmg=ma设金属杆到达磁场左边界时的速度为v,由运动学公式有v=at0当金属杆以速度v在磁场中匀速运动时,由法拉第电磁感应定律得杆中的电动势为E=Blv 联立解得E=Blt0(Fm-μg)(2)设金属杆在磁场中匀速运动时,杆中的电流为I,根据闭合电路欧姆定律得I=ER式中R为电阻的阻值金属杆所受的安培力为F安=BIl因金属杆做匀速运动,由平衡条件得F-μmg-F安=0联立解得R=B 2l2t0 m.2.如图,两条平行导轨所在平面与水平面的夹角为θ,平行导轨间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并接触良好.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.金属棒和导轨的电阻可忽略不计.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.答案(1)Q=CBLv(2)v=m(sinθ-μcosθ)m+B2L2Cgt解析(1)设金属棒下滑的速度大小为v,则产生的感应电动势为E=BLv平行板电容器两极板之间的电势差为U=E设此时电容器极板上积累的电荷量为Q,按定义有C=QU联立解得Q=CBLv(2)设经过时间t金属棒的速度大小为v,通过金属棒的电流为i.金属棒受到的安培力方向沿导轨向上,大小为f1=BLi设在时间间隔t~t+Δt内流经金属棒的电荷量为ΔQ,按定义有i=ΔQΔtΔQ也是平行板电容器在时间间隔t~t+Δt内增加的电荷量,由(1)中结果可知ΔQ=CBLΔv式中,Δv为金属棒的速度变化量,按定义有a=ΔvΔt金属棒受到的摩擦力方向沿导轨向上,大小为f2=μN式中,N是金属棒对导轨的正压力的大小,有N=mg cosθ金属棒在t时刻的加速度方向沿导轨向下,设其大小为a,根据牛顿第二定律有mg sinθ-f1-f2=ma联立解得a=m(sinθ-μcosθ)m+B2L2Cg可知金属棒做初速度为零的匀加速运动,t时刻金属棒的速度大小为v=m(sinθ-μcosθ)m+B2L2Cgt.方法点拨单棒+电阻模型物理模型水平拉力F恒定,金属棒和水平导轨的电阻不计,摩擦力不计动态分析设运动过程中某时刻棒的速度为v,加速度为a=Fm-B2L2vmR,a、v同向,随v的增大,a减小,当a=0时,v最大,I恒定最终状态运动形式匀速直线运动力学特征a=0,v最大,v m=FRB2L2电学特征I=BLv mR恒定单棒+电容器模型金属棒的初速度为零,水平拉力F恒定,棒和水平导轨的电阻不计,摩擦力不计↓运动过程分析:棒做加速运动,持续对电容器充电,则存在充电电流,有F-BIL=ma,I=ΔQΔt ,ΔQ=CΔU,ΔU=ΔE=BLΔv,联立可得F-CB2L2ΔvΔt=ma,其中ΔvΔt=a,则可得a=Fm+CB2L2↓金属棒做加速度恒定的匀加速直线运动.功能关系:W F=12mv2+E电命题点2线圈模型3.[矩形线圈]如图所示,水平匀强磁场存在于虚线框内,矩形线圈竖直下落,线圈平面始终与磁场方向垂直.如果线圈受到的磁场力总小于其重力,则它在1、2、3、4位置时的加速度大小关系为(B)A.a1>a2>a3>a4B.a1=a3>a2>a4C.a1=a3>a4>a2D.a4=a2>a3>a1解析线圈在位置3时,线圈中没有感应电流,因此只受重力作用,故a1=a3=g.线圈在位置2和位置4时都有感应电流,但在位置4时的感应电流I4大于在位置2时的感应电流I2,则F安2<F安4,而安培力均为阻力,故a4<a2<g,B正确.4.[正方形单匝线圈]如图所示,电阻为0.1Ω的正方形单匝线圈abcd的边长为0.2m,bc边与匀强磁场左边界重合.磁场的宽度等于线圈的边长,磁感应强度大小为0.5T.在水平拉力作用下,线圈以8m/s的速度向右匀速穿过磁场区域.求在上述过程中(1)线圈中感应电动势的大小E;(2)线圈所受拉力的大小F;(3)线圈中产生的热量Q.答案(1)E=0.8V(2)F=0.8N(3)Q=0.32J解析(1)感应电动势E=Blv代入数据得E=0.8V(2)感应电流I=ER拉力的大小等于线圈受到的安培力F=BIl解得F=B 2l2vR,代入数据得F=0.8N(3)运动时间t=2lv 由焦耳定律得Q=I2Rt解得Q=2B 2l3vR,代入数据得Q=0.32J.题型2电磁感应中的能量问题1.电磁感应中的能量转化闭合电路中产生感应电流的过程,是其他形式的能转化为电能的过程.电磁感应中能量问题的实质是电能的转化问题,桥梁是安培力.2.求解焦耳热的三种方法能量转化问题的分析程序:先电后力再能量命题点1 功能关系的应用5.[多选]如图,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,两部分平滑连接,平直部分右端接一个阻值为R 的定值电阻.平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场.质量为m 、电阻也为R 的金属棒从高度为h 处由静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,重力加速度大小为g ,金属棒与导轨始终垂直且接触良好,则金属棒穿过磁场区域的过程中( BD )A.通过金属棒的最大电流为Bd √2gℎ2RB.通过金属棒的电荷量为BdL 2RC.克服安培力所做的功为mghD.金属棒上产生的焦耳热为12mg (h -μd )解析 金属棒由静止释放下滑到弯曲部分底端,根据动能定理有mgh =12m v 02,金属棒在磁场中运动时产生的感应电动势E =BLv ,当金属棒刚进入磁场时,产生的感应电动势最大,感应电流最大,I max =BLv 02R=BL √2gℎ2R,A 错误;金属棒穿过磁场区域的过程中通过金属棒的电荷量q =I t =E2R t =ΔΦ2R =BdL2R ,B 正确;对整个过程由动能定理得mgh -W 克安-μmgd =0,金属棒克服安培力做的功W 克安=mgh -μmgd ,C 错误;由功能关系可得,金属棒上产生的焦耳热Q =12W 克安=12mg (h -μd ),D 正确.方法点拨常见的功能关系做功情况能量变化重力做功重力势能发生变化弹簧弹力做功弹性势能发生变化合外力做功动能发生变化做功情况能量变化除重力和系统内弹力以外的其他力做功机械能发生变化滑动摩擦力做功有内能产生静电力做功电势能发生变化安培力做正功电能转化为其他形式的能克服安培力做功(动生型电磁感应)其他形式的能转化为电能,并且克服安培力做多少功,就产生多少电能命题点2能量守恒定律的应用6.[多选]如图所示,间距为l的平行金属导轨与水平面间的夹角为θ,导轨电阻不计,与阻值为R的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B.有一质量为m、长为l的导体棒在ab位置以初速度v沿导轨向上运动,最远到达a'b'处,导体棒向上滑行的最远距离为x.已知导体棒的电阻也为R,与导轨之间的动摩擦因数为μ,重力加速度大小为g.导体棒与导轨始终保持垂直且接触良好,下列说法正确的是(BCD)A.导体棒受到的最大安培力为B2l2vRB.导体棒损失的机械能为12mv2-mgx sinθC.导体棒运动的时间为2mvR-B2l2x2mgR(sinθ+μcosθ)D.整个电路产生的焦耳热为12mv2-mgx(sinθ+μcosθ)解析根据E=Blv,可以知道速度最大时感应电动势最大,电流和安培力也最大,所以初始时刻导体棒受到的安培力最大,根据F=BIl,I=Blv2R ,可得F=B2l2v2R,故A错误;从初始位置到滑行最远时,损失的机械能为ΔE=12mv2-mgx sin θ,故B正确;导体棒向上滑动的过程,由动量定理可得B I lt+(mg sin θ+μmg cos θ)t=mv,而I t=ER t=ΔΦR=Blx2R,联立解得t=2mvR−B2l2x2mgR(sinθ+μcosθ),故C正确;导体棒上滑过程中克服重力、滑动摩擦力和安培力做功,根据能量守恒定律可得整个电路产生的焦耳热 为Q =12mv 2-mgx ( sin θ+μ cos θ),故D 正确. 命题拓展命题情境不变,命题角度变化若导轨光滑,导体棒受到一个平行于导轨向上的拉力作用,以初速度v 0沿导轨向上开始运动,可达到的最大速度为v 1.运动过程中拉力的功率恒定不变,其他条件不变,求拉力的功率.答案 P =mgv 1sinθ+B 2L 2v 122R解析 在导体棒运动过程中,拉力功率恒定,导体棒做加速度逐渐减小的加速运动,速度达到最大时,加速度为零,设此时拉力的大小为F ,安培力大小为F A ,有F -mg sin θ-F A =0.此时导体棒产生的感应电动势为E =BLv 1,回路中的感应电流为I =E2R ,导体棒受到的安培力F A =BIL ,拉力的功率P =Fv 1,联立上述各式解得P =mgv 1 sin θ+B 2L 2v 122R.7.[2023浙江6月]如图所示,质量为M 、电阻为R 、长为L 的导体棒,通过两根长均为l 、质量不计的导电细杆连在等高的两固定点上,固定点间距也为L .细杆通过开关S 可与直流电源E 0或理想二极管串接.在导体棒所在空间存在磁感应强度方向竖直向上、大小为B 的匀强磁场,不计空气阻力和其他电阻.开关S 接1,当导体棒静止时,细杆与竖直方向的夹角θ=π4;然后开关S 接2,棒从右侧开始运动完成一次振动的过程中( C )A.电源电动势E 0=√2Mg 2BLRB.棒产生的焦耳热Q =(1-√22)MglC.从左向右运动时,最大摆角小于π4D.棒两次过最低点时感应电动势大小相等解析 作出静止时导体棒的受力图如图所示,由于θ=π4,故安培力F =Mg ,又F =BIL ,电流I =E 0R ,解得E 0=MgR BL,A 错误;开关S 接2,导体棒先向左运动,回路中有电流,棒会产生焦耳热,然后由于重力的作用,棒向右运动,由于二极管的作用,此过程回路中无电流,棒不会产生焦耳热,故导体棒向右通过最低点时速度不为0,即E k >0,由能量守恒定律可知,棒完成一次振动的过程产生的焦耳热满足Q +E k =Mgl (1- cos θ),所以Q <Mgl (1- cos θ)=(1-√22)Mgl ,B 错误;导体棒从右向左摆动,会产生焦耳热,故由能量守恒定律可知,其从右向左运动到最左侧时摆角小于π4,由对称性可知导体棒从左向右摆动时,最大摆角也小于π4,C 正确;导体棒第二次通过最低点的速度小于第一次通过最低点的速度,故两次通过最低点的速度大小不等,由E =BLv 可知,产生的感应电动势大小也不相等,D 错误.题型3 电磁感应中的动量问题1.动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动,当题目中涉及速度v 、电荷量q 、运动时间t 、运动位移x 时常用动量定理求解.(1)单棒+水平导轨情境示例1水平放置的平行光滑导轨,间距为L ,左侧接有电阻R ,导体棒初速度为v 0,质量为m ,电阻不计,匀强磁场的磁感应强度为B ,导轨足够长且电阻不计,从开始运动至停下来求电荷量q-B I L Δt =0-mv 0,q =I Δt ,联立解得q =mv 0BL求位移x -B 2L 2v RΔt =0-mv 0,x =v Δt =mv 0R B 2L 2应用技巧 初、末速度已知的变加速运动,在用动量定理列出的式子中q =I Δt ,x =v Δt ;若已知q 或x 也可求末速度或初速度 (2)单棒+倾斜导轨情境示例2间距为L 的光滑平行导轨倾斜放置,倾角为θ,由静止释放质量为m 、接入电路的阻值为R 的导体棒,当通过横截面的电荷量为q 或下滑位移为x 时,速度达到v求运动时间-B I L Δt +mg sinθ·Δt =mv -0,q =I Δt ,-B 2L 2v RΔt +mg sinθ·Δt =mv -0,x=v Δt应用技巧用动量定理求时间需有其他恒力参与.若已知运动时间,也可求q 、x 、v中的任一个物理量2.动量守恒定律在电磁感应中的应用在两等长金属棒切割磁感线的系统中,两金属棒和水平平行金属导轨构成闭合回路,它们受到的安培力的合力为0,如果不计摩擦,它们受到的合力为0,满足动量守恒的条件,运用动量守恒定律解题比较方便.命题点1 动量定理在电磁感应中的应用8.[“单棒+电阻”模型]如图所示,足够长的光滑平行金属导轨固定在绝缘水平面上,导轨范围内存在磁场,其磁感应强度大小为B,方向竖直向下,导轨一端连接阻值为R的电阻.在导轨上垂直于导轨放一长度等于导轨间距L、质量为m的金属棒,其电阻为r.金属棒在水平向右的恒力F作用下从静止开始运动,经过时间t后开始匀速运动.金属棒与导轨接触良好,导轨的电阻不计.(1)求金属棒匀速运动时回路中的电流;(2)求金属棒匀速运动的速度大小以及在时间t内通过回路的电荷量;(3)若在时间t内金属棒运动的位移为x,求电阻R上产生的热量.答案(1)FBL (2)F(R+r)B2L2FtBL-mF(R+r)B3L3(3)[Fx-mF2(R+r)22B4L4]RR+r解析(1)金属棒匀速运动时,由平衡条件得F=BI m L,解得I m=FBL(2)根据闭合电路的欧姆定律得I m=BLvR+r解得v=F(R+r)B2L2通过回路的电荷量q=I t由动量定理得Ft-B I Lt=mv解得q=FtBL -mF(R+r)B3L3(3)由功能关系得Fx=Q+12mv2Q R=RR+rQ解得Q R=[Fx-mF2(R+r)22B4L4]R R+r.9.[不等间距上的双棒模型/多选]如图所示,光滑水平导轨置于匀强磁场中,磁场方向竖直向下,磁感应强度大小为B.左侧导轨间距为L,右侧导轨间距为2L,导轨均足够长.质量为m的导体棒ab和质量为2m的导体棒cd均垂直于导轨放置,处于静止状态.现瞬间给导体棒cd一水平向右的初速度v0,在此后的运动过程中,两棒始终在对应的导轨部分运动,始终与导轨垂直且接触良好.已知导体棒ab的电阻为R,cd的电阻为2R,导轨电阻不计.下列说法正确的是(AC)A.导体棒ab和cd组成的系统动量不守恒B.两棒最终以相同的速度做匀速直线运动C.导体棒ab最终的速度为23v0D.从导体棒cd 获得初速度到二者稳定运动的过程中,系统产生的焦耳热为89m v 02解析 导体棒cd 获得速度后,回路中产生感应电流,根据左手定则知导体棒cd 减速,导体棒ab 加速,当BLv ab =2BLv cd 时,回路中磁通量不变,没有感应电流,最终两棒做匀速直线运动,分别对两棒运用动量定理得-2B I Lt =2mv cd -2mv 0,B I Lt =mv ab ,联立解得v ab =23v 0,v cd =13v 0,故B 错误,C 正确;两导体棒受到的安培力大小不相等,系统受到的合力不为零,动量不守恒,A 正确;从导体棒cd 获得初速度到二者稳定运动的过程中,系统产生的焦耳热为Q =12·2m v 02-12m v ab 2-12·2m v cd 2,解得Q =23m v 02,故D 错误.10.[“电容器”模型/2024广东广州开学考试]如图所示,在水平面内固定着间距为L 的两根光滑平行金属导轨(导轨足够长且电阻忽略不计),导轨上M 、N 两点右侧处在方向垂直导轨平面向下、磁感应强度大小为B 的匀强磁场中.在导轨的左端接入电动势为E 、内阻不计的电源和电容为C 的电容器.先将金属棒a 静置在导轨上,闭合开关S 1、S 3,让a 运动速度达到v 0时断开S 1,同时将金属棒b 静置在导轨上,经过一段时间后,流经a 的电流为零.已知a 、b 的长度均为L ,电阻均为R ,质量均为m ,在运动过程中始终与导轨垂直并保持良好接触.(1)求开关S 1、S 3闭合,a 运动速度达到v 0时a 的加速度大小;(2)求b 产生的焦耳热;(3)若将棒a 、b 均静置在水平导轨上,闭合开关S 1、S 2,稍后再断开S 1同时闭合S 3,求两棒最终的速度大小.答案 (1)BL (E -BLv 0)mR(2)18m v 02(3)BLCE2m +B 2L 2C解析 (1)a 切割磁感线产生的电动势E 1=BLv 0由牛顿第二定律得B E -E 1RL =ma解得a =BL (E -BLv 0)mR(2)对a 、b 系统,由动量守恒定律得mv 0=2mv 1解得v 1=v2由能量守恒定律得系统产生的焦耳热Q =12m v 02-12·2m v 12解得Q =14m v 02b 产生的焦耳热Q b =12Q =18m v 02(3)闭合开关S1、S2,稍后再断开S1同时闭合S3,两棒同时加速,直到匀速运动.对电容器,放电量q=C(E-BLv)对a,某时刻经极短时间Δt,由动量定理得BILΔt=mΔv整个过程有∑BLΔq=∑mΔv即BL q2=mv解得两棒最终的速度v=BLCE2m+B2L2C.方法点拨无外力充电式基本模型(导体棒电阻为R,电容器电容为C,导轨光滑且电阻不计)电路特点导体棒相当于电源,电容器充电电流特点安培力为阻力,导体棒减速,E减小,有I=BLv-U CR,电容器充电U C变大,当BLv=U C时,I=0,F安=0,导体棒匀速运动运动特点和最终特征导体棒做加速度a减小的减速运动,最终做匀速运动,此时I=0,但电容器带电荷量不为零最终速度电容器充电电荷量:q=CU C最终电容器两端电压:U C=BLv对棒应用动量定理:mv-mv0=-B I L·Δt=-BLq,v=mv0m+CB2L2v-t图像无外力放电式基本模型(电源电动势为E,内阻不计,电容器电容为C,导轨光滑且电阻不计)电路特点电容器放电,相当于电源;导体棒受安培力而运动电流特点电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BLv m运动特点和最终特征导体棒做加速度a 减小的加速运动,最终做匀速运动,此时I =0最大速度v m电容器充电电荷量:Q 0=CE放电结束时电荷量:Q =CU C =CBLv m电容器放电电荷量:ΔQ =Q 0-Q =CE -CBLv m对棒应用动量定理:mv m -0=B I L ·Δt =BL ΔQ ,v m =BLCE m +CB 2L 2v -t 图像命题点2 动量守恒定律在电磁感应中的应用11.[双棒模型——无外力/2021福建/多选]如图,P 、Q 是两根固定在水平面内的光滑平行金属导轨,间距为L ,导轨足够长且电阻可忽略不计.图中EFHG 矩形区域内有方向垂直导轨平面向上、磁感应强度大小为B 的匀强磁场.在t =t 1时刻,两均匀金属棒a 、b 分别从磁场边界EF 、GH 进入磁场,速度大小均为v 0;一段时间后,流经a 棒的电流为0,此时t =t 2,b 棒仍位于磁场区域内.已知金属棒a 、b 由相同材料制成,长度均为L ,电阻分别为R 和2R ,a 棒的质量为m .在运动过程中两金属棒始终与导轨垂直且接触良好,a 、b 棒没有相碰,则( AD )A.t 1时刻a 棒的加速度大小为2B 2L 2v 03mRB.t 2时刻b 棒的速度为0C.t 1~t 2时间内,通过a 棒横截面的电荷量是b 棒的2倍D.t 1~t 2时间内,a 棒产生的焦耳热为29m v 02解析 在t =t 1时刻,两均匀金属棒a 、b 分别从磁场边界EF 、GH 进入磁场,速度大小均为v 0,由右手定则可判断出两金属棒产生的感应电流方向都是逆时针方向,产生的感应电动势都是BLv 0,由闭合电路欧姆定律可得,t 1时刻a 金属棒中的感应电流I =2BLvR+2R =2BLv 03R,受到的安培力F =BIL =2B 2L 2v 03R,由牛顿第二定律F =ma 可得,t 1时刻a 棒的加速度大小为a =2B 2L 2v 03mR,选项A 正确;由于金属棒a 、b 串联构成回路,所以在t 1~t 2时间内,通过a 棒横截面的电荷量与b 棒的相同,选项C 错误;由于金属棒a 、b 电阻分别为R 和2R ,金属棒a 、b 串联构成回路,二者电流相等,由焦耳定律可知金属棒a 、b 产生的焦耳热之比为1∶2,设t 1~t 2时间内,a 棒产生的焦耳热为Q ,则b 棒产生的焦耳热为2Q ,又两者材料相同,由电阻定律可知,金属棒a 的横截面积为b 的2倍,故体积为b 的2倍,质量为b 的2倍,即b 的质量为0.5m ,t =t 2时刻流经a 棒的电流为0,且b 棒仍位于磁场区域内,说明金属棒a 、b 具有共同速度,由动量守恒定律有mv 0-0.5mv 0=1.5mv ,解得v =v03,由能量守恒定律有12m v 02+12×0.5m v 02=Q +2Q +12×1.5m v 2,解得Q =29m v 02,选项B 错误,D正确.12.[双棒模型——有外力]如图所示,MN 、PQ 为水平放置的足够长平行光滑导轨,导轨间距L =1m ,导轨上放置两根垂直导轨的导体棒ab 和cd ,并与导轨接触良好,每根导体棒的质量均为m =2kg ,接入导轨间的部分电阻R =2Ω,整个装置处于垂直于导轨平面向下的匀强磁场中,磁感应强度大小B =2T ,现对导体棒ab 施加向右的F =10N 的水平恒力,经过一段时间两导体棒达到恒定的速度差,若某时刻导体棒ab 的速度为10m/s ,且两导体棒距离d =2m ,此时撤去外力,最终两导体棒达到稳定状态,导轨电阻不计,试求:(1)两导体棒达到恒定的速度差时,其加速度大小;(2)撤去外力后回路中产生的热量;(3)最终达到稳定状态时两导体棒间的距离.答案 (1)2.5m/s 2 (2)12.5J (3)7m解析 (1)对两导体棒的运动状态进行分析,导体棒ab 做加速度减小、速度增大的变加速运动,导体棒cd 做加速度增大、速度增大的变加速运动,最终两导体棒达到相同加速度,有恒定的速度差.由牛顿第二定律可知,对导体棒ab 有F -F 安=ma对导体棒cd 有F 安=ma联立解得a =F2m =2.5m/s 2.(2)当导体棒ab 的速度v 1=10m/s 时,设此时导体棒cd 的速度为v 2,对导体棒cd 由牛顿第二定律有BBL (v 1-v 2)2RL =ma得v 2=5m/s撤去外力后,两导体棒在安培力作用下最终达到共同速度v ,由动量守恒定律可知mv 1+mv 2=2mv得v =7.5m/s此过程回路产生的热量Q =12m v 12+12m v 22-12×2mv 2得Q =12.5J.(3)设达到稳定状态时两导体棒间的距离为x ,对导体棒ab ,由动量定理有-B I Lt =m (v -v 1)此过程中通过回路的电荷量q =I t =BL (x -d )2R联立解得x =7m.方法点拨双棒无外力双棒有外力示意图F 为恒力动力学观点导体棒1受安培力的作用做加速度逐渐减小的减速运动,导体棒2受安培力的作用做加速度逐渐减小的加速运动,最终两棒以相同的速度做匀速直线运动导体棒1做加速度逐渐减小的加速运动,导体棒2做加速度逐渐增大的加速运动,最终两棒以相同的加速度做匀加速直线运动动量观点系统动量守恒系统动量不守恒能量观点 棒1动能的减少量=棒2动能的增加量+焦耳热力F 做的功=棒1的动能+棒2的动能+焦耳热1.[电磁感应中的动力学+能量+动量/2023北京]如图所示,光滑水平面上的正方形导线框,以某一初速度进入竖直向下的匀强磁场并最终完全穿出.线框的边长小于磁场宽度.下列说法正确的是( D )A.线框进磁场的过程中电流方向为顺时针方向B.线框出磁场的过程中做匀减速直线运动C.线框在进和出的两过程中产生的焦耳热相等D.线框在进和出的两过程中通过导线横截面的电荷量相等解析线框进入磁场→线框右侧切割磁感线电流方向为逆时针方向,A 错线框进、出磁场的过程中,F 安为阻力→v ↓→F 安↓→线框进、出磁场的过程均为加速度减小的减速运动,B 错线框进、出磁场的两过程中ΔΦ相同,q 相同,D 对安培力的冲量I 安=BI l ·Δt I 安=Blq线框进入磁场瞬间速度为v 1,完全进入磁场速度为v 2{动量定理:-Blq =mv 2-mv 1=m (v 2-v 1)能量守恒定律:Q 1=12mv 12-12mv 22=12m (v 1+v 2)(v 1-v 2)线框离开磁场瞬间速度为v 3{ 动量定理:-Blq =mv 3-mv 2=m (v 3-v 2)能量守恒定律:Q 2=12mv 22-12mv 32=12m (v 2+v 3)(v 2-v 3)v 1+v 2>v 2+v 3且v 1-v 2=v 2-v 3,则Q 1>Q 2,C 错一题多解 由楞次定律可知线框进磁场的过程中电流方向为逆时针方向,出磁场的过程中电流方向为顺时针方向,A 错;对线框进行受力分析,线框在进、出磁场时会受到安培力的作用,安培力均为阻力,线框全部在磁场中时不受安培力的作用,故线框在进、出磁场的过程中会做减速运动,全部在磁场的过程中做匀速运动,又F 安=BIl ,I =E R 总,E =Blv ,则F 安=B 2l 2v R 总,故线框进、出磁场的过程中所受安培力在减小,做加速度减小的减速运动,B 错;Q =F —安·l =B 2l 3v —R 总,且结合B 项的分析可知v —进>v —出,故线框在进磁场的过程中产生的热量大于在出磁场的过程中产生的热量,C 错;结合公式q =I —Δt 、I —=E—R 总、E —=Bl v —可得q =Blv —Δt R 总,又线框进、出磁场过程中的位移v —Δt 均为线框边长l ,故线框进、出磁场过程中通过导线横截面的电荷量相等,D 对.2.[电磁感应中的动力学+图像理解+能量/2023上海]如图(a ),单匝矩形线框cdef 位于倾角θ=30°的斜面上,斜面上有一长度为D 的匀强磁场区域,磁场方向垂直于斜面向上,磁感应强度大小为B =0.5T ,已知线框边长cd =D =0.4m ,质量m =0.1kg ,总电阻R =0.25Ω.现对线框施加一沿斜面向上的恒力F 使之向上运动,运动一段时间后,撤去外力F .线框与斜面间的动摩擦因数μ=√33,线框速度随时间变化的图像如图(b )所示.求:(重力加速度g 取9.8m/s 2)图(a ) 图(b )(1)外力F 的大小;(2)cf 的长度L ;。

电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题

(2)设 MN 最大速度为 v1m,M′N′最大速度为 v2m,此时 两导体棒均受力平衡,对 M′N′有 2mg-BIl=0 Bl v1m+v2m I= R v1m 又 =2 v2m ① ② ③
由①②③联立解得 4mgR v1m= 2 2 3B l 2mgR v2m= 2 2 3B l
4mgR [答案] (1)2 (2) 2 2 3B l
初速不为零,不受其他水平外力作用 光滑平行导轨 光滑不等距导轨
示 意 图 质量m1=m2,电阻r1= 质量m1=m2,电阻r1 r2,长度L1=L2 =r2,长度L1=2L2
初速不为零,不受其他水平外力作用
光滑平行导轨
规 律 杆MN做减速运动,杆PQ做 分 变加速运动,稳定时,两杆 析 的加速度为零,以相等的速 度匀速运动
导轨电阻可忽略,重力加速度为 g. 在 t = 0 时刻将细线烧
断,保持F不变,金属杆和导轨始终接触良好.求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度.
[解析] (1)设 MN 任意时刻速度为 v1,M′N′任意时刻 速度为 v2,据动量守恒定律有 mv1-2mv2=0 v1 解得 =2. v2
他形式能和电能之间的转化. 3.热量的计算:电流做功产生的热量用焦耳定律计算, 公式为Q= I2Rt .
1.力学对象 和电学
对象的
相互关系
2.动态分析的基本思路
E=Blv 导体受外力运动 ――→ 感应电动势
F=BIl 感应电流 ――→ 导体受安培
合=ma 力―→合力变化F ――→ 加速度变化―→速度变化―→临界状态.
(2)设导体杆在磁场中运动的时间为 t,产生的感应电动势
的平均值为 E 平均 ,则由法拉第电磁感应定律有 E 平均 = ΔΦ/t = Bld/t 通过电阻R的感应电流的平均值I平均=E平均/(R+r) 通过电阻R的电荷量q=I平均t=0.512 C(或0.51 C).

高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

考点规范练40电磁感应中的动力学、能量与动量问题一、单项选择题1.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,磁场区域宽度大于线圈宽度,则( )A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时即已停下C.线圈在磁场中某个位置停下D.线圈能通过场区不会停下2.如图所示,两光滑平行金属导轨间距为l ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。

电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。

现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BlvC.电容器所带电荷量为CBlvD.为保持MN 匀速运动,需对其施加的拉力大小为B 2l 2vR3.(2021·辽宁模拟)如图所示,间距l=1 m 的两平行光滑金属导轨固定在水平面上,两端分别连接有阻值均为2 Ω的电阻R 1、R 2,轨道有部分处在方向竖直向下、磁感应强度大小为B=1 T 的有界匀强磁场中,磁场两平行边界与导轨垂直,且磁场区域的宽度为d=2 m 。

一电阻r=1 Ω、质量m=0.5 kg 的导体棒ab 垂直置于导轨上,导体棒现以方向平行于导轨、大小v 0=5 m/s 的初速度沿导轨从磁场左侧边界进入磁场并通过磁场区域,若导轨电阻不计,则下列说法正确的是( )A.导体棒通过磁场的整个过程中,流过电阻R 1的电荷量为1 CB.导体棒离开磁场时的速度大小为2 m/sC.导体棒运动到磁场区域中间位置时的速度大小为3 m/sD.导体棒通过磁场的整个过程中,电阻R 2产生的电热为1 J4.如图所示,条形磁体位于固定的半圆光滑轨道的圆心位置,一半径为R 、质量为m 的金属球从半圆轨道的一端沿半圆轨道由静止下滑,重力加速度大小为g 。

高中人教物理选择性必修二专题04 电磁感应中的动力学和能量问题——教师版

高中人教物理选择性必修二专题04  电磁感应中的动力学和能量问题——教师版

专题4 电磁感应中的动力学和能量问题(教师版)一、目标要求目标要求重、难点 电磁感应中的动力学问题 重点、难点 电磁感应中的能量问题重点、难点二、知识点解析1.电磁感应中的动力学和能量问题闭合线框垂直进入或离开磁场做切割磁感线的运动,则产生感应电动势,影响回路电流,从而使线框所受安培力发生变化,最终影响线框自身的变化.具体讨论如下:(1)线框以一定初速度进入磁场或离开磁场,除安培力外不受其他外力,如图1(a)(b)所示.我们将从电路、动力学和能量角度分别分析.①电路:首先明确线框哪一部分切割磁感线.根据法拉第电磁感应定律,整个过程平均感应电动势为E n tΦ∆=∆. 根据闭合电路欧姆定律,整个过程平均电流E I n R t RΦ∆==∆⋅,其中R 为线框的总电阻.电流方向可根据右手定则或楞次定律判断.则通过线框的电荷量q I t nt nt R RΦΦ∆∆=∆=⋅∆=∆⋅. 即整个过程通过线框的电荷量只与线圈匝数、磁通量的变化量以及线框电阻有关. ②动力学图1利用左手定则,结合电流方向判定线框所受安培力方向,并作出受力分析图.显然安培力与初速度方向相反.某时刻下若线框的速度为v ,根据法拉第电磁感应定律,瞬时感应电动势E BLv =;又由闭合电路欧姆定律,瞬时电流E BLvI R R==,则线框所受安培力大小22B L v F BIL R ==安.根据牛顿定律:22B L vF F BIL ma R==-=-=合安由于安培力与速度方向相反,线框速度减小,则加速度减小,因此线框做加速度逐渐减小的减速运动. 在0t ∆→的情况下,上式还可写成:v BIL mt∆-=∆. 整理得:BIL t m v -∆=∆,由于I t q ∆=∑,0t v v v ∆=-∑,则上式求和可得:BIL t m v -∆=∆∑∑ 即:0t BLq mv mv =-若明确研究过程的初末状态,代入q n RΦ∆=就能确定初速度与末速度的关系. ③能量安培力瞬时功率222B L v P F v R =-⋅=-安安,而线框中某时刻的热功率2222B L v P I R R==热,因此克服安培力所做的功等于回路产生的热量.从能量守恒的角度出发,即线框减少的动能转化成回路产生的热量.(2)线框在恒力F 作用下,以一定初速度垂直进入或离开磁场,如图2(a)(b)所示.①电路由于通过线框的电荷量与外力大小无关,故电荷量仍然符合q I t n RΦ∆=∆=. ②动力学根据左手定则和电流方向确定安培力方向,画出受力分析图,这种情况下安培力方向仍与速度方向相图2反.某时刻下若线框的速度为v ,则感应电动势E BLv =,感应电流BLvI R=,安培力大小22B L v F R =安.根据牛顿定律:a .若初始时刻恒力F 大于安培力220B L v R ,线框做加速运动,则:22B L vF ma R-=可知线框做加速度逐渐减小的加速运动,当0a =时有最大速度,max 22FRv B L=b .若初始时刻恒力F 小于安培力220B L v R ,线框做减速运动,22B L vF ma R-=可知线框做加速度逐渐减小的减速运动,当0a =时有最小速度,min 22FRv B L = 在0t ∆→的情况下仍有:F t BIL t m v ∆-∆=∆∑∑∑即:0t Ft BLq mv mv -=-若知道整个运动过程的时间t ,代入q n RΦ∆=即可确定初速度与末速度的关系. ③能量安培力瞬时功率222B L v P F v R =-⋅=-安安,而线框中某时刻的热功率2222B L v P I R R==热,因此克服安培力所做的功仍然等于回路产生的热量.从功能关系或能量守恒角度出发,加速运动时外力所做的功转化为线框产热和动能;减速运动时外力所做的功和动能减少量转化为线框产热.三、考查方向题型1:电磁感应中的动力学问题典例一:(2016•新课标Ⅰ)如图,两固定的绝缘斜面倾角均为θ,上沿相连。

新教材高中物理第二章电磁感应中的动力学能量和动量问题学生用书新人教版选择性必修第二册(含答案)

新教材高中物理第二章电磁感应中的动力学能量和动量问题学生用书新人教版选择性必修第二册(含答案)

新教材高中物理学生用书新人教版选择性必修第二册:素养提升课四电磁感应中的动力学、能量和动量问题关键能力·合作探究——突出综合性素养形成探究一电磁感应中的动力学问题【核心归纳】1.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.处理方法:根据平衡条件(合外力等于0)列式分析.(2)导体的非平衡状态——加速度不为0.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.2.力学对象和电学对象的相互关系【应用体验】例1 如图所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是不计电阻、水平放置的平行长直导轨,其间距l=0.2 m,电阻R=0.3 Ω接在导轨一端.ab是跨接在导轨上质量m=0.1 kg、电阻r=0.1 Ω、长度与导轨间距相等的导体棒,已知导体棒和导轨间的动摩擦因数为0.2.从零时刻开始,对ab棒施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,过程中棒始终保持与导轨垂直且接触良好.(g 取10 m/s2)(1)求导体棒所能达到的最大速度.(2)试定性画出导体棒运动的速度—时间图像.[试解]【针对训练】1.(多选)如图所示,MN和PQ是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.ab是一根与导轨垂直而且始终与导轨接触良好的金属杆.开始时,将开关S断开,让杆ab由静止开始自由下落,一段时间后,再将S闭合,若从S闭合开始计时,则金属杆ab的速度v随时间t变化的图像可能是( )2.如图甲所示,两根足够长的直金属导轨MN,PQ平行放置.两导轨间距为L,M、P 两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙,在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑时,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值.探究二电磁感应中的能量问题【核心归纳】1.能量转化的过程分析电磁感应的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功实现的.安培力做功使得电能转化为其他形式的能(通常为机械能);克服安培力做功,则是其他形式的能(通常为机械能)转化为电能的过程.2【应用体验】例2 如图所示,MN、PQ两条平行的光滑金属轨道与水平面成θ角固定,轨道间距为d.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B.P、M间所接电阻阻值为R.质量为m的金属杆ab水平放置在轨道上,其有效电阻为r.现从静止释放ab,当它沿轨道下滑距离x时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:(1)金属杆ab运动的最大速度;g sinθ时,电阻R上的电功率;(2)金属杆ab运动的加速度为12(3)金属杆ab从静止到具有最大速度的过程中,克服安培力所做的功.教你解决问题第二步:找突破口(1)根据受力平衡列方程,安培力F=mg sinθ;g sinθ时的安培力;(2)根据牛顿第二定律,求解加速度为12(3)根据动能定理,求解此过程中克服安培力所做的功.[试解]【针对训练】3.如图所示,间距为L的竖直平行金属导轨MN、PQ上端接有电阻R,质量为m、电阻为r的金属棒ab垂直于平行导轨放置,垂直导轨平面向里的水平匀强磁场的磁感应强度大小为B,不计导轨电阻及一切摩擦,且ab与导轨接触良好.若金属棒ab在竖直向上的外力F 作用下以速度v匀速上升,则以下说法正确的是( )A.a、b两端的电势差为BLvB.b端电势高于a端电势C.作用在金属棒ab上的各个力的合力做的功等于零D.拉力F所做的功等于电路中产生的热量4.[2022·江苏泗洪高二检测]如图所示,两根间距L=1.0 m、电阻不计的足够长的光滑平行金属导轨ab、cd水平放置,一端与阻值R=2.0 Ω的电阻相连,质量m=0.2 kg的导体棒ef在恒定外力F=1 N作用下由静止开始运动,导体棒电阻为r=1.0 Ω,整个装置处于垂直于导轨平面向上的匀强磁场中,磁感应强度B=1 T,当ef棒由开始运动6.9 m时,速度达到最大(g取10 m/s2),求:(1)导体棒的速度达到最大时,回路中电流的大小;(2)导体棒能够达到的最大速度;(3)在此运动过程中电阻R上产生的焦耳热.探究三电磁感应中的动量问题【核心归纳】1.对于单杆模型,一般与动量定理结合.例如在光滑水平轨道上运动的单杆(水平方向不受其他力作用),由于在磁场中运动的单杆为变速运动,故运动过程所受的安培力为变力,依据动量定理有F̅安Δt=Δp,又F̅安Δt=I l BΔt=Blq,q=NΔΦR总=N BlxR总,Δp=mv2-mv1,由以上安培力的冲量中藏着电荷量四式将流经杆的电荷量q、杆位移x及速度变化结合在一起.2.对于双杆模型,在受到安培力之外,其他外力之和为零时,则考虑应用动量守恒定律处理问题.3.由I l B·Δt=m·Δv、q=I·Δt可知,当题目中涉及电荷量或平均电流时,可应用动量定理来解决问题.【应用体验】例3 两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b,杆a、b的电阻分别为R a=2 Ω、R b=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T.现杆b以初速度大小v0=5 m/s开始向左滑动,同时由静止释放杆a,杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A;从a下滑到水平轨道时开始计时,a、b运动的速度—时间图像如图乙所示(以a运动方向为正方向).其中m a=2 kg,m b=1 kg,g取10 m/s2.求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平轨道上运动的过程中通过其截面的电荷量;(3)在整个运动过程中杆b产生的焦耳热.[试解]【针对训练】5.(多选)如图所示,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是( )随堂演练·达标自测——突出创新性素养达标1.(多选)在与水平面平行的匀强磁场上方有三个线圈,从同一高度同时由静止下落,三个线圈都是材料相同、边长一样的正方形,A线圈有一个缺口,B、C线圈闭合,但B线圈的导线比C线圈的粗,则( )A.三个线圈同时落地B.A线圈最先落地C.C线圈最后落地D.B、C线圈同时落地2.(多选)如图所示,固定在水平绝缘平面上足够长的两条平行金属导轨电阻不计,但表面粗糙,导轨左端连接一个电阻R,质量为m的金属棒ab(电阻也不计)放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,用水平恒力F把ab棒从静止起向右拉动的过程中( )A.恒力F做的功等于电路产生的电能B.克服安培力做的功等于电路中产生的电能C.恒力F和摩擦力的合力做的功等于电路中产生的电能D.恒力F和摩擦力的合力做的功等于电路中产生的电能和ab棒获得的动能之和3.[2022·四川宜宾高二检测](多选)如图,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静止释放,当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率为P,导体棒最终以2v的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项中正确的是( )A .v =2mgR sin θB 2L 2B .P =2mgv sin θC .当导体棒速度达到v2时,加速度大小为g sin θ2D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功4.如图所示,两根光滑导轨平行放置,导轨的水平部分放在绝缘水平面上,水平部分所在空间有竖直向上的磁场,磁感应强度为B.导轨的水平部分和倾斜部分由光滑圆弧连接.两根完全相同的金属棒ab 和cd 质量均为m 、接入电路的电阻均为R ,将cd 置于导轨的水平部分与导轨垂直放置,将ab 置于导轨的倾斜部分与导轨垂直放置,ab 离水平面的高度为h ,重力加速度为g ,现将ab 由静止释放,求:(1)cd 棒最终的速度大小; (2)整个过程中产生的焦耳热Q.5.如图所示,在与水平面成θ=30°夹角的平面内放置两条平行、光滑且足够长的金属导轨,其电阻可忽略不计.空间存在着匀强磁场,磁感应强度B =0.20 T ,方向垂直导轨平面向上.导体棒ab 、cd 垂直于导轨放置,且与导轨接触良好构成闭合回路,导体棒的质量均为m =2.0×10-2kg ,回路中导体棒电阻均为r =5.0×10-2Ω,金属导轨间距l =0.50 m .现对导体棒ab 施加平行于导轨向上的拉力,使之匀速向上运动,在导体棒ab 匀速向上运动过程中,导体棒cd 始终能静止在导轨上,g 取10 m /s 2,求:(1)通过导体棒cd 的电流I ;(2)导体棒ab 受到的外力F 的大小;(3)导体棒cd产生Q=0.1 J的热量时,力F做的功W.素养提升课(四) 电磁感应中的动力学、能量和动量问题关键能力·合作探究探究一应用体验[例1] 解析:ab棒在拉力F作用下运动,随着ab棒切割磁感线运动的速度增大,棒中的感应电动势增大,棒中感应电流增大,棒受到的安培力也增大,最终达到匀速运动时棒的速度达到最大值.外力在克服安培力做功的过程中,消耗了其他形式的能,转化成了电能,最终转化成了焦耳热.(1)导体棒切割磁感线运动,产生的感应电动势E=Blv①I=ER+r②导体棒受到的安培力F安=IlB③导体棒运动过程中受到拉力F、安培力F安和摩擦力F f的作用,根据牛顿第二定律得F-μmg-F安=ma④由①②③④得F-μmg-B2l2vR+r=ma⑤由上式可以看出,随着速度的增大,安培力增大,加速度a减小,当加速度a减小到0时,速度达到最大.此时有F-μmg-B 2l2v mR+r=0⑥可得v m=(F−μmg)(R+r)B2l2=10 m/s.⑦(2)导体棒运动的速度—时间图像如图所示.答案:(1)10 m/s (2)见解析图针对训练1.解析:设ab棒的有效长度为l,S闭合时,若B 2l2vR>mg,先减速再匀速,D项有可能;若B 2l2vR=mg,匀速,A项有可能;若B2l2vR<mg,先加速再匀速,C项有可能;由于v变化,B2l2vR-mg=ma中a不恒定,选B项不可能.答案:ACD 2.解析:(1)如图所示,重力mg ,竖直向下;支持力F N ,垂直斜面向上;安培力F ,沿斜面向上. (2)当ab 杆速度为v 时,感应电动势E =BLv ,此时电路中电流I =ER =BLv R,ab 杆受到的安培力F =ILB =B 2L 2v R.根据牛顿运动定律,有mg sin θ-F =ma , 解得a =g sin θ-B 2L 2v mR.(3)当a =0时,杆达到最大速度v m ,即g sin θ=B 2L 2v m mR时,v m =mgR sin θB 2L 2.答案:(1)图见解析 (2)BLv Rg sin θ-B 2L 2v mR(3)mgR sin θB 2L 2探究二应用体验[例2] 解析:(1)当杆达到最大速度时安培力F =mg sin θ 安培力F =IdB 感应电流I =E R+r感应电动势E =Bdv max 联立上式解得最大速度v max =mg (R+r )sin θB 2d 2.(2)当金属杆ab 运动的加速度为12g sin θ时,根据牛顿第二定律,有mg sin θ-I ′dB =m ·12g sin θ电阻R 上的电功率P =I ′2R 解得P =m 2g 2R sin 2θ4B 2d 2.(3)根据动能定理mgx sin θ-W F =12mv max 2-0解得W F =mgx sin θ-12·m 3g 2(R+r )2sin 2θB 4d 4.答案:(1)mg (R+r )sin θB 2d 2(2)m 2g 2R sin 2θ4B 2d 2(3)mgx sin θ-12·m 3g 2(R+r )2sin 2θB 4d 4针对训练3.解析:金属棒做切割磁感线运动产生的感应电动势为E =BLv ,则a 、b 两点间的电压为U =R R+rBLv ,故A 错误.根据右手定则可知,金属棒中的电流方向为b 到a ,所以b 端为电源的负极,a 端为电源的正极,a 端的电势高于b 端,故B 错误.由于金属棒做匀速直线运动,根据动能定理可知作用在金属棒上的各个力的合力做功等于零,故C 正确.根据功能关系可知,拉力F 做功等于电路中产生的热量与重力势能的增加量之和,故D 错误.故选C.答案:C4.解析:(1)当安培力等于拉力时,速度最大,则有F =F 安=ILB代入数据解得I =FBL =11×1.0A =1 A.(2)当导体棒速度为v max 时,产生的感应电动势为E =BLv max ,通过导体棒的电流为I =BLv max r+R,解得v max =3 m/s.(3)由功能关系得Fx =Q +12mv max 2根据串联电路特点,有Q R =RR+rQ联立解得Q R =4 J.答案:(1)1 A (2)3 m/s (3)4 J 探究三应用体验[例3] 解析:(1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b0,对杆b 运用动量定理,有I dB ·Δt =m b (v 0-v b0) 其中v b0=2 m/s. 解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v a 2设最后a 、b 两杆共同的速度为v ′,由动量守恒定律得m a v a -m b v b0=(m a +m b )v ′杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v ′的运动时间为Δt ′由动量定理得I ′dB ·Δt ′=m a (v a -v ′),而q =I ′·Δt ′ 联立解得q =73 C.(3)由能量守恒定律可知杆a 、b 中产生的焦耳热Q =m a gh +12m b v 02-12(m b +m a )v ′2杆b 中产生的焦耳热Q ′=R bR a +R bQ解得Q ′=1156J.答案:(1)5 s (2)73 C (3)1156J针对训练5.解析:以两导体棒为研究对象,在导体棒运动过程中,两导体棒所受的安培力大小相等,方向相反,且不受其他水平外力作用,在水平方向两导体棒组成的系统动量守恒,对系统有mv 0=2mv ,解得两导体棒运动的末速度v =12v 0,棒ad 做变减速运动,棒cd 做变加速运动,稳定时两导体棒的加速度均为零,一起向右做匀速运动,故A 正确,B 错误;ab 棒和cd 棒最后做匀速运动,棒与导轨组成的回路磁通量不变化,不会产生感应电流,故C 正确,D 错误.答案:AC 随堂演练·达标自测1.解析:A 线圈不受安培力,所以最先落地,A 错误,B 正确;要想比较出B 、C 线圈的下落时间,先比较加速度,得出加速度a 与导线横截面积S 的关系,a =mg−F 安m=g -B 2l 2v Rm,其中R =ρ电4lS ,m =ρV =4lρS ,所以有a =g -B 2v 16ρ电ρ,可知加速度a 与l 和S 均无关,即B 、C 线圈同时落地,C 错误,D 正确.答案:BD 2.解析:由功能关系可得,克服安培力做的功等于电路中产生的电能,A 错误,B 正确;根据动能定理可知,恒力F 、安培力与摩擦力的合力做的功等于ab 棒获得的动能,即W F -W f -W 安=E k ,则恒力F 和摩擦力的合力做的功等于电路中产生的电能和ab 棒获得的动能之和,C 错误,D 正确.答案:BD3.解析:当导体棒以速度v 匀速运动时B 2L 2v R=mg sin θ,解得v =mgR sin θB 2L 2,故A 错误;当导体棒以速度2v 匀速运动时F =P2v,根据平衡条件有B 2L 22v R=F +mg sin θ,解得F=mg sin θ,所以拉力的功率为P =F ·2v =2mgv sin θ,故B 正确;当导体棒速度达到v 2时,根据牛顿第二定律有mg sin θ-B 2L 2v 2R=ma ,解得a =g sin θ2,故C 正确;在速度达到2v 以后匀速运动的过程中,由能量守恒知R 上产生的焦耳热等于牵引力做的功和重力势能减少的代数和,故D 错误.答案:BC4.解析:(1)ab 下落过程,mgh =12mv 12,v1=√2gℎab 和cd 动量守恒,mv 1=2mv 2,v2=√2gℎ2.(2)整个过程中产生的焦耳热Q=12mv12−12×2mv22=12mgh.答案:(1)√2gh2(2)12mgh5.解析:(1)导体棒cd受到的安培力F cd=IlB导体棒cd受力平衡,则F cd=mg sin θ联立以上两式代入数据,解得I=1 A,方向由左手定则可知由d到c.(2)导体棒ab与cd受到的安培力大小相等,即F ab=F cd对导体棒ab,由平衡条件有F =mg sin θ+IlB代入数据解得F=0.2 N.(3)设在时间t内导体棒cd产生Q=0.1 J的热量,由焦耳定律可知Q=I2rt设导体棒ab匀速运动的速度大小为v,则产生的感应电动势E=Blv,由闭合电路欧姆定律知I=E2r由运动学公式知,在时间t内,导体棒ab沿导轨的位移x=vt,力F做的功W=Fx 综合上述各式,代入数据解得W=0.4 J.答案:(1)1 A d→c(2)0.2 N (3)0.4 J。

新教材高中物理第2章电磁感应中的动力学及能量问题pptx课件新人教版选择性必修第二册

新教材高中物理第2章电磁感应中的动力学及能量问题pptx课件新人教版选择性必修第二册

垂直的恒力F作用下沿导轨匀速上滑,且上升的高度为h,重力加速度为g,在这一
过程中(
)
A.作用于金属棒上的各个力的合力所做的功等于零

B.作用于金属棒上的各个力的合力所做的功等于
mgh与电阻R上产生的焦耳热之和
C.恒力F与安培力的合力所做的功等于零
D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热

mgh= +Q总

代入数据解得Q总=1.75 J

下端电阻R2中产生的热量Q2= Q总≈0.33

[答案]
0.33 J
J。
[跟进训练]
2.(多选)如图所示,两根光滑的金属导轨,平行放置在倾角为θ的绝缘斜面上,导
轨的左端接有电阻R,导轨自身的电阻可忽略不计。斜面处在一匀强磁场中,磁场
方向垂直于斜面向上。质量为m、电阻可以忽略不计的金属棒ab,在沿着斜面与棒
过程中始终与导轨垂直且与导轨接触良好。当金属棒ab下滑高度h=3 m
时,速度恰好达到最大值。(g取10 m/s2)求:
(1)金属棒ab达到的最大速度vm;
[解析]
切割磁感线产生的感应电动势E=Blv

根据串并联电路的特点知,外电路总电阻R外=
=7.5
+
根据闭合电路欧姆定律得I=

MN杆所受安培力大小为F安=BI1l,对MN杆应用牛顿第二定律得F
-mg-F安=ma
当MN杆速度最大时,MN杆的加速度为零,联立解得MN杆的最大
速度为
vm=1 m/s。
[答案]
1 m/s
探究2
电磁感应中的能量问题
1.能量转化的过程分析
电磁感应的实质是不同形式的能量转化的过程。

人教高中物理同步讲义选择性必修二专题提升Ⅸ电磁感应中的能量和动量问题(解析版)

人教高中物理同步讲义选择性必修二专题提升Ⅸ电磁感应中的能量和动量问题(解析版)

专题提升IX电磁感应中的能量和动量问题模块一知识掌握知识点一电磁感应中的能量问题【重难诠释】1.电磁感应现象中的能量转化做正功:电能卫L机械能,如电动机安培力做功〈桂仆由浴做负功:机械能业性电能等A焦耳热或其他形式的能量,如发电机I做功2.焦耳热的计算(1)电流恒定时,根据焦耳定律求解,即Q=PRt.(2)感应电流变化,可用以下方法分析:① 利用动能定理,求出克服安培力做的功w 克安,即。

=归克安.② 利用能量守恒定律,焦耳热等于其他形式能量的减少量.[例题1](多选)(2023春•十堰期末)半径为r 、间距为L 的固定光滑;圆弧轨道右端接有一阻值为4R 的定值电阻,如图所示。

整个空间存在方向竖直向上、磁感应强度大小为B 的匀强磁场。

一根长度为L 、质量为m 、电阻也为R 的金属棒从轨道最低位置cd 开始,在外力的作用下以速度v 沿轨道做匀速圆周运动,在ab 处与轨道分离。

已知金属棒在轨道上运动的过程中始终与轨道接触良好,电路中其余电阻均不计,重力加速度大小为g,下列说法正确的是( )A. 金属棒两端的最大电压为BLvBLr B. 整个过程中通过金属棒某截面的电荷量为fnB^L^vrC. 整个过程中定值电阻上产生的焦耳热为16RnB^L^vr D. 金属棒从cd 运动到ab 的过程中,外力做的功为一——+ mgr 4R【解答】解:A.金属棒切割磁感线,根据法拉第电磁感应定律可知最大感应电动势为E=BLv根据欧姆定律可知金属棒两端的最大电压为D 1U = " =,B3故A 错误;B.设金属棒从cd 运动到ab 的过程中所用时间为t,感应电动势的平均值为岳 感应电流的平均值为7,则有E = BLv =E R+R 可知故B 正确;C.金属棒从cd 运动到ab 的过程中,因为金属棒垂直于磁感线方向上的速度分量是按照正弦规 律变化的,所以过程中产生正弦式交流电,根据正弦式交流电峰值和有效值的关系可知感应电动 势的有效值为_ BLvE 则整个过程中定值电阻上产生的焦耳热为Q = I *2Rt =O xA. 线框中的感应电流方向沿逆时针(俯视)方向B. 线框最终将以一定的速度做匀速直线运动C. 线框最终将静止于平面上的某个位置2D. 线框运动中产生的内能为守【解答】解:A 、线框运动过程,穿过线框的磁通量逐渐增大,根据楞次定律可知,线框中的感应电流方向沿顺时针(俯视)方向,故A 错误;E'2 / 救尸 _ nB^L^vr R+R X ~= 16R 故C 正确;D.根据功能关系有0 = Q + mgr =+ mgr故D 错误;故选:BCo[例题2] (2023春•扬州期中)在一足够大的光滑水平面上存在非匀强磁场,磁场方向垂直水平面向上,磁场强度沿x 轴方向均匀增大,沿y 轴方向不变,其俯视图如图所示。

2021年高中物理选修二第二章《电磁感应》习题(答案解析)

2021年高中物理选修二第二章《电磁感应》习题(答案解析)

一、选择题1.如图,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布。

一铜制圆环用丝线悬挂于O点,将圆环拉至位置a后无初速释放,在圆环从a摆向b的过程中()A.感应电流方向先逆时针后顺时针再逆时针B.感应电流方向一直是逆时针C.安培力方向始终与速度方向相反D.安培力方向始终沿竖直方向2.如图甲所示,半径为r带小缺口的刚性金属圆环固定在竖直平面内,在圆环的缺口两端用导线分别与两块水平放置的平行金属板A、B连接,两板间距为d且足够大。

有一变化的磁场垂直于圆环平面,规定向里为正,其变化规律如图乙所示。

在平行金属板A、B正中间有一电荷量为q的带电液滴,液滴在0~14T内处于静止状态。

重力加速度为g。

下列说法正确的是()A.液滴的质量为24B q r gdTπB.液滴带负电C.34t T=时液滴的运动方向改变D .t =0.5T 时液滴与初始位置相距212gT 3.如图为用来冶炼合金钢的真空冶炼炉,炉外绕有线圈,将金属材料置于冶炼炉中,则( )A .如果线圈中通以恒定电流,冶炼炉就能冶炼金属B .通过线圈的高频交流电使炉体产生涡流从而熔化炉内金属C .真空冶炼炉在工作时炉内金属中产生涡流使炉内金属熔化D .如果真空冶炼炉中金属的电阻率大,则涡流很强,产生的热量很多4.如图所示,通电直导线L 和平行直导线放置的闭合导体框abcd ,直导线与导体框在同一平面内,以下说法正确的是( )A .导线固定,当导体框向上平移时,导体框中感应电流的方向为abcdaB .导体框固定,当导线L 向左平移时,导体框中感应电流的方向为adcbaC .导线固定,当导体框向右平移时,导体框中感应电流的方向为abcdaD .导体框固定,当导线L 向右平移时,导体框中感应电流的方向为abcda5.图1和图2是教材中演示自感现象的两个电路图,L 1和L 2为电感线圈。

实验时,断开开关S 1瞬间,灯A 1突然闪亮,随后逐渐变暗;闭合开关S 2,灯A 2逐渐变亮,而另一个相同的灯A 3立即变亮,最终A 2与A 3的亮度相同。

高中物理选择性必修第二册教学课件《电磁感应定律的应用(能量、动量、双杆)》

高中物理选择性必修第二册教学课件《电磁感应定律的应用(能量、动量、双杆)》

02
电磁感应中的“双杆”模型
分 类 五 : 动 量 守 恒 和 功 能 关 系 的综 合应用
1.题型简述
(1)如果相互平行的水平轨道间有双导体棒做切割磁感线运动,当这
两根导体棒所受的安培力等大反向,且不受其他外力,两导体棒的总动
量守恒,可用动量守恒定律求解导体棒的共速问题.
2.方法技巧
解决此类问题时通常将两棒视为一个整体,于是相互作用的安培力是系
(1)导体棒b中产生的内能;
(2)导体棒a、b间的最小距离.

()


() −

电磁感应中的双杆模型总结(无外力)
光滑平行等距导轨
情景图
光滑平行不等距导轨
质量m1=m2
质量m1=m2
电阻r1=r2
电阻r1=r2
长度L1=L2
长度L1=2L2
运动
分析
稳定条件
能量分析
虚线MN右侧区域存在磁感应强度为B、方向竖直向下的匀强磁场.质量均为m、
长度均为L、电阻均为R的导体棒a、b,垂直导轨放置且保持与导轨接触良好.
开始导体棒b静止于与MN相距为x0处,导体棒a以水平速度v0从MN处进入磁场.
不计导轨电阻,忽略因电流变化产生的电磁辐射,运动过程中导体棒a、b没有
发生碰撞.求:
Rr
ab棒做加速度减小
的加速运动,达到最大
速度后作匀速运动。
1 2
(3) Fx W安 = mvm 0
2
Q = W安
1 F (R r)
Q = Fx m

2 B 2 L2
F (R r)
B 2 L2 v
ma 0时 vm =

高中物理-专题 电磁感应中的动力学问题(能力篇)(解析版)

高中物理-专题 电磁感应中的动力学问题(能力篇)(解析版)

2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分 电磁感应专题4.12 电磁感应中的动力学问题(能力篇)一.选择题1. (多选)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B .质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g .金属杆( )A.刚进入磁场Ⅰ时加速度方向竖直向下B.穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C.穿过两磁场产生的总热量为4mgdD.释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L 4【参考答案】 BC【名师解析】 穿过磁场Ⅰ后,金属杆在磁场之间做加速运动,在磁场Ⅱ上边缘速度大于从磁场Ⅰ出来时的速度,即进入磁场Ⅰ时的速度等于进入磁场Ⅱ时的速度,大于从磁场Ⅰ出来时的速度,金属棒在磁场Ⅰ中做减速运动,加速度方向向上,A 错误;金属棒在磁场Ⅰ中做减速运动,由牛顿第二定律知BIL -mg =B 2L 2vR -mg =ma ,a 随着减速过程逐渐变小,即在前一段做加速度减小的减速运动,在磁场之间做加速度为g 的匀加速直线运动,两个过程位移大小相等,由v -t 图象(可能图象如图所示)可以看出前一段用时多于后一段用时,B 正确;由于进入两磁场时速度相等,由动能定理知, W 安1-mg ·2d =0, W 安1=2mgd .即通过磁场Ⅰ产生的热量为2mgd ,故穿过两磁场产生的总热量为4mgd ,C 正确;设刚进入磁场Ⅰ时速度为v ,则由机械能守恒定律知mgh =12mv 2,①进入磁场时BIL -mg =B 2L 2vR -mg =ma ,解得v =m (a +g )RB 2L 2,②由①②式得h =m 2(a +g )2R 22B 4L 4g >m 2gR 22B 4L4,D 错误.2. (2018南宁高三摸底考试)如图所示,固定的竖直光滑U 型金属导轨,间距为L ,上端接有阻值为R 的电阻,处在方向水平且垂直于导轨平面,磁感应强度为B 的匀强磁场中,质量为m 、电阻为r 的导体棒与劲度系数为k 的固定轻弹簧相连放在导轨上,导轨的电阻忽略不计。

2021新教材人教版高中物理选择性必修第二册专题强化练5 电磁感应中的动力学问题

2021新教材人教版高中物理选择性必修第二册专题强化练5 电磁感应中的动力学问题

第二章电磁感应专题强化练5 电磁感应中的动力学问题一、选择题1.()如图所示,ab和cd是位于水平面内的平行金属轨道,间距为l,其电阻可忽略不计,a、c之间连接一阻值为R的电阻,ef为一垂直于ab和cd的金属杆,它与ab和cd接触良好并可沿轨道无摩擦地滑动,电阻可忽略。

整个装置处在匀强磁场中,磁场方向竖直向下,磁感应强度大小为B。

当施加外力使杆ef以速度v向右匀速运动时,杆ef所受的安培力为( )A.B 2l2vRB.BlvRC.B2lvRD.Bl2vR2.(2020辽宁盘锦高二上期末,)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。

金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。

现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是( )A.ab中的感应电流方向由b到aB.ab中的感应电流逐渐减小C.ab所受的安培力保持不变D.ab所受的静摩擦力逐渐减小3.(2020四川广安中学高二上月考,)如图,足够长的U形光滑金属导轨平面与水平面成θ角(0°<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计。

金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的有效电阻为R,当通过ab棒某一横截面的电荷量为q时,棒的速度大小为v,则金属棒ab在这一过程中( )A.运动的平均速度大小为12vB.下滑的位移大小为qRBLC.产生的焦耳热为qBLvD.受到的最大安培力大小为B 2L2vRsin θ4.(2020河北张家口高三上摸底,)如图所示,在光滑水平面上有宽度为d的匀强磁场区域,边界线MN、PQ平行,磁场方向垂直平面向下,磁感应强度大小为B。

边长为L(L<d)的正方形金属线框,电阻为R,质量为m,在水平向右的恒力F作用下,从距离MN为d2处由静止开始运动,线框右边到MN时的速度与到PQ时的速度大小相等,运动过程中线框右边始终与MN平行,则下列说法正确的是( )A.线框在进磁场和出磁场的过程中,通过线框横截面的电荷量不相等B.线框的右边刚进入磁场时所受安培力的大小为B 2L2R√FdmC.线框进入磁场过程中一直做加速运动D.线框右边从MN运动到PQ的过程中,线框中产生的焦耳热小于Fd5.()(多选)如图所示,质量为m=0.04 kg、边长l=0.4 m 的正方形导体线框abcd放置在一光滑绝缘斜面上,线框用一平行于斜面的细线系于O点,斜面倾角为θ=30°。

2020-2021学年新教材物理人教版选择性必修第二册课后提升训练:第二章 习题课 电磁感应中的动力

2020-2021学年新教材物理人教版选择性必修第二册课后提升训练:第二章 习题课 电磁感应中的动力

第二章电磁感应习题课:电磁感应中的动力学、能量和动量问题课后篇巩固提升基础巩固1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,间距为l,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B。

一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋于一个最大速度v m,除R外其余电阻不计,则()A.如果B变大,v m将变大B.如果α变大,v m将变大C.如果R变大,v m将变大D.如果m变小,v m将变大解析金属杆从轨道上滑下切割磁感线产生感应电动势E=Blv,在闭合电路中形成电流I=BlvR,因此金属杆从轨道上滑下的过程中除受重力、轨道的弹力外还受安培力F作用,F=BIl=B 2l2vR,先用右手定则判定感应电流方向,再用左手定则判定出安培力方向,如图所示。

根据牛顿第二定律,得mg sinα-B 2l2vR=ma,当a=0时,v=v m,解得v m=mgRsinαB2l2,故选项B、C正确。

答案BC2.(多选)如图所示,两足够长的平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。

用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A.金属棒ab、cd都做匀速运动B.金属棒ab上的电流方向是由b向aC.金属棒cd所受安培力的大小等于2F3ab、cd进行受力和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab速度小于金属棒cd速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab上的电流方向是由b到a,A、D错误,B正确;以两金属棒整体为研究对象有F=3ma,隔离金属棒cd分析F-F安=ma,可求得金属棒cd所受安培力的大小F安=23F,C正确。

3.如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速完全进入磁场,两次速度大小相同,方向均垂直于MN。

2020_2021学年新教材高中物理第2章电磁感应及其应用第2节法拉第电磁感应定律学案鲁科版选择性必

2020_2021学年新教材高中物理第2章电磁感应及其应用第2节法拉第电磁感应定律学案鲁科版选择性必

第2节 法拉第电磁感应定律学习目标:1.[物理观念]理解和掌握法拉第电磁感应定律的内容和表达式。

2.[科学思维]能够运用法拉第电磁感应定律定量计算感应电动势的大小。

3.[科学思维]能够运用E =Blv 或E =Blv sin θ计算导体切割磁感线时的感应电动势。

阅读本节教材,回答第35页“问题”并梳理必要知识点。

教材P 35问题提示:磁通量发生变化时电路中会产生感应电动势,电路闭合时就有了电流。

一、感应电动势1.在电磁感应现象中产生的电动势叫作感应电动势,产生感应电动势的那部分导体就相当于电源。

2.在电磁感应现象中,回路断开时,虽然没有感应电流,但感应电动势依然存在。

二、电磁感应定律 1.磁通量的变化率(1)定义:单位时间内磁通量的变化量。

(2)意义:磁通量的变化率表示磁通量变化的快慢。

2.法拉第电磁感应定律(1)内容:电路中感应电动势的大小与穿过这一电路的磁通量的变化率成正比。

(2)公式:E =k ΔΦΔt。

①在国际单位制中,E 的单位是伏特(V),Φ的单位是韦伯(Wb),t 的单位是秒(s),k =1,公式简化为E =ΔΦΔt。

②若闭合电路是一个匝数为n 的线圈,则E =n ΔΦΔt。

(3)标量性:感应电动势是标量,但有方向。

其方向规定为从电源负极经过电源内部指向电源的正极,与电源内部电流方向一致。

3.导线切割磁感线时的感应电动势(1)导线垂直于磁场运动,B、l、v两两垂直时,如图甲所示,E=Blv。

(2)导线的运动方向与导线本身垂直,但与磁感线方向夹角为θ时,如图乙所示,E=Blv sin_θ。

甲乙1.思考判断(正确的打“√”,错误的打“×”)(1)穿过某闭合线圈的磁通量的变化量越大,产生的感应电动势就越大。

(×)(2)穿过闭合电路的磁通量变化越快,闭合电路中产生的感应电动势就越大。

(√)(3)感应电动势的方向可用右手定则或楞次定律判断。

(√)(4)穿过闭合回路的磁通量最大时,其感应电动势一定最大。

高中物理新教材同步 选择性必修第二册 第2章 专题强化9 电磁感应中的动力学和能量问题

高中物理新教材同步 选择性必修第二册  第2章 专题强化9 电磁感应中的动力学和能量问题

专题强化9 电磁感应中的动力学和能量问题[学习目标] 1.学会分析导体棒、线框在磁场中的受力(重点)。

2.能根据电流的变化分析导体棒、线框受力的变化情况和运动情况(重难点)。

3.能利用牛顿运动定律和平衡条件分析有关问题(重难点)。

4.理解电磁感应现象中的能量转化,会用动能定理、能量守恒定律分析有关问题(重难点)。

一、电磁感应中的动力学问题如图所示,空间存在方向竖直向下的匀强磁场,磁感应强度为B ,MN 、PQ 是水平放置的足够长的平行长直导轨,其间距为L ,电阻R 接在导轨一端,导体棒ab 跨接在导轨上,质量为m ,接入电路的电阻为r 。

导体棒和导轨间的动摩擦因数为μ,重力加速度g 。

从零时刻开始,对ab 棒施加一个大小为F 、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,ab 棒始终保持与导轨垂直且接触良好。

(1)分析导体棒的运动性质;(2)求导体棒所能达到的最大速度的大小; (3)试定性画出导体棒运动的速度—时间图像。

答案 (1)导体棒做切割磁感线的运动,产生的感应电动势E =BL v ① 回路中的感应电流I =E R +r ②导体棒受到的安培力F 安=BIL ③导体棒运动过程中受到拉力F 、安培力F 安和摩擦力F f 的作用,根据牛顿第二定律有: F -μmg -F 安=ma ④整理得:F -μmg -B 2L 2vR +r=ma ⑤由⑤可知,随着速度的增大,安培力增大,加速度a 减小,当加速度a 减小到0时,速度达到最大,此后导体棒做匀速直线运动。

即导体棒先做加速度逐渐减小的加速运动,再做匀速运动。

(2)当导体棒做匀速运动时,达到最大速度,有F -μmg -B 2L 2v mR +r =0可得:v m =(F -μmg )(R +r )B 2L 2(3)由(1)(2)中的分析可知,导体棒运动的速度—时间图像如图所示。

1.电磁感应问题中电学对象与力学对象的相互制约关系2.处理此类问题的基本方法(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档