第一篇:建筑声学 第三章 材料和结构的声学特性

合集下载

建筑与城市物理环境概论---声环境

建筑与城市物理环境概论---声环境
道,噪声使街旁的住户彻夜难眠。 ►中世纪的英国国王规定不得在夜间
鞭打妻子,这不是为了保护妇女, 而是因为挨打妇女的叫声会干扰邻
1992年联合国环境保护署(UNEP)发表的报 告《环境状况——拯救我们的星球》,其中 关于噪声污染方面,报告指出,“与10年前 相比,噪声已经成为一个更加严重的问题, 特别是在许多发展中国家,噪声污染日趋严 重。在马尼拉、曼谷、开罗和许多其他城市, 它成为一个主要的环境问题”。
50ms前到达的声能/全部到达的声能 1962年,Beranek出版《Music Acoustics and Architecture》
提出初始延迟间隙(initial-time-delay gap):第一个反射声相对于直达声 的延迟时间,与亲切感(intimacy)有关; 1967年,Marshall提出側向反射声对音质的重要性; 1968年,Barron提出空间感的客观量度S: 早期(5~80ms)側向反射声能/早期(0~ 80ms)非側向反射声能 1970年,Jordan提出“早期衰减时间”EDT; 1974年,Abdel Alim提出明晰度(clarity)C,用于音乐的清晰度:
布朗(M.Barron)组织20个有经验的音质评价人员,大部 分为声学顾问,对英国的11个厅堂进行了现场评价。评价者在厅 内不同的位置听音,根据问卷调查对各主观指标作出评价。最后 对厅堂总的音质分成7个级别,从“顶级”到“很差”。结果显示 5个音质指标,即明晰度、混响感、环绕感、亲切感和响度是相互 独立的,而厅堂音质的总印象与混响、环绕感、亲切感的相关性 最高。同时,也发现评价人员对于厅堂音质有不同的偏好,一部 分倾向于混响感,而另一部分则倾向于亲切感。
纽约 Carnegie Hall
1891建,1986和1989年 改建

建筑物理-声学基本知识

建筑物理-声学基本知识

人耳的主观听觉特性
人耳的听闻范围
听觉过程:外耳——中耳——内耳——大脑 人耳对不同频率的声音的敏感程度不一样
• 对中、高频敏感;对低频不敏感
听闻范围
响度
人耳所感觉的声音的大小称为响度
• 相同声压级,不同频率的声音,响度不同
• 相同频率,不同声压级的声音,响度不同
• 等响
响度的单位为宋(sone)
声音的计量
声音的叠加
多个声音的叠加
4
2019/10/22
Architectural Acoustics
第一章 建筑声学基本知识
声音的频谱
频谱
声音往往包含多个频率,所有频率的集合成为频谱 线状谱:由一些离散的频率成分形成的谱 连续谱:在一定频率范围内频率成分连续的谱
音乐(乐音)
声音的频谱
频谱
声音往往包含多个频率,所有频率的集合成为频谱 线状谱:由一些离散的频率成分形成的谱 连续谱:在一定频率范围内频率成分连续的谱
音乐(乐音)
纯音 基音和谐音、基频和谐频 音符和音色 线状谱 语言声
8
2019/10/22
Architectural Acoustics
描述不同频率声音等响时,频率与声压级相互关系的曲线称为 等响曲线
声级计与A声级
根据等响曲线,通过计权网络 模拟人耳对不同声音的响应
A、B、C、D声级
16
2019/10/22
Architectural Acoustics
第一章 建筑声学基本知识
人耳的主观听觉特性
时差效应
哈斯效应(Haas Effect)
Sabine 公式:

01建筑声学基本知识

01建筑声学基本知识

建筑声学基础知识
声学漫画——声源、噪声
R 10lg 1
建筑声学基础知识
声学漫画——音质
R 10lg 1
谢 谢!
建筑声学基础知识
室内声现象
声反射 声吸收 声隔绝
建筑声学基础知识
声反射实例天坛
三音石 回声壁 圜丘
建筑声学基础知识
声反射/Sound reflection
概念:声波前进过程中遇到尺寸大于波长的界面,发生反射
建筑声学基础知识
声反射/Sound reflection
镜像反射 条件:声波前进过程中遇到光滑表面 符合反射定律——入射声线、反射声线和界面法线在同一平面内 反射声能与界面的吸声系数α有关
建筑声学基础知识
隔声/Sound Isolation
隔声——噪声控制的重要手段
空气声隔绝——隔声量R
R 10lg 1
R 10lg 1
式中:τ——构件透射系数
隔声构件的结构形式:
单层匀质密实墙、双层匀质密实墙、轻质墙、门窗、组合墙
隔声特性:质量定律、吻合效应
固体声隔绝 噪声产生:振动物体直接撞击结构物 噪声传播途径:物体直接撞击、受撞击而振动的结构与其它建筑构件连接而传播 隔绝途径:减弱振动源的振动、阻隔振动传播、阻隔振动结构向空间辐射声能 实例:楼板下做隔声吊顶
建筑声学基础知识
室内声场
在室内放置一个持 续发声的稳定声源, 经过一定时间的直 达声和来自各个界 面的反射声(混响) 声的共同作用,室 内声场会达到一个 稳态。此时,如果 声源停止发生,则 室内稳态声压级离 开开始衰减。
ห้องสมุดไป่ตู้
建筑声学基础知识
混响时间/Reverberation Time

建筑声学第三章 吸声材料和吸声结构

建筑声学第三章 吸声材料和吸声结构
四 特殊吸声结构
1、空间吸声体。2、尖劈—强吸声结构(声阻逐渐加大)。
2020/4/24
18
第一节 吸声材料(结构)的分类及吸声特性
3、可变吸声结构 利用改变吸声面和反 射面的方法调整吸声 量(如右图)
4、空气吸收。由于空气的热传导与粘滞性,以及空气中水分 子对氧分子振动状态的影响等造成。声音频率越大,空气吸 收越强烈(一般大于2KHz将进行考虑)。
有时使用平均吸声系数粗略衡量材料的吸声能力。 平均吸声系数:100Hz-5000Hz的1/3倍频带吸声系数的平均值 吸声量:对于平面物体A= S, 单位是平米(或塞宾)
对于单个物体,表面积难于确定,直接用吸声量
2020/4/24
3
概述
吸声量或吸声系数的测量:
1、混响室法
T=0.161V(1/T2-1/T1)/S A= 0.161V(1/T2-1/T1)/n
15
第一节 吸声材料(结构)的分类及吸声特性
狭缝吸音砖内如放入吸声材料则 增大吸声效果 右图为美国某音乐教室。 下图为狭缝吸音砖放入玻璃棉的 情况。
2020/4/24
16
第一节 吸声材料(结构)的分类及吸声特性
共振吸声效果和吸声腔内加入吸声材料 (玻璃棉)后的吸声效果
2020/4/24
17
第一节 吸声材料(结构)的分类及吸声特性
矿棉、玻璃棉、 泡沫塑料、毛毡
2020/4/24
穿孔板、薄膜、薄板
空间吸声体、可变 吸声体、强吸声体、家
具、空气、洞口等
6
第一节 吸声材料(结构)的分类及吸声特性
一 、多孔吸声材料的吸声原理
多孔吸声材料类型:玻璃棉、岩棉、泡沫塑料、毛毡 等具有良好的吸声性能,不是因为表面粗糙,而是因 为多孔材料具有大量的内外连通的微小孔隙和孔洞。

建筑物理 第3章 材料和结构的声学特性

建筑物理 第3章  材料和结构的声学特性

空腔共振吸声结构:结构中封闭有一定体积的 空腔,并通过一定深度的小孔与声场空间连接。 其吸声原理可以用亥姆霍兹共振器来说明。
• 亥姆霍兹共振器的固有频率
f0
c
2
s
V t
c——声速,34000cm/s; s——颈口面积,cm2; V——空腔体积,cm3; t——孔颈深度,cm; δ——开口末端修正量,cm,对于圆孔,δ=0.8d
第三讲 材料和结构的声学特性
建筑声环境的形成及其特性,一方 面取决于声源的情况,另一方面取决于 建筑空间以及形成建筑空间的物质。
无论是创造良好的音质还是控制噪 声,都需要了解和把握材料和结构的声 学特性,以便正确合理地、有效灵活地 加以使用。
在研究建筑空间 围护结构的声学特性时, 对室内声波而言,通常 考虑的是反射和吸收 (这里的吸收含透射, 即吸收是指声波入射到 围护结构后不再返回该 空间的声能损失);对 室外声波而言,通常考 虑的是透射。
• 吸声量
• 对于建筑围蔽结构
A S
n
A 1S12S 2 nS n iS i i 1
• 对于在声场中的人、物或空间吸声体,由于 表面积很难确定,常直接用吸声量。
开窗
50厚玻璃棉 240砖墙
吸声系数 α 材料面积S (m2) 吸声量A =αS
1.0 100 m2 100 m2
0.8 100 m2
注意3
材料或结构的声学特性和入射声波 的频率和入射角度有关。
即某一材料或结构对不同频率的声 波会产生不同的反射、吸收和透射;相 同频率的声波以不同角度入射时,也有 不同的反射、吸收和透射。所以说到材 料或结构的声学特性时,总是与一定的 频率和入射角对应。
• 吸声材料和吸声结构 • 隔声和构件的隔声特性 • 反射和反射体

建筑声学-11室内声学与厅堂音质设计

建筑声学-11室内声学与厅堂音质设计
原来方向前进。 ▪ 把声波的传播看做沿声线传播的声能,而忽略声波的波动性能。
4
几何声学方法: 适用条件:反射面或障碍物的尺寸要远大于声波的波长。 ——中高频声音、房间尺度较大。 ——对于低频声,如63~125Hz,波长为5.4m~2.7m。因此,在一个各个表
面尺寸均小于声波波长的小房间内,几何反射定律将不适用。
▪ P376 表17-1
27
二、客观技术指标 2.频率特性 ▪ 为了使音乐各声部和语音的低、中、高频的分量平衡,使音色不失
真,还必须照顾到低、中、高频声能之间的比例关系。 ▪ 由于人耳对低频声的宽容度较大,同时厅堂内界面和观众衣饰对中
高频的声能吸收较大,所以允许低频混响时间有15%-45%的提升。 ▪ 对于不同厅堂有不同具体要求。(录音室——以平直为主)
i 1
i 1
V T60 0.161 A
13
▪ 工程中普遍采用伊林(Erying)公式 ▪ 伊林公式在赛宾公式的基础上考虑了空气吸收的影响。
T60
-
S
0.161V
ln(1 ) 4 m V
▪ 空气吸声与声音频率有关,频率越高,空气吸声系数(4m)越大;频 率小于1000Hz时,4mV一项可省去。
25
4.优美的音质 ▪ 对于音乐声来说,除了听得见、听得清这些基本要求外,室内音质
设计还需要给听众提供听得舒服的环境。因此,为了让室内声音具 有优美的音质,还需要注意以下两方面: 1)足够的丰满度。丰满度的含意有:声音饱满、圆润,音色浑厚、温 暖,余音悠扬、有弹性。总之,它可以定义为声源在室内发声与在 露天发声相比较,在音质上的提高程度。(反射声:温暖or活跃) 2)良好的空间感。是指室内声场给听者提供的一种声音在室内的空间 传播感觉。其中包括听者对声源方向的判断(方向感),距声源远 近的判断(距离感)和对属于室内声场的空间感觉(环绕感、围绕 感)。

建筑物理 +声学部分+《第1章:建筑声学基础知识》

建筑物理 +声学部分+《第1章:建筑声学基础知识》

0c 又称为介质的特性阻抗。
郑州华信学院
建筑物理
第1章 建筑声学
1.2.2 声功率级、声强级和声压级 人耳刚能听见的下限声强为10-12w/m2,相应的声压为 2×10-5N/m2;使人感到疼痛的上限声强为1w/m 2,相 应的声压为20N/m2。所以用声强和声压计量声音很难。 1.声功率级( LW ) 声功率级是声功率与基准功率之比的对数的10倍。记为 LW W LW 10 lg (dB) W0
郑州华信学院
建筑物理
第1章 建筑声学
2.声强级(LI ) 声强级是声强与基准声强之比的对数的10倍。记为 LI
I LI 10 lg I0
(dB)
郑州华信学院
建筑物理
第1章 建筑声学
3.声压级(Lp) 声压级是声压与基准声压之比的对数的20倍。记为 Lp
p L p 20 lg (dB) p0
郑州华信学院
建筑物理
第1章 建筑声学
1.1.4 声音的透射、反射和吸收
当声波入射到建筑构件(如墙、天花)时,声能的一部 分被反射,一部分透过构件,还有一部分被构件吸收。 根据能量守恒定律,若入射总声能为E0,反射的声能 为Eρ,构件吸收的声能为Eα,透过构件的声能为Eτ, 则互相间有如下的关系:
E0=E 十Eα十E τ
Lp LW 20lg r 8
郑州华信学院
建筑物理
第1章 建筑声学
1.4.2 室内声压级的计算
1.直达声、早期反射声及混响声。
1.直达声:是指声源直接到达接收点的声音。 2.早期反射声:一般指直达声到达以后,相对延 迟时间为50ms内到达的反射声。(对于音乐声可 放宽至80ms)。 3.混响声:在早期反射声之后陆续到达的,经过 多次反射后的声音统称为混响声。

建筑声学实验报告

建筑声学实验报告

建筑声学实验报告建筑声学实验报告引言:建筑声学是研究建筑环境中声音传播和控制的学科,对于提高人们的居住和工作环境质量具有重要意义。

本实验旨在通过一系列实验手段,探究建筑声学的相关原理和应用,以及对建筑声学设计的一些建议。

实验一:声音传播特性测量在这个实验中,我们使用了声音传播特性测量仪器,对不同材料的声音吸收和反射特性进行了测量。

通过实验数据的分析,我们发现不同材料的声学特性差异巨大。

例如,吸音材料如泡沫板和吸音棉对声音的吸收效果较好,而金属板和玻璃等材料则对声音的反射较强。

这些结果为我们在建筑声学设计中选择合适的材料提供了依据。

实验二:噪声控制技术研究在这个实验中,我们研究了噪声控制技术在建筑环境中的应用。

通过设置不同类型的隔音墙和隔音窗,我们对噪声的传播进行了实验观测。

实验结果表明,合理设计的隔音结构能够有效减少噪声的传播,提供更为宁静的室内环境。

此外,我们还研究了噪声吸收材料的应用,发现其对于降低噪声污染也起到了积极的作用。

实验三:声学设计优化在这个实验中,我们通过对不同建筑结构的声学设计进行对比研究,探讨了声学设计的优化方法。

我们发现,在室内空间中,合理设置吸音板和吸音棉等材料能够有效减少噪音的反射和回声,提高声音的清晰度和质量。

此外,合理布置音箱和扬声器等音响设备,能够更好地实现声音的均匀分布,提高听音效果。

实验四:建筑声学仿真在这个实验中,我们使用声学仿真软件对建筑声学进行了模拟和分析。

通过输入不同声源和材料参数,我们可以模拟不同建筑环境中的声学效果,并对其进行评估和优化。

通过这种仿真方法,我们能够在设计阶段就对建筑声学进行预测和调整,提高设计效率和质量。

结论:通过本次实验,我们深入了解了建筑声学的相关原理和应用。

合理的声学设计可以提高建筑环境的舒适性和功能性,减少噪声污染对人们的影响。

在实际建筑设计中,我们应该根据具体需求选择合适的材料和技术手段,结合声学仿真和实验分析,进行全面的声学设计优化。

柳孝图《建筑物理》课后习题及详解(建筑声学)【圣才出品】

柳孝图《建筑物理》课后习题及详解(建筑声学)【圣才出品】

第3篇建筑声学第1章声音的物理性质及人对声音的感受1.什么是正常听觉的频率范围,语言声、音乐声大致的频率范围,以及建筑声环境分析的主要频率范围?答:(1)正常人耳可听的频率范围为20~20000Hz,语言声的频率范围是160~5200Hz,音乐声的频率范围大致是50~11000Hz。

(2)就建筑声环境而言,常用的8个倍频带的中心频率是63Hz、125Hz、250Hz、500Hz、1kHz、2kHz、4kHz及8kHz。

250Hz以下的倍频带通常称为低频,500Hz至1kHz 的倍频带是中频,2kHz以上的倍频带称为高频。

2.什么是声音的频谱图?用图分析连续的频谱和只有纯音成分的频谱的区别。

答:声音的频谱图是用来表示声音各组成频率的声压级分布图,其以频率(或频带)为横坐标,声压级为纵坐标。

连续频率成分的噪声的频谱是连续谱,为连续的曲线;纯音成分的频谱是具有单一频率的声音的频谱,其频谱图为一直线段。

图1-1 纯音的频谱图1-2 随机噪音的频谱3.什么是倍频带?倍频带中心频率与其上限频率及下限频率的关系如何?中心频率为500Hz的上限频率和下限频率各是多少Hz?答:(1)倍频带是两个频率限值之间的连续频率,频带宽度是频率上限值与下限值之差。

正常人耳可听的频率范围相当大(20~20kHz),不可能处理其中某一个的频率,只能将整个可听声音的频率范围划分成为许多频带,以便研究与声源频带有关的建筑材料和围蔽空间的声学特性。

(2)倍频带的中心频率须由上限频率与下限频率的几何平均值求得,就是上限频率与下限频率乘积的平方根。

(3)中心频率为500Hz,其上限频率为:=1.414×500=707Hz 下限频率为:=0.707×500=353.5Hz4.倍频带与1/3倍频带有什么关系?列出在建筑声环境频率分析中常用的倍频带中心频率和1/3倍频带中心频率。

答:(1)在某些情况下,为了更仔细地分析与声源频率有关的建筑材料、噪声环境和围蔽空间的声学特性,用1/3倍频带作测量分析。

建筑声学提纲

建筑声学提纲

反射:当声波在传播过程中遇到尺寸比波 长大得多的障板时(d>>λ),声波将被 反射,在障板后面形成声影区。
反射定律: 1.三线同面; 2.两线两侧; 3.两角相等。
几种反射面:
1. 平面对声波的反射; 2. 凸面对声波的反射; 3. 凹面对声波的反射;
第五节 声音和媒质边界的作用性态
二、声扩散 声波在传播过程中如果遇到一些凸形
球面波:


平面波:声强无衰减(理论上)。 声

第二节:声音的计量
3. 声压:某瞬时时介质中的压强相对于无声波 时压强的改变量,单位为牛顿/米2(N/m2) 或帕(Pa)。
p P P0
声压和声强的关系
在自由声场中,某处声强和声压的关系:
p—有效声压,N/m2 ρ0—空气密度,kg/m3 c—空气中的声速,m/s ρ0c—介质的特性阻抗,在20oC 时,其值为415N∙s/m2(瑞利)
第三节:声音的频谱与声源的指向性
声源在自由场中辐射声音时,声音强度分布 情况的一个重要特性为指向性。
点声源无指向性 声源尺寸比波长大得越多指向性越强 中高频声音指向性强
第四节:声音的传播
一、声音在户外的传播 1. 点声源随距离的衰减 点声源的自由声场:
dB
距离增加1倍,声压级降低6dB
点声源的半自由声场
5. 人耳对声长的解析:人耳对时间的分辨可 短到2ms,且和声音的强度和频率无关。 时间差别阈限∆T随声长的减短而变小。
第七节 人的主观听觉特性
6.听觉掩蔽: 对一个声音的感受性会因另一个声
音的存在而发生改变。一个纯音引起的掩蔽决定于 它的强度和频率:低频声能有效地掩蔽高频声,但 高频声对低频声的掩蔽作用不大;最大的掩蔽出现 在掩蔽声频率附近;掩蔽量随掩蔽声的增强而加大。

第1章建筑声学基本知识

第1章建筑声学基本知识
反射系数、透射系数、吸收系数; 隔声材料与吸声材料
第1章建筑声学基本知识
第二节 声音的计量 主要内容提要 声功率、声强和声压 声压级、声强级、声功率级及其
叠功率、声强和声压
1.声功率
声源辐射声波时对外作功,声功率是指声源在单位时间内向 外辐射的声能,记为W,单位为瓦(w)。声源声功率有时是指
声速、波长和频率有如下关系:C=λ*f 或C=λ/T
第1章建筑声学基本知识
当温度为0℃时,声波在不同介质中的速度为: 松木 3320 m/s 软木 500 m/s 钢 5000 m/s 水 1450m/s
声速不是质点振动的速度,而是振动状态传播的速度:它的 大小与振动的特性无关,而与介质的弹性、密度以及温度有 关。在空气中,声速与温度的关系如下:
6.声波的类型 波的传播过程中,空气质点的振动方向与波传播的方 向相平行,称为纵波。若介质质点的振动方向与波传 播的方向相垂直,则称为横波,如水的表面波。 根据介质的不同,声音可分为空气声和固体声 ,通过 空气传播的声音为空气声,通过固体传播的声音为固 体声。
第1章建筑声学基本知识
二、频率、波长与声速
任一点的声压都是随时间而不断变化的,每一 瞬间的声压称瞬时声压,某段时间内瞬时声压 的均方根值称为有效声压。
如未说明,通常所指的声压即为有效声压。
第1章建筑声学基本知识
声压与声强有着
密切的关系。在 自由声场中,某 处的声强与该处 声压的平方成正 比而与介质密度 与声速的乘积成 反比。
第1章建筑声学基本知识
第1章建筑声学基本知识
3. 如用小锤敲打音叉,音叉便会发生振动,并带动邻近的空 气发生振动,当音叉向某一方向振动时,便压缩其邻近的 空气发生振动,使之变密;当音叉向另一方向振动时,便 反向拉伸这一部分空气,使之变疏,从而导致上述部分空 气随着音叉的振动频率,产生一密一疏的周期变化,即形 成振动。而后,其又带动较远部分的空气亦随之发生振动, 使音叉的振动在空气中由近及远,向四面八方传播。

普通本科大学 建筑物理-声学总结

普通本科大学 建筑物理-声学总结

建筑声学第3.1章 建筑声学基本知识一、声音的基本性质声源是辐射声音的振动物体。

声波是纵波。

人耳可听到的声波频率范围是20-20000Hz 。

介质的密度越大,声音的传播速度越快,声音在空气中的传播速度为340 m/s 。

将声音的频率范围划分为若干个区段,称频带。

声学设计和测量中常用倍频带和1/3倍频带。

倍频带的中心频率有11个:16、31.5、63、125、250、500、1000、2000、4000、8000Hz 、16kHz 。

小于200 Hz 为低频,500~1000Hz 为中频,大于2000Hz 为高频。

声波从声源出发,在介质中传播,声波同一时刻所到达的各点的包络面称波阵面。

声线表示声波的传播方向和途径。

声波可分为球面波、平面波和拄面波。

声波在传播过程中会发生反射(镜像反射和扩散反射)、绕射(声波绕过障蔽边缘进入声影区的现象)、干涉(相同频率、相位的两列波在叠加区域内引起的振动加强和削弱的现象)。

材料的反射系数r 、透射系数τ和吸收系数α分别表示被反射、透过和吸收的声能占总声能的比例。

τ小的材料就是隔声材料,α> 0.2的材料就是吸声材料。

二、声音的计量声功率W :声源在单位时间内向外辐射的声能。

声强I :单位时间,垂直于声波传播方向上单位面积通过的声能。

点声源 24/r W I π=声压p :介质有无声波传播时压强的改变量。

自由声场中 c p I 02/ρ=声能密度E :单位体积内声能的强度。

c I E /=级的概念,声压级0/lg 20p p L p =;声强级0/lg 10I I L I =;声功率级0/lg 10W W L W =(其中p 0=2×10-5Pa ;I 0=10-12W/m 2;W 0=10-12W );几个等声压级的叠加n p p L p lg 10lg 200+=。

两个等声压级叠加时,总声压级比一个声压级增加3dB ,两声 级之差超过10dB 时,附加值可忽略不计,总声压级等于最大声压级。

建筑声学基本知识

建筑声学基本知识

建筑声学基本知识建筑声学第二章声环境设计的基本知识2.1 声音的基本性质声音产生于振动;如人的讲话有声带振动引起,扬声器发声是由扬声器膜片的振动产生的。

振动的物体是声源。

声源在空气中振动时,使邻近的空气随之产生振动并以波动的方式向四周传播开来,当传到人耳时,引起耳膜产生振动,最后通过听觉神经产生声音感觉。

“声”由声源发出,“音”在传播介质中向外传播。

2.1.1 声音的产生和传播在空气中,声源的振动引起空气质点间压力的变化,密集(正压)稀疏(负压)交替变化传播开去,形成波动即声波。

(如图)2.1.2 频率、波长与声速描述声音的基本物理量f:频率,每秒钟振动的次数,单位Hz(赫兹):波长,在传播途径上,两相邻同相位质点距离。

单位没m(米)声波完成一次振动所走的距离。

C:声速,声波在某一介质中传播的速度。

单位m/s。

在空气中声速:在0℃时,C钢=5000m/s, C水=1450m/s在15C时,C空气=340m/s参数间存在如下关系:c=f* 或 =c/f人耳可听频率范围为20Hz~20KHz, <20Hz为次声,>20KHz为超声其中,人耳感觉最重要的部分约在100Hz~4000Hz,相应的波长约3.4m~8.5cm2.1.3 声波的绕射、反射和散射波阵面:声波从声源发出,在某一介质内按一定方向传播,在某一时间到达空间各点的包络面称为波阵面。

球面波:波阵面为球面的点声源发出的波,声线与波阵面垂直。

如人、乐器。

平面波:波阵面为平面的波,声源互相平行,如线声源,多个点声源叠排。

如马路上并排行驶的汽车。

平面波的声能在传播过程中不聚集、不离散,声强不变点声源发出的球面波,距离每增加一倍,声压级衰减6dB。

声波的绕射声波在传播过程中遇到障碍或孔洞时将发生绕射。

绕射的情况与声波的波长和障碍物(或孔)的尺寸有关。

与原来的波形无关。

能绕到障碍物的背后改变原来的传播方向继续传播。

如古语“只闻其声不见其人”“隔墙有耳”声波的反射当声波遇到一块尺寸比波长大得多的障碍时,声波将被反射。

建筑声学 复习资料

建筑声学 复习资料

Lp 20lg
np p 20lg 10lg n p0 p0
•两个相等的声压级叠加
L = 3 dB
响度级:表示声音的强弱。
以1000Hz的纯音作为标准音,它在丌同声压级条件下 响度丌同,将待测纯音不他比较,二者听起来同样响时 ,该1000Hz纯音的声压级值就定义为待测声音的“响度 级”,单位是”方”(phon)。
• 室内表面平均吸声系数较小( 0.2 )时,用赛宾 公式不用依林公式可得到相近结果;在室内吸声系 数较大( 0.2)时,只能用依林公式较为准确地 计算室内混响时间。
3. 依林-努特生公式
• 赛宾公式和依林公式只考虑了室内表面吸收作用,对 亍频率较高的声音(一般为2000Hz以上),当房间较 大时,传播过程中,空气也将产生徆大的吸收。 • 考虑了室内表面和空气的吸收作用(尤其对高频声) 依林-努特生公式表述: 0.161 V T60 S ln(1 ) 4m V 式中: V——房间容积,m3; S——室内总表面积,m2; ——室内平均吸声系数。 S和 计算方法同上。 4m——空气吸收系数。
用于消声室的强吸声结构吸声系数接近1?帘幕?洞口洞口朝向室外自由声场则从室内角度来看吸声系数为1?人和家具采用个体吸声量表示?空气对高频声吸收较大使用吸声材料和结构的常见错误解析?误认为表面凹凸不平就有吸声功能?在一些早期的厅堂中经常在墙面采用水泥拉毛的装修方式认为这种表面凹凸不平的构造对声音有吸收的作用
例题
• 某观众厅体积为20000m3,室内总表面积为6257m2,已 知500Hz的平均吸声系数为0.23,演员声功率为340μW, 在舞台上収声,求距声源39m处(观众厅最后一排座位 )的声压级,并计算混响半径。 • 解:根据已知条件,求出房间常数

建筑设计中的建筑声学特性分析

建筑设计中的建筑声学特性分析

建筑设计中的建筑声学特性分析建筑声学是研究建筑物内外声音的传播、反射、吸收和隔音等特性的学科。

在建筑设计中,合理的声学设计对于提供舒适的室内环境和良好的声学效果至关重要。

本文将从建筑声学的基本概念、影响建筑声学的因素以及常见的声学设计方法等方面进行分析。

一、建筑声学的基本概念建筑声学主要涉及声音的传播、反射、吸收和隔音等方面。

声音是通过空气分子的振动传播的,而建筑物中的各种材料和结构会对声音的传播产生影响。

在建筑声学中,常用的参数有声压级、声能级、声速等。

声压级是描述声音强度的参数,单位为分贝(dB)。

声能级是描述声音能量的参数,单位为分贝(dB)。

声速是声音在特定介质中传播的速度,单位为米/秒。

了解这些基本概念对于进行建筑声学特性分析至关重要。

二、影响建筑声学的因素1. 建筑材料:不同的建筑材料对声音的传播和吸收有不同的影响。

例如,木材和织物等材料对声音有较好的吸收作用,而金属和玻璃等材料则对声音具有较好的反射作用。

2. 空间布局:建筑物的空间布局也会对声音的传播和反射产生影响。

开放式的布局会导致声音的扩散,而封闭式的布局则会使声音在空间中反射和聚集。

3. 建筑结构:建筑物的结构形式和材料选择会对声音的传播和隔音起到重要作用。

例如,混凝土结构的建筑物具有较好的隔音效果,而轻钢结构的建筑物则较容易传播声音。

4. 环境噪音:周围环境的噪音也会对建筑物内部的声学环境产生影响。

例如,位于繁忙街道旁的建筑物容易受到交通噪音的干扰,而位于安静街区的建筑物则相对较少受到干扰。

三、常见的声学设计方法1. 吸音设计:通过选择吸音材料和采用合适的吸音结构设计,可以减少室内的回声和噪音。

例如,在音乐厅中使用吸音板和吸音墙壁等装置,可以提高音质和音色的还原度。

2. 隔音设计:通过选择隔音材料和采用合适的隔音结构设计,可以减少声音的传播和穿透。

例如,在多层住宅中使用隔音墙体和隔音窗户等措施,可以减少邻近房间之间的声音干扰。

第三章第三节:材料的声学特性

第三章第三节:材料的声学特性

第三节材料的声学特性声波人射到物体上,会发生反射、吸收和透射。

材料的声学特性与入射声波的频率和角度有关。

所以说到材料和结构的声学特性时,总是和一定的频率与一定的人射情况相对应。

一、吸声材料和吸声构造材料的吸声能力常用吸声系数表示。

某一种材料及其构造对不同频率的声波有不同的吸声系数。

工程上通常采用125,250,500,1K,2K,4KHz六个倍频程的吸声系数来表示某一种材料或构造的吸声频率特性。

250,500,1K,2KHz四个倍频程的吸声系数的算术平均值又称为降噪系数(取0.05的整数倍)。

工程上使用的材料吸声系数多用混响室法来测量。

它通过测试混响室内铺设吸声材料前后的混响时间的变化,从而计算出材料的吸声系数。

某构件的实际吸声效果用吸声量A来表征,它和构件的尺寸大小有关:A=S·α(3-24)式中A——构件的吸声量,m2;S——构件的面积,m2;α——构件的吸声系数。

(一)多孔吸声材料玻璃棉、超细玻璃棉、岩棉等无机材料,以及棉、毛、麻、木质纤维等有机材料属多孔吸声材料。

1.吸声机理及吸声频率特性多孔材料具有大量内外连通的微小空隙和孔洞,当声波入射其中时,引起空隙中空气的振动。

由于空气的黏滞阻力,空气与孔壁的摩擦和热传导作用,使声能转化为热能而损耗掉。

那种以为粗糙表面(如水泥拉毛)吸声好的概念是错误的。

具有大量微孔,但微孔之间相互封闭、不连通的材料,如泡沫塑料,吸声性能也不佳。

吸声频率:多孔吸声材料一般对中、高频声波具有良好的吸声能力。

2.影响多孔材料吸声性能的因素(1)空气流阻空气流阻反映了空气质点通过材料空隙时的阻力。

对于特定的多孔材料,存在最佳流阻。

(2)孔隙率孔隙率是指材料中连通的空隙体积和材料总体积之比。

多孔材料的孔隙率一般在70%以上,多数达90%左右。

对于一定厚度的多孔材料,存在最佳孔隙率。

(3)厚度增加多孔材料的厚度,可以增加对低频声的吸收,但对高频声的吸声性能影响则较小。

材料和结构的声学特性

材料和结构的声学特性

• 材料和结构的声学特性取决于入射 声波的频率和角度。对于某一种材料或 结构,不同频率的入射声波会产生不同 的反射、吸收和透射;而相同频率的声 波以不同角度入射时,也会有不同的反 射、吸收和透射。因此在讨论材料和结 构的声学性能时,一定要说明入射声波 的频率和入射角度。
• 根据材料和结构的不同声学特性, 通常可以分为三类:吸声材料和结构、 反射材料和结构、隔声材料和结构。但 上述三种类型的材料和结构的区分,并 没有严格的界限和定义。因为任何材料 和结构都会对入射声波产生反射、吸收 和透射,只是三者的比例不同而已,而 且这种比例对不同频率的入射声波又是 不同的。另外,评价指标的不同,反映 的特性也不同。
§3 材料和结构的声学特性
• 建筑声环境的形成及特性,除了与 声源的情况有关外,还取决于建筑环境 的情况。所谓建筑环境,一方面是指建 筑空间(形状、大小),另一方面是指 形成建筑空间的物质实体——按照各种 构造和结构方式“结合”起来的材料以 及在建筑空间中的人和物。因此,在建 筑声环境中,无论是创造良好的音质还 是控制噪声,都需要了解和把握材料和 结构的声学特性,正确合理地、有效灵 活地加以使用和处理。
这一类材料中气泡有两种状态,一种气泡是 各自独立的,相互没有通气性;另一种气泡是相 互联结成连续气泡。
• 颗粒类材料:膨胀珍珠岩、多孔陶土砖、蛭石 混凝土等。
• 2、多孔性吸声材料的吸声机理
多孔性材料的结构特征就是在材料 中有许多相通的微小间隙(几微米到几 十微米),当声波投射到多孔性材料表 面时,部分透入的声波与纤维筋络或颗 粒之间产生内摩擦,由于空气的粘滞性 和热传导效应使声能转化为热能而消耗。 因此好的多孔性吸声材料应有良好的 “透气性”,即材料内部的空隙要连通。 用声阻抗的概念来说,就是要求材料的 声阻抗率要接近空气的特性阻抗。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档