第12章 材料和结构的声学特性
初中物理《声音特性》说课稿
初中物理《声音特性》说课稿(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--初中物理《声音特性》说课稿初中物理《声音特性》说课稿范文初中物理《声音特性》说课稿1一、说教材本节课是沪科版物理八年级全一册第三章《声的世界》第二节《声音的特性》中的内容。
在“声音的产生与传播”这一知识点之后,通过各种各样的声音适时提出声音的特性;并通过实验得出响度与振幅、音调与频率的关系,通过生活实例指出声音的音色;从而帮助学生从整体上把握和理解声音,并为后面认识噪声的防治、超声与次声奠定基础。
通过本节课内容的学习可以培养学生观察、比较、归纳、总结问题的能力,并让学生学习两种基本探究方法:“转换法”和“控制变量法”。
在新课程标准对于《声音的特性》一节的要求是:了解乐音的特性,了解现代技术中声学知识的一些运用。
二、说学情物理是八年级学生新接触的一门学科,学生对物理有着浓厚的兴趣及好奇心;学生前面通过对“声音的产生与传播”的学习,已经对声音有了一定的认识,并且学生的脑海中对于生活中的声音的现象也有一定的经验积累,这对本节课的学习起着积极的影响;然而学生对科学探究的基本环节掌握欠缺,以及在对声音的特性的认识上,学生会由于对生活中的一些现象的错误认识,如声音的高低与响度混淆,不能很好地区分,从而对本节课的学习产生不利的影响。
为此,通过学生动手进行实验探究认识音调与响度的区别,并进行易错巩固练习来帮助学生理解。
三、说教学目标根据对教材作用及地位的分析,结合课程标准要求,我制定了如下三维教学目标,目的是要让学生积极地学习物理知识,并通过实验参与到教学活动中,亲身体会获得物理知识的过程,激发物理的学习兴趣,并在这过程只学会观察,归纳、总结。
知识与技能方面:了解声音的特性;声音的响度与振幅有关,音调与频率有关,不同发声体发出声音的音色不同。
过程与方法方面:通过“响度与振幅有关”、“音调与频率有关”两个实验培养学生实验操作能力和比较、归纳、总结问题的能力,并从中体验“转换法”与“控制变量法”的科学探究方法。
环境噪声控制工程课程教学指导
环境噪声控制工程课程教学指导《环境噪声控制工程》课程教学指导一、本课程的性质和目的本课程是环境工程专业学生的专业必修课程,其目的在于使学生了解并掌握环境声学的基础理论,噪声控制的基本原理及方法,掌握环境噪声测试的基本知识及技能,为从事环境噪声污染治理奠定必要的理论基础。
二、本课程的教学重点本课程的教学应侧重于:1、掌握声学的基础知识。
声学的基础知识包括:声波的产生、描述声波的基本物理量、声波的基本类型、声波的叠加、声波的反射、透射和衍射等。
噪声污染控制所针对的三个环节:声源、传播途径和受主都和声波的特性密切相关。
只有在掌握声学基本知识的基础上,才能展开对噪声污染控制原理及技术的教学。
2.掌握环境噪声检测、监测和控制的基本方法。
包括环境噪声测量中常用的一些仪器、设备和相关方法,各种噪声监测方法,噪声控制的基本原则和程序,以及实际工程中常用的几种控制方法。
阐明各种方法的特点和应用环境。
3、掌握环境噪声影响评价的工作程序和内容。
能运用各种方法,采用系统分析法从区域整体出发,进行环境噪声污染综合治理,并寻求解决问题的最佳方案。
此外,还应了解我国目前的环境噪声法规和环境噪声标准。
三、本课程教学中应注意的问题鉴于本课程理论与实践应用的紧密联系及其内容体系的不断更新,应注意:1、注重声学基础知识的掌握,在此基础上展开对环境噪声控制基本原理及方法的教学;2、除教材提供的教学内容外,适当介绍当前国内外的一些新技术;3、应多用教学案例与课程教学内容密切结合,增加学生的可接受性和兴趣。
四、本课程的教学目的通过本课程的所有教学环节,学生应:1、掌握声学的基础知识。
包括:声波的产生、描述声波的基本物理量、声波的基本类型、声波的叠加、声波的反射、透射和衍射等。
2.掌握环境噪声检测、监测和控制的基本方法。
包括环境噪声测量中常用的一些仪器、设备和相关方法,各种噪声监测方法,噪声控制的基本原则和程序,以及实际工程中常用的几种控制方法。
建筑物理(声学复习)
第10章 建筑声学基本知识1. 声音的基本性质①声波的绕射当声波在传播途径中遇到障板时,不再是直线传播,而是绕到障板的背后改变原来的传播方向,在它的背后继续传播的现象。
②声波的反射当声波在传播过程中遇到一块尺寸比波长大得多的障板时,声波将被反射。
③声波的散射(衍射)当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射. ④声波的折射像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。
这种由声速引起的声传播方向改变称之为折射.白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤声波的透射与吸收当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动或声音在其内部传播时介质的摩擦或热传导而被损耗(吸收)。
根据能量守恒定理:0E E E E γατ=++0E --单位时间入射到建筑构件上总声能;E γ——构件反射的声能; E α——构件吸收的声能; E τ-—透过构件的声能。
透射系数0/E E ττ=; 反射系数0/E E γγ=;实际构件的吸收只是E α,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为:11E E E E E γαταγ+=-=-=⑥波的干涉和驻波1.波的干涉:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强、而在另一些位置,振动始终互相削弱或抵消的现象。
2。
驻波:两列同频率的波在同一直线上相向传播时,可形成驻波.2.声音的计量①声功率指声源在单位时间内向外辐射的声能。
符号W . 单位:瓦(W)或微瓦(μW). ②声强定义1:是指在单位时间内,改点处垂直于声波传播方向的单位面积上所通过的声能。
定义2:在声波传播过程中单位面积波阵面上通过的声功率。
符号:I ,单位:W/m 2dWI dS=意义:声强描述了声能在空间的分布;衡量声波在传播过程中声音强弱的物理量。
建筑声学-11室内声学与厅堂音质设计
4
几何声学方法: 适用条件:反射面或障碍物的尺寸要远大于声波的波长。 ——中高频声音、房间尺度较大。 ——对于低频声,如63~125Hz,波长为5.4m~2.7m。因此,在一个各个表
面尺寸均小于声波波长的小房间内,几何反射定律将不适用。
▪ P376 表17-1
27
二、客观技术指标 2.频率特性 ▪ 为了使音乐各声部和语音的低、中、高频的分量平衡,使音色不失
真,还必须照顾到低、中、高频声能之间的比例关系。 ▪ 由于人耳对低频声的宽容度较大,同时厅堂内界面和观众衣饰对中
高频的声能吸收较大,所以允许低频混响时间有15%-45%的提升。 ▪ 对于不同厅堂有不同具体要求。(录音室——以平直为主)
i 1
i 1
V T60 0.161 A
13
▪ 工程中普遍采用伊林(Erying)公式 ▪ 伊林公式在赛宾公式的基础上考虑了空气吸收的影响。
T60
-
S
0.161V
ln(1 ) 4 m V
▪ 空气吸声与声音频率有关,频率越高,空气吸声系数(4m)越大;频 率小于1000Hz时,4mV一项可省去。
25
4.优美的音质 ▪ 对于音乐声来说,除了听得见、听得清这些基本要求外,室内音质
设计还需要给听众提供听得舒服的环境。因此,为了让室内声音具 有优美的音质,还需要注意以下两方面: 1)足够的丰满度。丰满度的含意有:声音饱满、圆润,音色浑厚、温 暖,余音悠扬、有弹性。总之,它可以定义为声源在室内发声与在 露天发声相比较,在音质上的提高程度。(反射声:温暖or活跃) 2)良好的空间感。是指室内声场给听者提供的一种声音在室内的空间 传播感觉。其中包括听者对声源方向的判断(方向感),距声源远 近的判断(距离感)和对属于室内声场的空间感觉(环绕感、围绕 感)。
声学材料化学知识点总结
声学材料化学知识点总结导言:声学材料化学是一门交叉学科,是声学和材料科学的结合。
声学材料化学主要研究声学材料的制备、性能、应用等方面的化学知识。
本文将从声学材料的基本概念、材料化学的理论基础、声学材料的制备和应用等方面进行总结。
一、声学材料的基本概念声学材料是指具有特定声学性能和应用价值的材料。
声学性能包括声波的传播、吸收、反射等特性,应用价值包括在声学领域中的具体应用。
声学材料的种类很多,主要包括声学吸声材料、声学隔声材料、声学透声材料等。
声学材料的性能对材料的化学组成、结构以及制备工艺都有一定的要求。
因此,声学材料化学就是研究这些声学材料的化学性质、化学结构以及化学制备工艺。
二、材料化学的理论基础1. 材料的物理化学性质材料的物理化学性质是指材料的化学成分、结构以及物理性能。
在声学材料中,这些物理化学性质对声学性能有直接影响。
比如,声学吸声材料的吸声性能与材料的孔隙结构、孔隙分布、孔隙形状等都有密切关系。
2. 材料的化学结构材料的化学结构对声学性能有很大的影响。
比如,声学吸声材料的吸声性能与材料的孔隙结构有关,具有不同孔隙结构的声学吸声材料的吸声性能也会有所不同。
3. 材料的制备工艺材料的制备工艺是指材料从原料制备到最终成品的全过程。
不同的制备工艺会对材料的物理化学性质和声学性能产生影响。
因此,声学材料化学也要研究材料的制备工艺。
三、声学材料的制备1. 声学吸声材料的制备声学吸声材料是指能够吸收声波能量的材料。
声学吸声材料的制备可以采用多种方法,比如改性、复合等。
常见的声学吸声材料有多孔聚合物材料、多孔金属材料、复合吸声材料等。
2. 声学隔声材料的制备声学隔声材料是指能够隔离声波的材料。
声学隔声材料的制备一般需要具有较高密度和较好机械性能的材料。
常见的声学隔声材料有聚合物隔声材料、金属隔声材料等。
3. 声学透声材料的制备声学透声材料是指能够透过声波的材料。
声学透声材料的制备一般需要具有较好的传声性能和透明度。
东南大学建筑物理(声学复习)张志最强总结
第10章 建筑声学基本知识1. 声音的基本性质①声波的绕射当声波在传播途径中遇到障板时,不再是直线传播,而是绕到障板的背后改变原来的传播方向,在它的背后继续传播的现象。
②声波的反射当声波在传播过程中遇到一块尺寸比波长大得多的障板时,声波将被反射。
③声波的散射(衍射)当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。
④声波的折射像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。
这种由声速引起的声传播方向改变称之为折射。
白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤声波的透射与吸收当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动或声音在其内部传播时介质的摩擦或热传导而被损耗(吸收)。
根据能量守恒定理:0E E E E γατ=++0E ——单位时间入射到建筑构件上总声能;E γ——构件反射的声能; E α——构件吸收的声能; E τ——透过构件的声能。
透射系数0/E E ττ=; 反射系数0/E E γγ=;实际构件的吸收只是E α,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为:11E E E E E γαταγ+=-=-=⑥波的干涉和驻波1.波的干涉:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强、而在另一些位置,振动始终互相削弱或抵消的现象。
2.驻波:两列同频率的波在同一直线上相向传播时,可形成驻波。
2.声音的计量①声功率指声源在单位时间内向外辐射的声能。
符号W 。
单位:瓦(W )或微瓦(μW )。
②声强定义1:是指在单位时间内,改点处垂直于声波传播方向的单位面积上所通过的声能。
定义2:在声波传播过程中单位面积波阵面上通过的声功率。
符号:I ,单位:W/m2dW I dS=意义:声强描述了声能在空间的分布;衡量声波在传播过程中声音强弱的物理量。
第12章声与振动
P2 1 1 2 cw2 A2 ZVm m 2 2 2Z
(12- 2)
声波在传播过程中,遇到两种声阻抗不同的媒质的界面时,发生反射和折射。反射波的强 度与入射波的强度之比,叫做强度反射系数,用 ir 表示。透射波的强度与入射波的强度之比, 叫做透射系数,用 it 表示。理论证明,在垂直入射的条件下,
式中,
Px
、
Ix
——距声源 x 处的声压和声强;
2
X——声波与声源间的距离; α——衰减系数, 单位为 Np/m (奈培 / 米) 。 声波在介质中传播时,能量的衰减决定于声波的扩散、散射和吸收,在理想介质中,声波 的衰减仅来自于声波的扩散,即随声波传播距离增加而引起声能的减弱。散射衰减是固体介质 中的颗粒界面或流体介质中的悬浮粒子使声波散射。吸收衰减是由介质的导热性、粘滞性及弹 性滞后造成的,介质吸收声能并转换为热能。粘滞性及弹性滞后造成的,介质吸收声能并转换 为热能。 衍射 衍射亦称绕射,声波在传播时,如果被一个大小近于声波波长或等于波长的物体所阻挡, 就会绕过这个物体,继续行进。当阻挡物较小(与波长相比)时,其后面仍能清晰地听到声音;但 当阻挡物较大时,就会在其后形成声影民音量明显减少。 散射 由于大气经常处于湍流运动状态,其温度、湿度和风速的时空分布均有随机脉动,这使声 波在大气中传播的速度在小尺度范围内也产生时空脉动,因而声波波阵面产生随机性的畸变。 随机性波阵面的相干效应,使一部分声波波能脱离原传播方向而向其他方向传播,造成声波在 湍流大气中的散射。声波散射的散射强度和方向分布取决于大气湍流的强度和频谱特征。利用 声波大气散射原理已成功地研制了声雷达,用以遥感边界层大气。 因前面光谱微波章节有类似介绍,此处不再详述。
12.1.4 声压及其描述
建筑物理声学计算题及问答题(带答案)
第三篇建筑声学第十章建筑声学基本知识习题10-1、试举两个谐振动的例子,并指明它们的周期、振幅和波长。
答:例如秒摆,周期为2秒。
振幅任意,一般振角为5º,两相邻同相位点之间的距离为波长λ,例如:弹簧振子,振动周期T=2π,振幅为小球离开平衡位置的最大距离,波长λ=C·T。
10-2、把一个盛着水的容器悬挂在一根摆线的下方,任其作自由摆动,若容器的底部有一小孔,在摆动的过程中,水不断从小孔中均匀地流出来,试分析在摆动过程中周期的变化情况。
10-3、两列相干波的波长均为λ,当它们相遇叠加后,合成波的波长等于什么?答:两列相干波相遇发生波的干扰现象,而波长却不发生变化,因为同一媒介中传播的两波在某区域相交,仍保持个自原有特性。
10-4、图10-8能否适用于纵波?为什么?用波长和波程差表示,相遇点满足什么条件振动就加强?满足什么条件振动就减弱?答:(1)当两源到达某点A的路程差为零或半波长的偶数倍时,该点出现振动最强振幅最大,即ΔS=2n(λ/2)=nλ(n=0、1、2、……)。
(2)当两波源到达某点B的路程差为半波长的奇数倍时,该点出现振动减弱,即ΔS=(2n+1)(λ/2)(n=0、1、2、……)。
10-5、声音的物理计量中采用“级”有什么实用意义?80dB的声强级和80dB的声压级是否一回事?为什么?(用数学计算证明)答:声强的上下限相差一万亿倍,声压相差一百万倍,用它们度量不方便,人耳对声音大小感觉并不与声强或声压成正比,而是近似与它们对数值成正比,所以通常用对数的标度来表示。
(2)80分贝声压级=80分贝声强级10-6、录音机重放时,如果把原来按9.5cm/s录制的声音按19.05cm/s重放,听起来是否一样?为什么?(用数学关系式表示)10-7、验证中心频率为250、500、1000、2000Hz的一倍频程和1/3倍频程的上下截止频率。
10-8、证明式(10-20)。
第十一章室内声学原理习题11-1、在应用几何声学方法时应注意哪些条件?答:(1)厅堂中各方面尺度应比入射波的波长长几倍或几十倍。
第12章语音合成
(人) 意图
行动
(机器) 文本输入
文 本 解 析
控 制 信 声 息 音 合 成
合成音
声音、话 音识别
声音、话 音理解
计 算 机 处 理
概述
音节和音素
语音信号的最基本组成单位是音素,音素
通常,在波形合成法中,由于合成的是有限长度的语音,甚至可以用整 个句子作为合成基元,但是在参数合成法中,则不得不用字至多也只能用词 作为合成基元。
语音合成原理
语音合成
我国的汉语,在无限字(词)汇量的语音合成,具有得 天独厚的优越性。 汉语的句子是由词组成的,而词又是由音节字组成的。 虽然存在一音多字的问题,但是对于机器讲话、人听话 的语音合成情况来说,这个同音字问题是不必考虑的。 因为人在听话时会自然的理解这些同音字,也就是说, 汉语合成时只是要求机器讲出音节字(拼音字)就可以 了。 汉语的全部音节字只有1300个左右,即使不用更小的声 母、韵母作为基元就用音节字作为基元,其语音库也不 算太大。
语音合成原理
语音合成(Speech Synthesis)
语音合成技术可以分为四类: 波形编码合成方法 (Waveform Coding Synthesis) 参数式分析合成方法(Parametric Analysis Synthesis) 规则合成方法(Synthesis by Rule) 文-语转换(Text to Speech Conversion System) 无论波形合成法或是参数合成法,其原理都等同于语 音通信的语音编码或声码器中的接收端的工作过程, 只是现在没有从信道送来的参数与编码的序列,而代 之以从分析或变换得到的存储在语音库中的参数或码 序列。
建筑声学 复习资料
Lp 20lg
np p 20lg 10lg n p0 p0
•两个相等的声压级叠加
L = 3 dB
响度级:表示声音的强弱。
以1000Hz的纯音作为标准音,它在丌同声压级条件下 响度丌同,将待测纯音不他比较,二者听起来同样响时 ,该1000Hz纯音的声压级值就定义为待测声音的“响度 级”,单位是”方”(phon)。
• 室内表面平均吸声系数较小( 0.2 )时,用赛宾 公式不用依林公式可得到相近结果;在室内吸声系 数较大( 0.2)时,只能用依林公式较为准确地 计算室内混响时间。
3. 依林-努特生公式
• 赛宾公式和依林公式只考虑了室内表面吸收作用,对 亍频率较高的声音(一般为2000Hz以上),当房间较 大时,传播过程中,空气也将产生徆大的吸收。 • 考虑了室内表面和空气的吸收作用(尤其对高频声) 依林-努特生公式表述: 0.161 V T60 S ln(1 ) 4m V 式中: V——房间容积,m3; S——室内总表面积,m2; ——室内平均吸声系数。 S和 计算方法同上。 4m——空气吸收系数。
用于消声室的强吸声结构吸声系数接近1?帘幕?洞口洞口朝向室外自由声场则从室内角度来看吸声系数为1?人和家具采用个体吸声量表示?空气对高频声吸收较大使用吸声材料和结构的常见错误解析?误认为表面凹凸不平就有吸声功能?在一些早期的厅堂中经常在墙面采用水泥拉毛的装修方式认为这种表面凹凸不平的构造对声音有吸收的作用
例题
• 某观众厅体积为20000m3,室内总表面积为6257m2,已 知500Hz的平均吸声系数为0.23,演员声功率为340μW, 在舞台上収声,求距声源39m处(观众厅最后一排座位 )的声压级,并计算混响半径。 • 解:根据已知条件,求出房间常数
建筑物理声学计算题及问答题(带答案)
第三篇建筑声学第十章建筑声学基本知识习题10-1、试举两个谐振动的例子,并指明它们的周期、振幅和波长。
答:例如秒摆,周期为2秒。
振幅任意,一般振角为5º,两相邻同相位点之间的距离为波长λ,例如:弹簧振子,振动周期T=2π,振幅为小球离开平衡位置的最大距离,波长λ=C·T。
10-2、把一个盛着水的容器悬挂在一根摆线的下方,任其作自由摆动,若容器的底部有一小孔,在摆动的过程中,水不断从小孔中均匀地流出来,试分析在摆动过程中周期的变化情况。
10-3、两列相干波的波长均为λ,当它们相遇叠加后,合成波的波长等于什么?答:两列相干波相遇发生波的干扰现象,而波长却不发生变化,因为同一媒介中传播的两波在某区域相交,仍保持个自原有特性。
10-4、图10-8能否适用于纵波?为什么?用波长和波程差表示,相遇点满足什么条件振动就加强?满足什么条件振动就减弱?答:(1)当两源到达某点A的路程差为零或半波长的偶数倍时,该点出现振动最强振幅最大,即ΔS=2n(λ/2)=nλ(n=0、1、2、……)。
(2)当两波源到达某点B的路程差为半波长的奇数倍时,该点出现振动减弱,即ΔS=(2n+1)(λ/2)(n=0、1、2、……)。
10-5、声音的物理计量中采用“级”有什么实用意义?80dB的声强级和80dB的声压级是否一回事?为什么?(用数学计算证明)答:声强的上下限相差一万亿倍,声压相差一百万倍,用它们度量不方便,人耳对声音大小感觉并不与声强或声压成正比,而是近似与它们对数值成正比,所以通常用对数的标度来表示。
(2)80分贝声压级=80分贝声强级10-6、录音机重放时,如果把原来按9.5cm/s录制的声音按19.05cm/s重放,听起来是否一样?为什么?(用数学关系式表示)10-7、验证中心频率为250、500、1000、2000Hz的一倍频程和1/3倍频程的上下截止频率。
10-8、证明式(10-20)。
第十一章室内声学原理习题11-1、在应用几何声学方法时应注意哪些条件?答:(1)厅堂中各方面尺度应比入射波的波长长几倍或几十倍。
初中物理声学课件
初中物理声学课件篇一:初中物理声学部分第一章声现象内容提要声音的产生与传播一:声音的产生1 声是由物体的振动产生的2 振动可以发声注意:1 一切发声的物体都在振动2 声音是由物体的振动产生的3 发生物体的振动停止,发生也停止4 一切正在发声的物体都在振动,固体,液体,气体都可以因振动而产生声音。
5 “振动停止,发生也停止”不同于“振动停止,发生也消失”。
振动停止,只是不再发声,但是原来所发出的声音还会存在并继续向外传播。
二:声音的传播1 声的传播需要介质2 声以波的形式传播,这种波叫声波3能够传播声音的物质叫做介质4声音的介质有:固体,气体,液体5真空不能传声注意:声音以波的形式向外传播。
因为物体的振动,物体两侧的空气就形成了疏密相间的波动向远处传播,这就是声波三:声速和回声声传播的快慢用声速描述,它的大小等于声在每秒内传播的距离。
声速的大小跟介质的种类有关,还跟介质的温度有关。
要点:1 声音在单位时间内传播的距离叫做声速2 声速与介质的种类有关。
一般在固体中传播最快,其次是液体,在气体中传播最慢3 声速与节制的温度有关。
一般在气体中,温度越高,声速越快4 声音在传播过程中,碰到障碍物后被反射回来,人们能够与原生区分开,这样反射回来的声波就是回声。
注意:声音在15℃的空气中的传播速度是340m/s拓展:1分辨原声与回声的条件:①回升到达人耳的时间比原声晚0.1s以上;②声源距离障碍物至少有17m远 2回声的作用:①加强原声;②回声定位;③回声测距3回声测距离:2s=vt我们怎样听到声音一:怎样听到声音在声音传递给大脑的整个过程中,任何部分发生障碍,人都会失去听觉。
但是如果只是传导障碍,而又能够想办法通过其它途径将震动传递给听觉神经,人也能够感知声音1 人耳的构造:外耳(耳廓,外耳道)中耳(鼓膜,听小骨)内耳(半规管,前庭,耳蜗)2 听到声音的途径:物体振动→介质→鼓膜或头骨→听觉神经→产生听觉3如果传导声音的鼓膜和听小骨发生损伤,就会使听力下降,叫做传导性耳聋,但还可以通过其它途径将振动传给听觉神经,人可以继续听到声音;如果耳蜗,听觉中枢或与听觉有关的神经受到损害,听力会降低,甚至是丧失,叫做神经性耳聋,一般不可治愈。
建筑物理复习资料(课后习题答案)
第一篇建筑热工学第一章建筑热工学基本知识习题1—1、构成室内热环境的四项气候要素是什么?简述各个要素在冬(或夏)季,在居室内,是怎样影响人体热舒适感的。
答:(1)室内空气温度:居住建筑冬季采暖设计温度为18℃,托幼建筑采暖设计温度为20℃,办公建筑夏季空调设计温度为24℃等。
这些都是根据人体舒适度而定的要求。
(2)空气湿度:根据卫生工作者的研究,对室内热环境而言,正常的湿度范围是30—60%。
冬季,相对湿度较高的房间易出现结露现象。
(3)气流速度:当室内温度相同,气流速度不同时,人们热感觉也不相同。
如气流速度为0和3m/s时,3m/s的气流速度使人更感觉舒适。
(4)环境辐射温度:人体与环境都有不断发生辐射换热的现象.1—2、为什么说,即使人们富裕了,也不应该把房子搞成完全的“人工空间"?答:我们所生活的室外环境是一个不断变化的环境,它要求人有袍强的适应能力。
而一个相对稳定而又级其舒适的室内环境,会导致人的生理功能的降低,使人逐渐丧失适应环境的能力,从而危害人的健康.1—3、传热与导热(热传导)有什么区别?本书所说的对流换热与单纯在流体内部的对流传热有什么不同?答:导热是指同一物体内部或相接触的两物体之间由于分子热运动,热量由高温向低温处转换的现象。
纯粹的导热现象只发生在密实的固体当中。
围护结构的传热要经过三个过程:表面吸热、结构本身传热、表面放热。
严格地说,每一传热过程部是三种基本传热方式的综合过程.本书所说的对流换热即包括由空气流动所引起的对流传热过程,同时也包括空气分子间和接触的空气、空气分子与壁面分子之间的导热过程.对流换热是对流与导热的综合过程。
而对流传热只发生在流体之中,它是因温度不同的各部分流体之间发生相对运动,互相掺合而传递热能的。
1—4、表面的颜色、光滑程度,对外围护结构的外表面和对结构内空气间层的表面,在辐射传热方面,各有什么影响?答:对于短波辐射,颜色起主导作用;对于长波辐射,材性起主导作用。
环境工程学_第十二章_噪声_电磁辐射_放射性与其他污染防治技术
噪声、电磁辐射、放射性 与其他污染防治技术
噪声的基本概念
物理学:是声波的频率和强弱变化毫无规律, 杂乱无章的声音.
心理学: 人们不需要,使人烦躁的声音 种类: 空气动力性;机械性;电磁性;电声性 噪声污染的特点:
◦ 相对性 ◦ 局部性 ◦ 时间性 ◦ 慢性和间接性
噪声之源
噪声的频谱
(一)噪声分析的基本知识
声音的频率就是声源振动的频率; 人耳听到的声音有的低沉,有的尖锐主要是声音的音
调的高低引起的,而音调是人耳对声源振动频率的主 观感受。
声音可按频率分为:次声(<20Hz)、可听声(20~ 20000Hz)、超声(>20000Hz);
噪声控制主要研究可听声,可听声可分为:低频声 (<500Hz)、中频声(500~2000Hz)、高频声 (>2000Hz)。
会被环境噪声完全掩盖; 当噪声级超过90dB时,即使大喊大叫也难以进
行正常交谈。
噪声的危害
5、特强噪声会对仪器设备和建筑结构造成危害 当噪声级超过135dB时,电子仪器的连接部位
会出现错动,微调元件发生偏移,使仪器发 生故障而失效; 当超过150dB时,仪器的元件可能失效或损坏; 当噪声超过140dB时,轻型建筑物会遭受损伤。
声场:空间中存在声波的区域。 声能密度D:声场中单位体积媒质所含有的声能量,
单位:J/m3。
(一)声压、声能量、声强和声功率
3、声强I
单位时间内,通过和声波射线垂直的单位面积内的声 能量称为声强,即在传播方向上通过单位面积上的声 功率。单位:W/m2。
声强与离开声源的距离有关:
(一)声压、声能量、声强和声功率
有效声压pe:一段时间内声压的均方根值。由于人耳无 法感受声压的起伏,只能感受一个稳定的有效声压。
建筑声环境第十二章
上述计算也可以利用计算图表进行,如下图。
2014-11-15 18
穿孔板结构
在共振频率附 近有最大的吸
声系数,偏离
共振峰越远,
吸声系数越小。
2014-
第十二章 吸声材料和吸声结构
第一节 吸声材料和吸声结构的作用和分类
第二节 多孔吸声材料 第三节 空腔共振吸声结构 第四节 薄膜、薄板吸声结构 第五节 其他吸声结构
2014-11-15 1
第一节 吸声材料与吸声结构的作 用和分类
一、吸声量 ---- 某个具体吸声构件的实际吸声效果的量。 A = S11 + S22 + …. + Snn = ∑Si i (m2) 平均吸声系数 = A / S = ∑Si i / ∑Si
2014-11-15
15
对于穿孔板吸声结构,可设该板后空
气层划分成许多小空腔,每一个开孔与
背后一个小空腔对应。因此,穿孔板结
构即为许多并联的亥姆霍兹共振器。由 上式可求得计算穿孔板吸声结构共振频 率的公式为:
c f0 2
2014-11-15
P L(t )
Hz
16
L — 板后空气层厚度,cm;
P — 穿孔率,即穿孔面积与总面积之比。
d 圆孔正方形排列时, P 4D 2 d 圆孔等边三角形排列时, P
2 3D
2
其中,d为孔径,D为孔距。
2014-11-15
17
【例】穿孔板厚4mm,孔径8mm,孔距20mm, 穿孔按正方形排列,穿孔板背后留10cm空 气层。求其共振频率。 【解】以c=34000,t=0.4,d=0.8,L =10,及P=3.14×0.82 /4×22=0.125 代入公式,其共振频率为:
《建筑声学工程师手册》之建筑声学基础
第一章建筑声学基础建筑声学是研究建筑环境中有关声学问题的学科,涉及到声音的传播规律、评价以及控制等,本书主要阐述的建筑声学内容是室内厅堂音质、噪声控制、隔声隔振原理和解决方法。
1.1 基本名词术语及概念1.1.1声音的产生与传播声源通常是受到外力作用产生振动的物体,物体振动引发周围介质的质点振动,继而向外辐射声音。
介质的质点只是振动而不移动,声音传播呈现出一种波动,如图 1-1所示。
例如拨动琴弦、敲击音叉产生的现象,或者运转的机械设备引起的与其连接的建筑部件的振动;声波也可能因为空气的剧烈膨胀带来空气扰动而产生,例如汽笛或喷气引擎的尾波。
图 1-1 声音的产生1.1.1.1声波、纵波、横波、波长、频率和周期纵波与横波——声波是一种机械波,分为横波与纵波。
横波即发生于金属等介质中的声波传导,表现为声能在传播过程中所涉及的每一个质点会在自己的平衡位置附近上下振动。
声波传导的相邻质点的振动步调存在一个相位差。
传播状态为具有波峰与波谷的“波浪起伏”的振动状态,需要强调的是此时介质中的质点并不随波前进。
纵波即疏密波,是发生在空气中的声音传播。
声源振动时,临近空气介质受到交替的压缩和扩张,空气分子形成疏密相间的状态,依次向外传播形成了声波的传播方向。
波长——声波在传播时,振动一个周期所传播的距离,或者声波相邻同相位的两个质点之间的距离称为“波长”,记作λ,单位是米(m)。
频率——声源及声波振动的速率,即1s内振动的次数称为频率,记作f,单位是周/秒,或者赫兹(Hz),它与周期Τ呈倒数关系,如式1-1所示。
(Hz)f=1T(1-1)周期——声源完整振动一次所经历的时间称为“周期”,记作Τ,单位为秒(s)。
声速——声波在弹性介质中的传播速度,即声波每秒在介质中传播的距离。
声速描述的是振动状态传播的速度,而非质点振动的速度,记作c,单位为米每秒(m/s)。
声速的大小与介质的弹性、密度及温度有关。
1.1.1.2反射、折射、衍射和扩散反射当声波进入或到达密度有明显改变的介质时,一些能量会被反射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章材料和结构的声学特性
建筑声环境的形成及其特性,一方面取决于声源的情况,另一方面取决于建筑环境的情况。
而建筑环境,一方面是指建筑空间,另一方面是指形成建筑空间的物质实体——按照各种构造和结构方式“结合”起来的材料以及在建筑空间中的人和物。
材料和结构的声学特性是指他们对声波的作用特性。
12.1 吸声材料和吸声结构
应用场所:早前:音乐厅(一般不做吸声处理)、剧院、礼堂、录音室、播音室等。
后来:教室、车间、办公室、会议室等。
作用:1、缩短和调整混响时间
2、控制反射声
3、消除回声
4、改善音质,改变声场分布
5、用于控制噪声
12.1.1 吸声系数和吸声量
1)吸声系数
用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以“α”表示,定义为:
α在0到1之间,数值越大,吸声能力越好。
吸声系数与频率有关,工程上通常采用125、250、500、1000、2000、4000Hz 六个频率来表示某一种材料和结构的吸声频率特性。
有时也把250、500、1000、2000Hz四个频率吸声系数的算术平均值(取为0.05的整数倍)称为“降噪系数”(NRC)。
2)吸声量
用以表征某个具体吸声构件的实际吸声效果的量是吸声量,它与构件的尺寸大小有关。
A=α*S
12.1.2吸声材料和吸声结构的分类
1)吸声材料的选用原则:
(1)、吸声系数高;
(2)、吸声频带宽;
(3)、材料的耐久性好。
(4)、材料的装饰性、防火防腐、防虫
驻、质轻、防潮等。
2)分类
吸声材料按吸声机理分为:
(1)靠从表面至内吸声材料部许多细小的敞开孔道使声波衰减的多孔材料,以吸收中高频声波为主,有纤维状聚集组织的各种有机或无机纤维及其制品以及多孔结构的开孔型泡沫塑料和膨胀珍珠岩制品。
(2)靠共振作用吸声的柔性材料(如闭孔型泡沫塑料,吸收中频)、膜状材料(如塑料膜或布、帆布、漆布和人造革,吸收低中频)、板状材料(如胶合板、硬质纤维板、石棉水泥板和石膏板,吸收低频)和穿孔板(各种板状材料或金属板上打孔而制得,吸收中频)。
以上材料复合使用,可扩大吸声范围,提高吸声系数。
用装饰吸声板贴壁或吊顶,多孔材料和穿孔板或膜状材料组合装于墙面,甚至采用浮云式悬挂,都可改善室内音质,控制噪声。
多孔材料除吸收空气声外,
还能减弱固体声和空室气声所引起的振动。
将多孔材料填入各种板状材料组成的复合结构内,可提高隔声能力并减轻结构重量。
12.1.3吸声材料
1、多孔吸声材料
(1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。
聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。
(2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。
材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和密闭间隙不起吸声作用。
微孔向外敞开,使声波易于进入微孔内。
(3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙,结构因素、厚度、容重、背后条件的影响。
a.材料厚度的影响任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其低频的吸声效果,而对高频影响不大。
但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。
常用的多孔材料的厚度为: 玻璃棉,矿棉50—150mm 毛毡4---5mm 泡沫塑料25—50mm
b.材料容重的影响改变材料的容重可以间接控制材料内部微空尺寸。
一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。
合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。
c.背后空气层的影响多空材料背后有无空气层,对于吸声特性有重要影响。
大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm距离安装。
材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料离墙面安装的距离(既空气层的厚度)等于1/4波长的奇数倍时,可获得最大的吸声系数;当空气层的厚度等于1/2波长的整数倍时,吸声系数最小。
d.材料表面装饰处理的影响大多数吸声材料在使用时常常需要进行表面装饰处理.常见的方法有:表面钻孔开槽,粉刷油漆,利用织布,穿孔板和塑料薄膜等。
这些方法都将影响材料的吸声特性。
半穿孔的矿棉吸声板增加了材料暴露在声波中的面积,既增加了有效吸声面积,因此提高了材料的吸声特性。
粉刷油漆等于在材料表面上加了一层高流阻的材料,将会影响材料的吸声特性,特别是在高频段影响更显著。
采用金属网,玻璃布和低流阻的材料或选择穿孔率大于20%的穿孔板做护面层时,对材料的吸声性能影响不大。
若穿孔率小于20%时,对高频段的吸声会有影响,低频影响不大。
2、穿孔板共振吸声结构
穿孔板共振吸声结构可以看作许多个单孔共振腔并联而成,它是由腔体和颈口组成的共振结构,称为亥姆霍兹共振器。
腔体通过颈部与大气相通,在声波的作用下,孔颈中的空气柱就象活塞一样作往复运动,由于颈壁对空气的阻尼作用,使部分声能转化为热能。
当入射声波的频率与共振器的固有频率一致时,即会产生共振现象,此时孔颈中的空气柱运动速度最大,因而阻尼作用最大,声能在此情况下将得到最大的吸收。
采用穿孔的石棉水泥、石膏板、硬质纤维板、胶合板以及钢板、铝板,都可作为穿孔板共振吸声结构,在其结构共振频率附近,有较大的吸收,适于中频。
3、薄膜吸声结构
包括皮革、人造革、塑料薄膜等材料,具有不透气、柔软、受张拉时有弹性等特性,吸收共振频率附近的入射声能,共振频率通常在200~1000HZ范围,最大吸声系数约为0.3~0.4,一般把它作为中频范围的吸声材料。
如果在薄膜的背后空腔内填放多孔材料,这时的吸声特性取决于膜和多孔材料的种类以及薄膜的装置方法。
4、薄板吸声结构
把胶合板、硬质纤维板、石膏板、石棉水泥板等板材周边固定在框架上,连同板后的封闭空气层,构成振动系统,其共振频率多在80~300HZ,其吸声系数约为0.2~0.5,可以作为低频吸声结构。
决定薄板吸声结构的吸声性能的主要因素有:
(1)薄板质量m的影响增加板的单位面积重量,一般可以使其共振频率向低频移动。
而选用质量小的,不透气的材料如皮革,有利于共振频率向高频方向移动。
(2)背后空气层厚度的影响改变空气层的厚度和改变板的质量一样,共振频率也会发生变化。
在空气层中填充多孔材料,可使共振频率附近的吸声系数有所提高。
(3)板后龙骨构造及板的安装方式的影响由于薄板吸声结构有一定的低频吸声能力,而对中高频吸声差,因此在中高频时就具有较强的反射能力。
能增加室内声能的扩散。
通过改变龙骨构造何不同的安装方法,设计出各种形式的反射面,扩散面和吸声---扩散结构。
5、特殊吸声结构
(1)帘幕帘幕是具有通气性能的纺织品,具有多孔材料的吸声特性,由于较薄本身作为吸声材料使用是得不到大的吸声效果的。
如果将它作为帘幕,离开墙面或窗洞一定距离安装,恰如多孔材料的背后设置了空气层,因而在中高频就能够具有一定的吸声效果。
当它离墙面1/4波长的奇数倍距离悬挂时就可获得相应频率的高吸声量。
(2)空间吸声体将吸声材料作成空间的立方体如:平板形,球形,圆锥形棱锥形或柱形,使其多面吸收声波,在投影面积相同的情况下,相当于增加了有效的吸声面积和边缘效应,再加上声波的衍射作用,大大提高了实际的吸声效果,其高频吸声系数可达 1.40.在实际使用时,根据不同的使用地点和要求,可设计各种形式的从顶棚吊挂下来的吸声体。
(3)强吸声结构比较典型的强吸声结构是消声室。
6、如何正确布置吸声材料
(1)装置吸声材料时,如穿孔板,应结合灯具及室内装修统一考虑,进行分块组合,尽可能使吸声材料均匀分布,有利声场的均匀。
(2)要使吸声材料充分发挥作用,应将它布置在最容易接触声波和反射次数最多的表面上,如顶棚,顶棚与墙,墙与墙交接处1/4波长以内的空间等处。
(3)观众厅的后墙,挑台栏杆处,反射回来的声音可能产生回声干扰,常需在后墙的墙裙以上部位的墙面和挑台栏杆处,布置高吸声系数的材料。
(4)吸声材料分散布置,比集中式布置有利于声场扩散和改善音质条件。
(5)一般房间两相对墙面的总吸声量应尽量接近,有利于声场扩散.
(6)一般在顶棚较底的房间,狭长的走道,采用吸声处理方法,选用吸声系数大的材料或悬挂空间吸声体,对降低噪声的干扰效果很好。