导数难题(含答案)教学提纲

合集下载

高考导数大题难题练习册及答案

高考导数大题难题练习册及答案

高考导数大题难题练习册及答案## 高考导数大题难题练习册及答案### 练习题一:函数的单调性与极值题目:设函数 \( f(x) = x^3 - 3x^2 + 4 \),求函数的单调区间和极值点。

解答:首先求导数 \( f'(x) = 3x^2 - 6x \)。

令 \( f'(x) = 0 \),解得 \( x = 0 \) 或 \( x = 2 \)。

分析 \( f'(x) \) 的符号,当 \( x < 0 \) 或 \( x > 2 \) 时,\( f'(x) > 0 \),函数单调递增;当 \( 0 < x < 2 \) 时,\( f'(x) < 0 \),函数单调递减。

因此,函数在 \( x = 0 \) 处取得极大值 \( f(0) = 4 \),在 \( x = 2 \) 处取得极小值 \( f(2) = 0 \)。

### 练习题二:曲线的切线与法线题目:曲线 \( y = \ln(x) \) 在点 \( (1, 0) \) 处的切线方程是什么?解答:首先求导数 \( y' = \frac{1}{x} \)。

在点 \( (1, 0) \) 处,切线的斜率为 \( k = 1 \)。

利用点斜式方程 \( y - y_1 = k(x - x_1) \),代入点 \( (1, 0) \)和斜率 \( k = 1 \),得到切线方程为 \( y = x - 1 \)。

### 练习题三:导数在实际问题中的应用题目:某工厂生产一种产品,其成本函数为 \( C(x) = 0.01x^2 + 2x + 100 \),其中 \( x \) 为产品数量。

求生产多少件产品时,单位成本最低。

解答:首先求成本函数的导数 \( C'(x) = 0.02x + 2 \)。

令 \( C'(x) = 0 \),解得 \( x = -100 \)(舍去,因为产品数量不能为负)。

(完整版)导数及其应用最全教案(含答案),推荐文档

(完整版)导数及其应用最全教案(含答案),推荐文档

g (x ) ⎥导数及其应用一、知识点梳理1. 导数:当∆x 趋近于零时,f (x 0 + ∆x ) - f (x 0 )趋近于常数 c 。

可用符号“ → ”记作:∆x当∆x → 0 时, f (x 0 + ∆x ) - f (x 0 ) → c 或记作 lim f (x 0 + ∆x ) - f (x 0 ) = c ,符号∆x∆x →0∆x“ → ”读作“趋近于”。

函数在 x 0 的瞬时变化率,通常称作 f (x ) 在 x = x 0 处的导数,并记作 f '(x 0 ) 。

即 f ' (x ) = lim f (x 0 + ∆x ) - f (x 0 )∆x →0 ∆x2. 导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。

即若点 P (x 0 , y 0 ) 为曲线上一点,则过点 P (x 0 , y 0 ) 的切线的斜率k = f ' (x ) = lim f (x 0 + ∆x ) - f (x 0 ) 切 0∆x →0 ∆x由于函数 y = f (x ) 在 x = x 0 处的导数,表示曲线在点 P (x 0 , f (x 0 )) 处切线的斜率, 因此,曲线 y = f (x ) 在点 P (x 0 , f (x 0 )) 处的切线方程可如下求得:(1)求出函数 y = f (x ) 在点 x = x 0 处的导数,即曲线 y = f (x ) 在点 P (x 0 , f (x 0 )) 处 切线的斜率。

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:y - y 0 = f ' (x 0)(x - x )03. 导数的四则运算法则:1) ( f (x ) ± g (x ))' = f '(x ) ± g '(x )2)[ f (x )g (x )]' = f '(x )g (x ) + f (x )g '(x )3) ⎢⎡ f (x ) ⎤'= g (x ) f '(x ) - f (x )g '(x ) ⎣ ⎦4. 几种常见函数的导数:g 2 (x )(1) C'= 0(C为常数) (2)(x n)'=nx n-1(n ∈Q) (3)(sin x)'= cos x (4)(cos x)'=-sin x (7)(e x )'=e x (5) (ln x)'=1x(8)(a x )'=a x ln a(6) (log ax)'=1log ex a5.函数的单调性:在某个区间(a, b) 内,如果f ' (x) > 0 ,那么函数y = f (x) 在这个区间内单调递增;如果f ' (x) < 0 ,那么函数y =6.函数的极值求函数f (x) 极值的步骤:①求导数f '(x) 。

导数问题总结提纲

导数问题总结提纲

导数问题总结提纲
导数是高考的重点内容,也是难点之一,请同学们认真总结导数中的基本问题及其处理方法。

以下是给出的总结提纲,供同学们参考。

重点应是在四、五、六三个问题的总结。

一定要配合典型例题,从我们平时做过的导数题目中进行选择即可。

请同学们参考下面提纲,将总结写在A4之纸上五一放假过后上交。

一. 导数的概念
相关概念:函数的平均变化率,瞬时变化率,导数,平均速度,瞬时速度 典型例题:
二.曲线的切线问题
两类问题的方法;典型例题
三.求函数的单调区间、极值、最值(包括含参数的问题)
1.单调性问题的方法;
2.极值问题的方法;
3.最值问题的方法
典型例题
四.需要通过图像分析解决的其他函数性质的问题(零点的个数,极值点的个数。


基本问题及处理方法:
典型例题
五.同一自变量的恒成立问题(通常需要构造新的函数,讨论函数的最大和最小值) 基本问题和转化方法(参变量分离或讨论含参数的函数)
如:,()(,,)()x D f x g x ∀∈>≥<≤都有恒成立
典型例题
六.有关两个函数自变量独立变化的问题
基本问题和转化方法(转化为两个函数的最值问题)
如:112212,,()(,,)()x D x D f x g x ∀∈∈>≥<≤都有恒成立;
112212,,()(,,)()x D x D f x g x ∀∈∃∈>≥<≤使得成立。

典型例题。

(完整word)导数有关知识点总结、经典例题及解析、近年高考题带答案,推荐文档

(完整word)导数有关知识点总结、经典例题及解析、近年高考题带答案,推荐文档

导数及其应用【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。

2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。

3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

【知识梳理】一、导数的概念函数y=f(x),如果自变量X在X0处有增量X ,那么函数y相应地有增量y=f( X0+ X)- f (X0),比值X叫做函y f (x o x) f(x o) y数y=f (x)在x o到x o+ x之间的平均变化率,即x= x 。

如果当X 0时,x有极限,我们就说函数y=f(x)在点x o处可导,并把这个极限叫做 f (x)在点x o处的导数,记作f' (x o)或y' x|勺。

r. y .. f (X o X) f (X o) lim — lim即 f (x o) = x o X= x o X 。

说明:yy(1)函数f (x )在点X 0处可导,是指 x 0时, x 有极限。

如果 x 不存在极限,就说函数在点 X 0处不可导,或说无导数。

(2)X 是自变量x 在X 0处的改变量,X 0时,而 y 是函数值的改变量,可以是零。

由导数的定义可知,求函数 y=f (x )在点x o 处的导数的步骤: (1) 求函数的增量 y =f ( x o + X ) — f (x o );y f(X o X ) f(X o )(2)求平均变化率 x =X ;lim —(3) 取极限,得导数f '(x= x o x 。

二、 导数的几何意义函数y=f (x )在点x o 处的导数的几何意义是曲线 y=f (x )在点p (x o , f (x o ))处的切线的斜率。

导数练习题(含答案)教学提纲

导数练习题(含答案)教学提纲

导数练习题(含答案)导数练习题1.已知函数f (x )=ax 3+bx 2+cx 在x =±1处取得极值,在x =0处的切线与直线3x +y =0平行.(1)求f (x )的解析式;(2)已知点A (2,m ),求过点A 的曲线y =f (x )的切线条数. 解 (1)f ′(x )=3ax 2+2bx +c , 由题意可得⎩⎪⎨⎪⎧f ′(1)=3a +2b +c =0,f ′(-1)=3a -2b +c =0,f ′(0)=c =-3,解得⎩⎪⎨⎪⎧a =1,b =0,c =-3.所以f (x )=x 3-3x .(2)设切点为(t ,t 3-3t ),由(1)知f ′(x )=3x 2-3,所以切线斜率k =3t 2-3, 切线方程为y -(t 3-3t )=(3t 2-3)(x -t ).又切线过点A (2,m ),代入得m -(t 3-3t )=(3t 2-3)(2-t ),解得m =-2t 3+6t 2-6. 设g (t )=-2t 3+6t 2-6,令g ′(t )=0, 即-6t 2+12t =0,解得t =0或t =2.当t 变化时,g ′(t )与g (t )的变化情况如下表:所以g (t )的极小值为g (0)=-6,极大值为g (2)=2. 作出函数草图(图略),由图可知:①当m >2或m <-6时,方程m =-2t 3+6t 2-6只有一解,即过点A 只有一条切线; ②当m =2或m =-6时,方程m =-2t 3+6t 2-6恰有两解,即过点A 有两条切线; ③当-6<m <2时,方程m =-2t 3+6t 2-6有三解,即过点A 有三条切线. 2.已知函数f (x )=a ln x -bx 2.(1)当a =2,b =12时,求函数f (x )在[1e,e]上的最大值;(2)当b =0时,若不等式f (x )≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,求实数m 的取值范围.解 (1)由题意知,f (x )=2ln x -12x 2,f ′(x )=2x -x =2-x 2x ,当1e ≤x ≤e 时,令f ′(x )>0得1e≤x <2;令f ′(x )<0,得2<x ≤e , ∴f (x )在[1e,2)上单调递增,在(2,e]上单调递减,∴f (x )max =f (2)=ln 2-1.(2)当b =0时,f (x )=a ln x ,若不等式f (x )≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,则a ln x ≥m +x 对所有的a ∈[0,32],x ∈(1,e 2]都成立,即m ≤a ln x -x ,对所有的a ∈[0,32],x ∈(1,e 2]都成立,令h (a )=a ln x -x ,则h (a )为一次函数,m ≤h (a )min .∵x ∈(1,e 2],∴ln x >0,∴h (a )在[0,32]上单调递增,∴h (a )min =h (0)=-x ,∴m ≤-x 对所有的x ∈(1,e 2]都成立.∵1<x ≤e 2,∴-e 2≤-x <-1,∴m ≤(-x )min =-e 2.即实数m 的取值范围为(-∞,-e 2]. 3.设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N *,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 解 由题设得,g (x )=x1+x(x ≥0).(1)由已知,g 1(x )=x1+x ,g 2(x )=g (g 1(x ))=x1+x1+x 1+x =x 1+2x ,g 3(x )=x1+3x ,…,可得g n (x )=x1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx1+x 1+kx =x1+(k +1)x,即结论成立.由①②可知,结论对n ∈N *成立. (2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x 恒成立.设φ(x )=ln(1+x )-ax1+x (x ≥0), 则φ′(x )=11+x -a(1+x )2=x +1-a(1+x )2,当a ≤1时,φ′(x )≥0(当且仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增. 又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x恒成立(当且仅当x =0,a =1时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )≤0,∴φ(x )在(0,a -1)上单调递减∴φ(a -1)<φ(0)=0. 即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x 不恒成立,综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,n -f (n )=n -ln(n +1),比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1). 证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N *,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N *成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N *,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,…,ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.D1、已知函数()2f x m x =+与函数()11ln 3,22g x x x x ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎣⎦⎝⎭的图像上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )。

导数文科大题含详细答案教学提纲

导数文科大题含详细答案教学提纲

导数文科大题1.知函数,. (1)求函数的单调区间;(2)若关于的方程有实数根,求实数的取值范围. 答案解析2.已知, (1)若,求函数在点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3.解:(1)时,,′(x),′(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,′(x),在上恒成立,即,在上恒成立,令,当且仅当时,取等号, ,的取值范围为(3),′(x),①当时,在上单调递减,,计算得出(舍去);②当且时,即,在上单调递减,在上单调递增,,计算得出,满足条件;③当,且时,即,在上单调递减,,计算得出(舍去);综上,存在实数,使得当时,有最小值3.解析(1)根据导数的几何意义即可求出切线方程.(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,(3),求出函数的导数,讨论,,的情况,从而得出答案3.已知函数,(1)分别求函数与在区间上的极值;(2)求证:对任意,解:(1),令,计算得出:,,计算得出:或,故在和上单调递减,在上递增,在上有极小值,无极大值;,,则,故在上递增,在上递减,在上有极大值,,无极小值;(2)由(1)知,当时,,,故;当时,,令,则,故在上递增,在上递减,,;综上,对任意,解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及单调区间及极值;4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性;(2)当时,求证:对任意的,.解:(1)当时,,则,,故则在R上单调递减.(2)当时,,要证明对任意的,.则只需要证明对任意的,.设,看作以a为变量的一次函数,要使,则,即,恒成立,①恒成立,对于②,令,则,设时,,即.,,在上,,单调递增,在上,,单调递减,则当时,函数取得最大值,故④式成立,综上对任意的,.解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.(2)对任意的,转化为证明对任意的,,即可,构造函数,求函数的导数,利用导数进行研究即可.5.已知函数(1)当时,求函数在处的切线方程;(2)求在区间上的最小值.解:(1)设切线的斜率为k.因为,所以,所以,所以所求的切线方程为,即(2)根据题意得, 令,可得①若,则,当时,,则在上单调递增.所以②若,则, 当时,,则在上单调递减. 所以③若,则,所以,随x的变化情况如下表:x 1 20 - 0 + 0-e Φ极小值Γ0所以的单调递减区间为,单调递增区间为所以在上的最小值为综上所述:当时,;当时,;当时,解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.(2)通过,可得.通过①,②,③,判断函数的单调性求出函数的最值.6.已知函数。

(word完整版)导数及其应用最全教案(含答案),推荐文档

(word完整版)导数及其应用最全教案(含答案),推荐文档

导数及其应用一、知识点梳理1.导数:当x ∆趋近于零时,xx f x x f ∆-∆+)()(00趋近于常数c 。

可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c xx f x x f x =∆-∆+→∆)()(lim 000,符号“→”读作“趋近于”。

函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。

即 xx f x x f x f x ∆-∆+=→∆)()(lim)(0000'2.导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。

即若点),(00y x P 为曲线上一点,则过点),(00y x P 的切线的斜率xx f x x f x f k x ∆-∆+==→∆)()(lim)(0000'切由于函数)(x f y =在0x x =处的导数,表示曲线在点))(,(00x f x P 处切线的斜率,因此,曲线)(x f y =在点))(,(00x f x P 处的切线方程可如下求得:(1)求出函数)(x f y =在点0x x =处的导数,即曲线)(x f y =在点))(,(00x f x P 处切线的斜率。

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:))((00'0x x x f y y -=-3.导数的四则运算法则:1))()())()((x g x f x g x f '±'='± 2))()()()(])()([x g x f x g x f x g x f '+'='3))()()()()()()(2x g x g x f x f x g x g x f '-'='⎥⎦⎤⎢⎣⎡4.几种常见函数的导数:(1))(0为常数C C =' (2))(1Q n nx x n n ∈='-)((3)x x cos )(sin ='(4)x x sin )(cos -=' (5)x x 1)(ln =' (6)e xx a a log 1)(log =' (7)xxe e =')( (8)a a a xxln )(=' 5.函数的单调性:在某个区间),(b a 内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减。

导数压轴大题归类 (解析版)

导数压轴大题归类 (解析版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。

高考数学热点难点突破技巧第03讲导数中的二次求导问题(含答案)

高考数学热点难点突破技巧第03讲导数中的二次求导问题(含答案)

第03讲:导数中的二次求导问题【知识要点】1、高中数学课程标准对导数的应用提出了明确的要求,导数在研究函数中的应用,既是高考考查的重点,也是难点和必考点. 利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大.2、在解决有关导数应用的试题时,有些题目利用“一次求导”就可以解决,但是有些问题“一次求导”,不能求出原函数的单调性,还不能解决问题,需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. “再构造,再求导”是破解函数综合问题的有效工具,为高中数学教学提供了数学建模的新思路和“用数学”的新意识和新途径.【方法讲评】方法二次求导使用情景对函数一次求导得到之后,解不等式难度较大甚至根本解不出.解题步骤设,再求,求出的解,即得到函数的单调性,得到函数的最值,即可得到的正负情况,即可得到函数的单调性.【例1】(理·2010全国卷Ⅰ第20题)已知函数. (Ⅰ)若,求的取值范围;(Ⅱ)证明:化简得,所以两边同乘可得,所以有,在对求导有,即当<<时,>0,在区间上为增函数;当时,;当<时,<0,在区间上为减函数.所以在时有最大值,即.又因为,所以.当时,同理,当时,>,即在区间上为增函数,则,此时,为增函数,所以,易得也成立.综上,得证.方法二:(Ⅰ),则题设等价于. 令,则.当<<时,>;当时,,是的最大值点,所以.综上,的取值范围是.(Ⅱ)由(Ⅰ)知,,即.当<<时,因为<0,所以此时.当时,. 所以【点评】(1)比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得自然流畅,难度降低,否则,另外一种解法在解第二问时用到第一问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出.(2)大家一定要理解二次求导的使用情景,是一次求导得到之后,解答难度较大甚至解不出来. (3)二次求导之后,设,再求,求出的解,即得到函数的单调性,得到函数的最值,即可得到的正负情况,即可得到函数的单调性.【例2】设函数(Ⅰ)若在点处的切线为,求的值;(Ⅱ)求的单调区间;(Ⅲ)若,求证:在时,>.【解析】(Ⅰ)∵∴,∵在点处的切线为,即在点的切线的斜率为,∴,∴,∴切点为,。

高中数学导数多次求导难题及解法

高中数学导数多次求导难题及解法

高中数学导数多次求导难题及解法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!高中数学:多次求导的难题及解法引言在高中数学的学习过程中,导数是一个基础而重要的概念。

导数大题10种主要题型导学案含详解

导数大题10种主要题型导学案含详解

导数大题10种主要题型(一)预习案题型一:构造函数1.1 “比较法”构造函数例1.已知函数f(x)=e x﹣ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)求证:当x>0时,x2<e x.1.2 “拆分法”构造函数例2.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处的切线为y=e(x﹣1)+2.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>1.1.3 “换元法”构造函数例3.已知函数f(x)=ax2+xlnx(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.(Ⅰ)求实数a的值;(Ⅱ)求证:当n>m>0时,lnn﹣lnm>﹣;(Ⅲ)若存在k∈Z,使得f(x)>k恒成立,求实数k的最大值.1.4 “二次(甚至多次)”构造函数例4.已知函数f(x)=e x+m﹣x3,g(x)=ln(x+1)+2.(1)若曲线y=f(x)在点(0,f(0))处的切线斜率为1,求实数m的值;(2)当m≥1时,证明:f(x)>g(x)﹣x3.题型二:隐零点问题例1.已知函数f(x)=e x﹣ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.例2.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.导数大题10种主要题型(一)预习案答案例1. 解:(1)f ′(x )=e x ﹣a ,∵f ′(0)=﹣1=1﹣a ,∴a =2.∴f (x )=e x ﹣2x ,f ′(x )=e x ﹣2.令f ′(x )=0,解得x =ln 2.当x <ln 2时,f ′(x )<0,函数f (x )单调递减;当x >ln 2时,f ′(x )>0,函数f (x )单调递增.∴当x =ln 2时,函数f (x )取得极小值,为f (ln 2)=2﹣2ln 2,无极大值.(2)证明:方法一(作差法)令g (x )=e x ﹣x 2,则g ′(x )=e x ﹣2x ,由(1)可得:g ′(x )=f (x )≥f (ln 2)>0,∴g (x )在R 上单调递增,因此:x >0时,g (x )>g (0)=1>0,∴x 2<e x .方法二(作商法):即可只需证1)(,2)(<=x h e x x h x例2. 解:(Ⅰ) 函数f (x )的定义域为(0,+∞),, 由题意可得f (1)=2,f '(1)=e ,故a =1,b =2.(Ⅱ)证明:方法一(凹凸反转法)由(Ⅰ)知,,从而f (x )>1等价于,设函数g (x )=xlnx ,则g '(x )=1+lnx ,所以当时,g '(x )<0, 当时,g '(x )>0,故g (x )在单调递减,在单调递增,从而g (x )在(0,+∞)的最小值为.设函数,则h '(x )=e ﹣x (1﹣x ),所以当x ∈(0,1)时,h '(x )>0,当x ∈(1,+∞)时,h '(x )<0,故h (x )在(0,1)单调递增,在(1,+∞)单调递减,从而h (x )在(0,+∞)的最大值为.综上:当x >0时,g (x )>h (x ),即f (x )>1.方法二(放缩法)例3. 解:(Ⅰ)∵f (x )=ax 2+xlnx ,∴f ′(x )=2ax +lnx +1,∵切线与直线x +3y =0垂直,∴切线的斜率为3,∴f ′(1)=3,即2a +1=3,故a =1; (Ⅱ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), ∵f ′(x )在(0,+∞)上单调递增,∴当x >1时,有f ′(x )>f ′(1)=3>0,∴函数f (x )在区间(1,+∞)上单调递增,∵n >m >0,∴,∴f ()>f (1)=1即,∴lnn ﹣lnm >; (Ⅲ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), 令g (x )=2x +lnx +1,x ∈(0,+∞),则,x ∈(0,+∞),由g ′(x )>0对x ∈(0,+∞),恒成立,故g (x )在(0,+∞)上单调递增, 又∵011121)1(222<-=+-=e e e g ,而>0, ∴存在x 0∈,使g (x 0)=0 ∵g (x )在(0,+∞)上单调递增,∴当x ∈(0,x 0)时,g (x )=f ′(x )<0,f (x )在(0,x 0)上单调递减;当x ∈(x 0,+∞)时,g (x )=f ′(x )>0,f (x )在(x 0,+∞)上单调递增;∴f (x )在x =x 0处取得最小值f (x 0)∵f (x )>k 恒成立,所以k <f (x 0)由g (x 0)=0得,2x 0+lnx 0+1=0,所以lnx 0=﹣1﹣2x 0,∴f (x 0)===﹣=﹣,又,∴f (x 0)∈, ∵k ∈Z ,∴k 的最大值为﹣1.例4. 解:(1)函数f (x )=e x +m ﹣x 3的导数为f ′(x )=e x +m ﹣3x 2,在点(0,f (0))处的切线斜率为k =e m =1,解得m =0;(2)证明:f (x )>g (x )﹣x 3即为e x +m >ln (x +1)+2.由y =e x ﹣x ﹣1的导数为y ′=e x ﹣1,当x >0时,y ′>0,函数递增;当x <0时,y ′<0,函数递减.即有x =0处取得极小值,也为最小值0.即有e x ≥x +1,则e x +m ≥x +m +1,由h(x)=x+m+1﹣ln(x+1)﹣2=x+m﹣ln(x+1)﹣1,h′(x)=1﹣,当x>0时,h′(x)>0,h(x)递增;﹣1<x<0时,h′(x)<0,h(x)递减.即有x=0处取得最小值,且为m﹣1,当m≥1时,即有h(x)≥m﹣1≥0,即x+m+1≥ln(x+1)+2,则有f(x)>g(x)﹣x3成立.例5.(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.例6.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(﹣∞,﹣2)∪(﹣2,+∞)时,f'(x)≥0∴f(x)在(﹣∞,﹣2)和(﹣2,+∞)上单调递增∴x>0时,>f(0)=﹣1即(x﹣2)e x+x+2>0(2)g'(x)====,a∈[0,1),由(1)知,f(x)+a单调递增,对任意的a∈[0,1),f(0)+a=a﹣1<0,f(2)+a=a≥0,因此存在唯一的t∈(0,2],使得f(t)+a=0,当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(t)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].导数大题10种主要题型(二)预习案题型三:恒成立、存在性问题3.1 单变量恒成立、存在性问题例1.已知函数f (x )=xlnx ,g (x )=﹣x 2+ax ﹣3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)若存在x 0∈[,e ](e 是自然对数的底数,e =2.71828…),使不等式2f (x 0)≥g (x 0)成立,求实数a 的取值范围.3.2 双变量恒成立、存在性问题极值点偏移问题:由于函数左右增减速率不同导致函数图像失去对称性。

word完整版导数有关知识点总结经典例题及解析近年高考题带答案推荐文档

word完整版导数有关知识点总结经典例题及解析近年高考题带答案推荐文档

导数及其应用【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。

2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。

3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

【知识梳理】一、导数的概念函数y=f(x),如果自变量X在X0处有增量X ,那么函数y相应地有增量y=f( X0+ X)- f (X0),比值X叫做函y f (x o x) f(x o) y数y=f (x)在x o到x o+ x之间的平均变化率,即x= x 。

如果当X 0时,x有极限,我们就说函数y=f(x)在点x o处可导,并把这个极限叫做 f (x)在点x o处的导数,记作f' (x o)或y' x|勺。

r. y .. f (X o X) f (X o) lim — lim即 f (x o) = x o X= x o X 。

说明:yy(1)函数f (x )在点X 0处可导,是指 x 0时, x 有极限。

如果 x 不存在极限,就说函数在点 X 0处不可导,或说无导数。

(2)X 是自变量x 在X 0处的改变量,X 0时,而 y 是函数值的改变量,可以是零。

由导数的定义可知,求函数 y=f (x )在点x o 处的导数的步骤: (1) 求函数的增量 y =f ( x o + X ) — f (x o );y f(X o X ) f(X o )(2)求平均变化率 x =X ;lim —(3) 取极限,得导数f '(x= x o x 。

二、 导数的几何意义函数y=f (x )在点x o 处的导数的几何意义是曲线 y=f (x )在点p (x o , f (x o ))处的切线的斜率。

(完整版)导数难题(含答案)

(完整版)导数难题(含答案)

一、单选题1.已知可导函数()f x 的导函数为()'f x , ()02018f =,若对任意的x R ∈,都有()()'f x f x >,则不等式()2018xf x e <的解集为( )A. ()0,+∞B. 21,e ⎛⎫+∞⎪⎝⎭ C. 21,e ⎛⎫-∞ ⎪⎝⎭D. (),0-∞ 2.定义在R 上的偶函数()f x 的导函数为()f x ',且当()()0,20x xf x f x +'><.则( )A.()()224f e f e >B. ()()931f f >C.()()239f e f e -<D.()()224f e f e -<3.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()210x f f x x ⎛⎫-> ⎪⎝⎭的解集为( )A. ()1,+∞B. (),1-∞C. ()2,+∞D. (),2-∞二、解答题4.已知函数()()2ln f x ax x a R =-+∈ .(1)讨论()f x 的单调性;(2)若存在()()1,,x f x a ∈+∞>-,求a 的取值范围.5.设函数()()222ln f x x ax x x x =-++-. (1)当2a =时,讨论函数()f x 的单调性;(2)若()0,x ∈+∞时, ()0f x >恒成立,求整数a 的最小值.6.已知函数()()()1ln ,af x x a xg x a R x+=-=-∈. 若1a =,求函数()f x 的极值;设函数()()()h x f x g x =-,求函数()h x 的单调区间;若在区间[]()1, 2.71828e e =⋯上不存在...0x ,使得()()00f x g x <成立,求实数a 的取值范围.7.已知函数()()ln ,f x x a x a R =-∈ . (1)当0a =时,求函数()f x 的极小值;(2)若函数()f x 在()0,+∞上为增函数,求a 的取值范围.8.已知函数()()2x f x x ax a e =--. (1)讨论()f x 的单调性;(2)若()0,2a ∈,对于任意[]12,4,0x x ∈-,都有()()2124a f x f x e me --<+恒成立,求m 的取值范围【解析】令()()()()()()0,02018xxf x f x f xg x g x g e e -<'=='=∴因此()2018xf x e < ()()()201800xf xg x g x e⇒<⇒⇒,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e=, ()()0f x f x '+<构造()()x g x e f x =, ()()xf x f x '<构造()()f x g x x=, ()()0xf x f x +<'构造()()g x xf x =等2.D【解析】根据题意,设g (x )=x 2f (x ),其导数g′(x )=(x 2)′f (x )+x 2•f (x )=2xf (x )+x 2•f (x )=x[2f (x )+xf'(x )], 又由当x >0时,有2f (x )+xf'(x )<0成立,则数g′(x )=x[2f (x )+xf'(x )]<0, 则函数g (x )在(0,+∞)上为减函数,若g (x )=x 2f (x ),且f (x )为偶函数,则g (-x )=(-x )2f (-x )=x 2f (x )=g (x ), 即g (x )为偶函数,所以()()2g e g < 即()()224f e f e <因为()f x 为偶函数,所以()()2f 2f -=,所以()()224f e f e -<故选D点睛:本题考查函数的导数与函数单调性的关系,涉及函数的奇偶性与单调性的应用,关键是构造函数g (x )并分析g (x )的单调性与奇偶性. 3.A【解析】令()()f x g x x=,则()()()2xf x f x g x x -=''∵()()f x xf x >'∴()()0xf x f x -<',即()()()20xf x f x g x x'-='<在()0,+∞上恒成立()g x ()0,+∞∵()210x f f x x ⎛⎫->⎪⎝⎭∴()11f f x x x x⎛⎫ ⎪⎝⎭>,即()1g g x x ⎛⎫> ⎪⎝⎭∴1x x<,即1x > 故选A点睛:本题首先需结合已知条件构造函数,然后考查利用导数判断函数的单调性,再由函数的单调性和函数值的大小关系,判断自变量的大小关系. 4.(1)()f x在⎛ ⎝上递增,在⎫+∞⎪⎭上递减.;(2)1,2⎛⎫-∞ ⎪⎝⎭. 【解析】试题分析:(1)对函数()f x 求导,再根据a 分类讨论,即可求出()f x 的单调性;(2)将()f x a >-化简得()21ln 0a x x --<,再根据定义域()1,x ∈+∞,对a 分类讨论, 0a ≤时,满足题意, 0a >时,构造()()21ln g x a x x =--,求出()g x 的单调性,可得()g x 的最大值,即可求出a 的取值范围.试题解析:(1)()21122ax f x a x x-='=-+,当0a ≤时, ()0f x '>,所以()f x 在()0,+∞上递增, 当0a > 时,令()0f x '=,得x =, 令()0f x '>,得x ⎛∈ ⎝;令()0f x '<,得x ⎫∈+∞⎪⎭,所以()f x在⎛ ⎝上递增,在⎫+∞⎪⎭上递减. (2)由()f x a >-,得()21ln 0a x x --<,因为()1,x ∈+∞,所以2ln 0,10x x --, 当0a ≤时, ()21ln 0a x x --<满足题意,当12a ≥时,设()()()22211ln (1),0ax g x a x x x g x x -'=-->=>, 所以()g x 在()1,+∞上递增,所以()()10g x g >=,不合题意, 1⎫⎛所以()()max 10g x g g =<=,则()()1,0x g x ∃∈+∞<, 综上, a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点睛:本题考查函数的单调性及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则.一般涉及求函数单调性时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 5.(1) f (x )递增区间为(0,12),(1,+∞),递减区间为(12,1);(2)1. 【解析】试题分析:(1)求出函数f (x )的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a>x-2(x-1)lnx 恒成立,令g (x )=x-2(x-1)lnx ,根据函数的单调性求出a 的最小值即可.试题解析:(1)由题意可得f (x )的定义域为(0,+∞), 当a=2时,f (x )=﹣x 2+2x+2(x 2﹣x )lnx ,所以f′(x )=﹣2x+2+2(2x ﹣1)lnx+2(x2﹣x )•=(4x ﹣2)lnx , 由f'(x )>0可得:(4x ﹣2)lnx >0,所以或,解得x >1或0<x <;由f'(x )<0可得:(4x ﹣2)lnx <0,所以或,解得:<x <1.综上可知:f (x )递增区间为(0,),(1,+∞),递减区间为(,1). (2)若x∈(0,+∞)时,f (x )>0恒成立,令g (x )=x ﹣2(x ﹣1)lnx ,则a >g (x )max .因为g′(x )=1﹣2(lnx+)=﹣2lnx ﹣1+,所以g'(x )在(0,+∞)上是减函数,且g'(1)>0,g′(2)<0,故存在x 0∈(1,2)使得g (x )在(0,x 0)上为增函数,在(x 0,+∞)上是减函数, ∴x=x 0时,g (x )max =g (x 0)≈0, ∴a>0,又因为a∈Z ,所以a min =1.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f x g x >恒成立,可转化为()()min max f x g x >.6.(1)极小值为()11f =;(2)见解析(3)2121e a e +-≤≤-【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导数符号,确定极值(2)先求导数,求导函数零点,讨论1a +与零大小,最后根据导数符号确定函数单调性(3)正难则反,先求存在一点0x ,使得()()00f x g x <成立时实数a 的取值范围,由存在性问题转化为对应函数最值问题,结合(2)单调性可得实数a 的取值范围,最后取补集得结果试题解析:解:(I )当1a =时, ()()1ln '01x f x x x f x x x-=-⇒=>⇒>,列极值分布表 ()f x ∴在(0,1)上递减,在1+∞(,)上递增,∴()f x 的极小值为()11f =; (II )()1ln a h x x a x x+=-+ ()()()211'x x a h x x ⎡⎤+-+⎣⎦∴=①当1a ≤-时, ()()'0,h x h x >∴在0+∞(,)上递增; ②当1a >-时, ()'01h x x a >⇒>+,∴()h x 在0,1a +()上递减,在()1,a ++∞上递增; (III )先解区间[]1,e 上存在一点0x ,使得()()00f x g x <成立()()()0h x f x g x ⇔=-<[]1,e ⇔[]1,x e ∈()0h x <①当1a ≤-时, ()h x 在[]1,e 上递增, ()min 1202h h a a ∴==+<⇒<- ∴2a <- ②当1a >-时, ()h x 在0,1a +()上递减,在()1,a ++∞上递增 当10a -<≤时, ()h x 在[]1,e 上递增, ()min 1202h h a a ∴==+<⇒<- a ∴无解 当1a e ≥-时, ()h x 在[]1,e 上递减()2min1101a e h h e e a a e e ++∴==-+⇒-,∴211e a e +>-;当01a e <<-时, ()h x 在[]1,1a +上递减,在()1,a e +上递增 ()()min 12ln 1h h a a a a ∴=+=+-+令()()()2ln 121ln 1a a a F a a aa +-+==+-+,则()221'01F a a a=--<+ ()F a ∴在()0,1e -递减, ()()2101F a F e e ∴>-=>-, ()0F a ∴<无解, 即()min 2ln 10h a a a =+-+<无解;综上:存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为: 2a <-或211e a e +>-.所以不存在一点0x ,使得()()00f x g x <成立,实数a 的取值范围为.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.7.(1)1e-(2)21,e ⎛⎤-∞-⎥⎝⎦【解析】试题分析:(1)当0a =时,得出函数的解析式,求导数,令()'0f x =,解出x 的值,利用导数值的正负来求其单调区间进而求得极小值;(2)求出()'f x ,由于函数()f x 在()0,+∞是增函数,转化为()'0f x ≥对任意()0,x ∈+∞恒成立,分类参数,利用导数()ln g x x x x =+的最小值,即可求实数a 的取值范围. 试题解析:(1)定义域为()0,+∞.当0a =时, ()ln f x x x =, ()'ln 1f x x =+.当10,x e ⎛⎫∈ ⎪⎝⎭时, ()'0f x <, ()f x 为减函数;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()'0f x >, ()f x 为增函数.所以函数()f x 的极小值是11f e e⎛⎫=- ⎪⎝⎭. (2)由已知得()'ln x af x x x-=+. 因为函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立, 由()'0f x ≥得ln 0x ax x-+≥,即ln x x x a +≥对任意的()0,x ∈+∞恒成立. 设()ln g x x x x =+,要使“ln x x x a +≥对任意()0,x ∈+∞恒成立”,只要()min a g x ≤. 因为()'ln 2g x x =+,令()'0g x =,得21x e =. 当210,x e ⎛⎫∈ ⎪⎝⎭时, ()'0g x <, ()g x 为减函数; 当21,x e ⎛⎫∈+∞⎪⎝⎭时, ()'0g x >, ()g x 为增函数. 所以()g x 的最小值是2211g ee ⎛⎫=-⎪⎝⎭. 故函数()f x 在()0,+∞是增函数时,实数a 的取值范围是21,e ⎛⎤-∞-⎥⎝⎦. 点睛:本题主要考查了导数在函数中的综合应用,解答中涉及到利用导数求解函数的单调区间,利用导数求解函数的极值与最值等知识点的综合应用,这属于教学的重点和难点,应熟练掌握,试题有一定的综合性,属于中档试题,解答中把函数()f x 在()0,+∞是增函数,所以()'0f x ≥对任意()0,x ∈+∞恒成立是解答的关键.8.(1)见解析;(2)231e m e+>. 【解析】试题分析:(1)求出()'f x ,分三种情况讨论,分别令()'0f x >求得x 的范围,可得函数()f x 增区间, ()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)由(1)知, 所以()()()2max 24f x f a e -=-=+,()()()443+160f a e a f --=>-=,()()2a -()222a ---()21a m e ->+.. 立,利用导数研究函数的单调性,求出()21a a e e -+的最大值,即可得结果. 试题解析:(1)()()()2xf x x x a e '=+- ①若2a <-,则()f x 在(),a -∞, ()2,-+∞上单调递增,在(),2a -上单调递减; ②2a =-,则(),-∞+∞在上单调递增;③若2a >-,则()f x 在(),2-∞-, (),a +∞上单调递增,在()2,a -上单调递减;(2)由1知,当()0,2a ∈时, ()f x 在()4,2--上单调递增,在()2,0-单调递减, 所以()()()2max 24f x f a e -=-=+, ()()()443+160f a e a f --=>-=,故()()()()12max 20f x f x f f -=--= ()()222414a e a a e e ---++=++, ()()2124a f x f x e me --<+恒成立,即()222144a a e e e me ---++<+恒成立 即()21a a m e e->+恒成立, 令()(),0,2x x g x x e =∈, 易知()g x 在其定义域上有最大值()11g e=, 所以231e m e +>。

高考数学 考纲解读与热点难点突破 专题05 导数的热点问题教学案 理(含解析)-人教版高三全册数学教

高考数学 考纲解读与热点难点突破 专题05 导数的热点问题教学案 理(含解析)-人教版高三全册数学教

导数的热点问题【2019年高考考纲解读】导数还经常作为高考的压轴题,能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.【题型示例】题型一、利用导数证明不等式用导数证明不等式是导数的应用之一,可以间接考查用导数判定函数的单调性或求函数的最值,以及构造函数解题的能力.例1、已知函数f (x )=a e 2x -a e x -x e x(a ≥0,e =2.718…,e 为自然对数的底数),若f (x )≥0对于x ∈R 恒成立.(1)某某数a 的值;(2)证明:f (x )存在唯一极大值点x 0,且ln 22e +14e 2≤f (x 0)<14.(2)证明 当a =1时,f (x )=e 2x -e x -x e x, f ′(x )=e x (2e x -x -2).令h (x )=2e x -x -2,则h ′(x )=2e x-1,∴当x ∈(-∞,-ln 2)时,h ′(x )<0,h (x )在(-∞,-ln 2)上为减函数;当x ∈(-ln 2,+∞)时,h ′(x )>0,h (x )在(-ln 2,+∞)上为增函数,∵h (-1)<0,h (-2)>0,∴在(-2,-1)上存在x =x 0满足h (x 0)=0,∵h (x )在(-∞,-ln 2)上为减函数,∴当x ∈(-∞,x 0)时,h (x )>0,即f ′(x )>0,f (x )在(-∞,x 0)上为增函数,当x ∈(x 0,-ln 2)时,h (x )<0,即f ′(x )<0,f (x )在(x 0,-ln 2)上为减函数,当x ∈(-ln 2,0)时,h (x )<h (0)=0,即f ′(x )<0,f (x )在(-ln 2,0)上为减函数,当x ∈(0,+∞)时,h (x )>h (0)=0,即f ′(x )>0,f (x )在(0,+∞)上为增函数,∴f (x )在(-ln 2,+∞)上只有一个极小值点0,综上可知,f (x )存在唯一的极大值点x 0,且x 0∈(-2,-1).∵h (x 0)=0,∴20e x -x 0-2=0,∴f (x 0)=02e x -0e x -x 00e x =⎝ ⎛⎭⎪⎫x 0+222-⎝ ⎛⎭⎪⎫x 0+22(x 0+1)=-x 20+2x 04,x 0∈(-2,-1), ∵当x ∈(-2,-1)时,-x 2+2x 4<14,∴f (x 0)<14; ∵ln 12e ∈(-2,-1), ∴f (x 0)≥f ⎝ ⎛⎭⎪⎫ln 12e =ln 22e +14e 2; 综上知ln 22e +14e 2≤f (x 0)<14. 【方法技巧】用导数证明不等式的方法(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],则f (a )≤f (x )≤f (b );②对∀x 1,x 2∈[a ,b ],且x 1<x 2,则f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个X 围D 内有最大值M (或最小值m ),则对∀x ∈D ,有f (x )≤M (或f (x )≥m ).(3)证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.【变式探究】已知函数f (x )=ax -ln x .(1)讨论f (x )的单调性;(2)若a ∈⎝⎛⎦⎥⎤-∞,-1e 2,求证:f (x )≥2ax -x e ax -1. (1)解 由题意得f ′(x )=a -1x =ax -1x(x >0), ①当a ≤0时,则f ′(x )<0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递减.②当a >0时,则当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )>0,f (x )单调递增, 当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )<0,f (x )单调递减. 综上当a ≤0时,f (x )在(0,+∞)上单调递减;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增. (2)证明 令g (x )=f (x )-2ax +x eax -1 =x e ax -1-ax -ln x ,则g ′(x )=e ax -1+ax e ax -1-a -1x=(ax +1)⎝⎛⎭⎪⎫e ax -1-1x =ax +1x e ax -1-1x (x >0), 设r (x )=x e ax -1-1(x >0),则r ′(x )=(1+ax )eax -1(x >0), ∵e ax -1>0,∴当x ∈⎝ ⎛⎭⎪⎫0,-1a 时,r ′(x )>0,r (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫-1a ,+∞时,r ′(x )<0,r (x )单调递减. ∴r (x )max =r ⎝ ⎛⎭⎪⎫-1a =-⎝ ⎛⎭⎪⎫1a e 2+1≤0⎝⎛⎭⎪⎫a ≤-1e 2, ∴当0<x <-1a 时,g ′(x )<0,当x >-1a时,g ′(x )>0, ∴g (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递减,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递增,∴g (x )min =g ⎝ ⎛⎭⎪⎫-1a , 设t =-1a∈(]0,e 2, 则g ⎝ ⎛⎭⎪⎫-1a =h (t )=t e 2-ln t +1(0<t ≤e 2), h ′(t )=1e 2-1t ≤0,h (t )在(]0,e 2上单调递减, ∴h (t )≥h (e 2)=0;∴g (x )≥0,故f (x )≥2ax -x e ax -1.题型二 利用导数讨论方程根的个数方程的根、函数的零点、函数图象与x 轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的走势,通过数形结合思想直观求解.例2、(2018·全国Ⅱ)已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)上只有一个零点,求a .(1)证明 当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)·e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)解 设函数h (x )=1-ax 2e -x . f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h (2)=1-4a e 2是h (x )在(0,+∞)上的最小值. ①若h (2)>0,即a <e 24,h (x )在(0,+∞)上没有零点.②若h (2)=0,即a =e 24,h (x )在(0,+∞)上只有一个零点. ③若h (2)<0,即a >e 24, 因为h (0)=1,所以h (x )在(0,2)上有一个零点;由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3e 2a 2>1-16a32a 4=1-1a>0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e 24. 【感悟提升】(1)函数y =f (x )-k 的零点问题,可转化为函数y =f (x )和直线y =k 的交点问题.(2)研究函数y =f (x )的值域,不仅要看最值,而且要观察随x 值的变化y 值的变化趋势.【变式探究】设函数f (x )=e x -2a -ln(x +a ),a ∈R,e 为自然对数的底数.(1)若a >0,且函数f (x )在区间[0,+∞)内单调递增,某某数a 的取值X 围;(2)若0<a <23,试判断函数f (x )的零点个数.(2)∵0<a <23,f ′(x )=e x -1x +a(x >-a ), 记h (x )=f ′(x ),则h ′(x )=e x +1x +a 2>0,知f ′(x )在区间()-a ,+∞内单调递增.又∵f ′(0)=1-1a <0,f ′(1)=e -1a +1>0, ∴f ′(x )在区间()-a ,+∞内存在唯一的零点x 0,即f ′(x 0)=0e x -1x 0+a =0, 于是0e x =1x 0+a,x 0=-ln ()x 0+a . 当-a <x <x 0时,f ′(x )<0,f (x )单调递减;当x >x 0时,f ′(x )>0,f (x )单调递增.∴f (x )min =f (x 0)=0e x -2a -ln ()x 0+a=1x 0+a -2a +x 0=x 0+a +1x 0+a -3a ≥2-3a , 当且仅当x 0+a =1时,取等号.由0<a <23,得2-3a >0, ∴f (x )min =f (x 0)>0,即函数f (x )没有零点.题型三 利用导数解决生活中的优化问题生活中的实际问题受某些主要变量的制约,解决生活中的优化问题就是把制约问题的主要变量找出来,建立目标问题即关于这个变量的函数,然后通过研究这个函数的性质,从而找到变量在什么情况下可以达到目标最优.例3、罗源滨海新城建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =96米时,需新建多少个桥墩才能使余下工程的费用y 最小?解 (1)设需新建n 个桥墩,则(n +1)x =m ,即n =m x-1.所以y =f (x )=32n +(n +1)(2+x )x =32⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=m ⎝ ⎛⎭⎪⎫32x +x +2m -32(0<x <m ). (2)当m =96时,f (x )=96⎝ ⎛⎭⎪⎫32x +x +160,则f ′(x )=96⎝ ⎛⎭⎪⎫12x -32x 2=48x2(32x -64). 令f ′(x )=0,得32x =64,所以x =16.当0<x <16时,f ′(x )<0,f (x )在区间(0,16)内为减函数;当16<x <96时,f ′(x )>0,f (x )在区间(16,96)内为增函数,所以f (x )在x =16处取得最小值,此时n =9616-1=5. 答 需新建5个桥墩才能使余下工程的费用y 最小.【感悟提升】利用导数解决生活中的优化问题的一般步骤(1)建模:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ).(2)求导:求函数的导数f ′(x ),解方程f ′(x )=0.(3)求最值:比较函数在区间端点和使f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值.(4)作答:回归实际问题作答.【变式探究】图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y .(1)写出y 关于x 的函数表达式,并指出x 的取值X 围;(2)求当x 取何值时,凹槽的强度最大.(2)依题意,得T =AB ·S =2x ⎝ ⎛⎭⎪⎫2xy -12πx 2 =8x 2-(4+3π)x 3.令T ′=16x -3(4+3π)x 2=0,得x =0或x =169π+12. 因为0<169π+12<4π+4, 所以当0<x <169π+12时,T ′>0,T 为关于x 的增函数; 当169π+12<x <44+π时,T ′<0,T 为关于x 的减函数, 所以当x =169π+12时凹槽的强度最大.。

专题3.1 导数的概念及运算(三大重难点题型)(精讲)原卷版

专题3.1 导数的概念及运算(三大重难点题型)(精讲)原卷版

专题3.1 导数的概念及运算目录一、考纲要求1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数;5.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;6.了解微积分基本定理的含义。

二、考点网络三、考情分析四、考点梳理考点1.导数的概念函数()f x 在0x x =处瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与 00()()f x x f x y x x+∆-∆=∆∆无限接近; ③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 考点2.基本初等函数的导数公式考点3.导数的运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±;(2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 考点4.复合函数的导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:重难点题型(一) 导数的定义例1.(23-24高二下·四川遂宁·阶段练习)设()f x 为可导函数,且满足0(3)lim 3(33)x f x f x∆→+∆-=∆,则曲线()y f x =在点(3,(3))f 处的切线的斜率是( )A .1B .3C .6D .9例2.(23-24高二下·江西萍乡·期中)已知甲、乙两个小区在[]0,t 这段时间内的家庭厨余垃圾的分出量Q 与时间t 的关系如图所示.给出下列四个结论,其中正确结论的个数为( )①在[]12,t t 这段时间内,甲小区比乙小区的分出量增长得慢; ②在[]23,t t 这段时间内,乙小区比甲小区的分出量增长得快; ③在2t 时刻,甲小区的分出量比乙小区的分出量增长得慢; ④乙小区在2t 时刻的分出量比3t 时刻的分出量增长得快. A .1 B .2C .3D .4例3.(24-25高三上·吉林长春·开学考试)数()f x 在R 上可导,若()23f '=,则()()232limx f x f x x∆→+∆--∆=∆ .【变式训练1】.(23-24高二上·江苏南京·期末)若0(22)(2)lim 62x f x f x∆→+∆-=∆,则()2f '=( )A .32B .6C .3D .3-【变式训练2】.(24-25高三·上海·课堂例题)如图,函数y =f (x )图像在点P 处的切线方程是8y x =-+,则()()55limh f h f h→+-= .【变式训练3】.(23-24高二下·山东菏泽·期中)若函数()f x 在0x x =处可导,则()()000lim4h f x h f x h h→+--=( ) A .()014f x ' B .()012f x 'C .()0f x 'D .()02f x '重难点题型(二) 导数的运算例4.(2024高三·全国·专题练习)已知()()2024ln f x x x =+,若()0f x '=2025,则0x 等于( ) A .2e B .1 C .ln2 D .e例5.(23-24高二下·福建福州·期末)已知函数()()21f x x x f '=-⋅,则()2f '=( )A .0B .2C .3D .4例6.(2024·四川绵阳·模拟预测)已知函数()sin cos f x x x =-,且()()003f x f x =',则0sin 21cos 2x x =- .【变式训练4】.(2024·山西晋中·模拟预测)已知函数()()()()()()()234562222222f x x x x x x x x =------,则()0f '=( ) A .202 B .212 C .222 D .232【变式训练5】.(2024·河南信阳·三模)动点P 在函数ln(4)ln y x x =--的图像上,以P 为切点的切线的倾斜角取值范围是( ) A .π0,4⎡⎤⎢⎥⎣⎦B .π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭C .π3π,24⎤⎛ ⎥⎝⎦D .3π,π4⎡⎫⎪⎢⎣⎭【变式训练6】.(2024·江西南昌·三模)设函数()f x 的导数为()f x ',且()f x =则(1)f '= .【变式训练7】.(2024·广西柳州·模拟预测)已知()ln f x x x =,则()f x 在点()()e,e f 处的切线斜率是 .重难点题型(三)导数的几何意义【解题方法总结】求切线方程问题的两种类型及方法(1)、求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程:点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0)..(2)、求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程:切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条,解决问题的关键是设切点,利用“待定切点法”,即: ①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);①根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1),求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程. 考向1、求曲线的切线方程例7.(2023·陕西榆林·一模)曲线()e xf x x =-在0x =处的切线方程为 .例8.(2024·四川宜宾·三模)若曲线e x y a =+的一条切线方程是1y x =-,则a =( )A .2-B .1C .1-D .e例9.(2023·北京东城·一模)过坐标原点作曲线2e 1x y -=+的切线,则切线方程为( )A .y x =B .2y x =C .21e y x =D .e y x =例10.(2024·贵州六盘水·三模)已知曲线23ln y x x =-的一条切线方程为y x m =-+,则实数m =( )A .−2B .1-C .1D .2【变式训练8】.(2024·湖北·模拟预测)曲线e x y =在点()0,2P 处的切线为l ,则l 在x 轴上的截距是 .【变式训练9】.(2024·陕西安康·模拟预测)若函数()3221f x x x =++,则()f x 在点()1,2P -处的切线方程为( )A .10x y +-=B .30x y ++=C .250x y -+=D .230x y +-=【变式训练10】.(2024·天津和平·二模)过点()0,0作曲线()2xy x =∈R 的切线,则切点的坐标为 .【变式训练11】.(2024·山西吕梁·二模)若曲线()ln f x x =在点()00,P x y 处的切线过原点()0,0O ,则0x = .考向2、公切线例11.(2024·陕西榆林·模拟预测)已知曲线()2f x x =与()()()ln 0g x ax a =>有公共切线,则实数a 的最大值为 .例12.(2024·广东茂名·一模)曲线ln y x =与曲线22y x ax =+有公切线,则实数a 的取值范围是( )A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .1,2⎡⎫+∞⎪⎢⎣⎭【变式训练12】.(2023·陕西宝鸡·模拟预测)已知曲线()e xf x x =+在点()()0,0f 处的切线与曲线()ln 1y x a =-+相切,则a = .【变式训练13】.(2023·四川绵阳·模拟预测)若函数()2f x x ax =-与函数()ln 2g x x x =+的图象在公共点处有相同的切线,则实数a =( )A .2-B .1-C .eD .2e -考向3、切线的条数问题例13.(2023·河南·三模)已知函数()3f x x x a =-+的图像关于原点对称,则与曲线()y f x =和214y x =+均相切的直线l 有( )A .1条B .2条C .3条D .4条例14.(2023·山东烟台·三模)若曲线1(0)y kx k -=<与曲线e x y =有两条公切线,则k 的值为 .【变式训练14】.(2023·湖南衡阳·模拟预测)若曲线()(0)kf x k x=<与()e x g x =有三条公切线,则k 的取值范围为( )A .1,0e ⎛⎫- ⎪⎝⎭B .1,e⎛⎫-∞- ⎪⎝⎭C .2,0e ⎛⎫- ⎪⎝⎭D .2,e ⎛⎫-∞- ⎪⎝⎭【变式训练15】.(2023·河北邯郸·三模)若曲线e x y =与圆22()2x a y -+=有三条公切线,则a 的取值范围是 .考向4、已知切线方程求参数例15.(2018·江西·一模)设e 表示自然对数的底数,函数222e e 5()2424x x a f x x ax a =+--+,当()f x 取得最小值时,则实数a 的值为 .例16.(2015·吉林·二模)已知函数()2e xf x a =(0,e a >为自然对数的底数)的图像与直线0x =的交点为M ,函数()lnx g x a =()0a >的图像与直线0y =的交点为N ,MN 恰好是点M 到函数()ln xg x a=()0a >图像上任意一点的线段长的最小值,则实数a 的值是【变式训练16】.(2020·重庆·模拟预测)若曲线y =ax +2cos x 上存在两条切线相互垂直,则实数a 的取值范围是( )A .[√3]B .[﹣1,1]C .(﹣∞,1]D .[1]【变式训练17】.(19-20高三上·四川广安·阶段练习)已知直线2y x =与曲线()()ln f x ax b =+相切,则ab 的最大值为A .4eB .2eC .eD .2e考向5、平行、垂直与重合问题例17.(2023·四川凉山·一模)函数()21ln 2f x x a x =+在区间()1,2的图象上存在两条相互垂直的切线,则a 的取值范围为( )A .()2,1-B .()2,1--C .()2,0-D .()3,2--例18.(2021·四川·三模)切x 轴于点A 、对称轴平行于y 轴的抛物线和曲线y =B ,并且两曲线在B 点的切线相互垂直,A 、B 两点的横坐标分别为1、2,k 和c 是正的常数,则k 的值为 .【变式训练18】.(2021·浙江杭州·模拟预测)函数()sin f x ax x =+的图象上存在两条相互垂直的切线,则实数a 的取值范围是( )A .{}0,1B .{}0C .[)0,1D .[)1,+∞【变式训练19】.(2019·江苏泰州·一模)已知函数31()4f x x x=-+,若直线1l ,2l 是函数()y f x =图象的两条平行的切线,则直线1l ,2l 之间的距离的最大值是 .考向6、最值问题例19.(2024·四川眉山·三模)若关于x 的不等式()32ln 10x ax bx a ≤--≠恒成立,则b a的最大值为( )A .21e B .22e C .1eD .2e例20.(22-23高三上·河北邢台·阶段练习)二次函数222y x x -=+与()20,0y x ax b a b =-++>>在它们的一个交点处切线互相垂直,则24b a b+的最小值为 .例21.(2024·江西新余·模拟预测)(多选题)已知函数()ln f x x ax b =--,则下列说法正确的是:( ).A .若1,1a b ==,则()f x 的最大值为2-B .若1a =-,则函数()xf x 始终有且仅有1个极值点且为极小值点C .若1ab =,则()f x 始终有且仅有1个零点D .若()0f x ≤恒成立,则a b +的最小值为0【变式训练20】.(2024·广东江门·二模)若曲线21:C y x =与曲线2:e (0)xC y a a =>存在公切线,则a 的最大值 .【变式训练21】.(2024·福建泉州·模拟预测)若曲线2y x 与()e 0xy t t =≠恰有两条公切线,则t 的取值范围为( )A .240,e ⎛⎫⎪⎝⎭B .24,e ∞⎛⎫+ ⎪⎝⎭C .()24,0,e ∞∞⎛⎫-⋃+ ⎪⎝⎭D .()24,0e ∞⎧⎫-⋃⎨⎬⎩⎭【变式训练22】.(23-24高二下·河南周口·阶段练习)下列命题正确的有( )A .已知函数()f x 在R 上可导,若()12f '=,则()()121lim2x f x f x→+-=B .已知函数()()ln 21f x x =+,若()01f x '=,则012x =C .若函数()32113f x x x =-++,则()f x 的极大值为1D .设函数()f x 的导函数为f ′(x ),且()()232ln f x x xf x '=++,则()924f '=-1.(2024·全国·高考真题)设函数()2e 2sin 1x xf x x +=+,则曲线y =f (x )在点(0,1)处的切线与两坐标轴所围成的三角形的面积为( )A .16B .13C .12D .232.(2023·全国·高考真题)曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为( )A .e 4y x =B .e 2y x =C .e e 44y x =+ D .e 3e24y x =+ 3.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<4.(2020·全国·高考真题)若直线l 与曲线y x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +125.(2020·全国·高考真题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+6.(2024·全国·高考真题)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a = .7.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为 , . 8.(2022·全国·高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是 .9.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是 . 10.(2021·全国·高考真题)曲线2x 1y x 2-=+在点()1,3--处的切线方程为 . 11.(2024·天津·高考真题)设函数()ln f x x x =. (1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥在()0,x ∈+∞时恒成立,求a 的值;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-. 12.(2024·全国·高考真题)已知函数3()e x f x ax a =--. (1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程; (2)若()f x 有极小值,且极小值小于0,求a 的取值范围. 13.(2023·全国·高考真题)已知函数()()1ln 1f x a x x ⎛⎫=++ ⎪⎝⎭.(1)当1a =-时,求曲线y =f (x )在点()()1,1f 处的切线方程. (2)若函数()f x 在(0,+∞)单调递增,求a 的取值范围. 14.(2023·天津·高考真题)已知函数()()11ln 12f x x x ⎛⎫=++ ⎪⎝⎭.(1)求曲线y =f (x )在2x =处的切线斜率; (2)求证:当0x >时,()1f x >; (3)证明:()51ln !ln 162n n n n ⎛⎫<-++≤ ⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单选题1 •已知可导函数f x的导函数为f' x , f 0 =2018,若对任意的R,都有f X f ' x , 则不等式f x :: 2018e x的解集为()A. 0, ::B. i | c. D. -:: ,02 丿I e丿2•定义在R上的偶函数f x的导函数为「x,且当x・0,x「x 2f x :: 0.则()A.鼻B. 9f 3 f 1C.—:::字D.鼻:::字4 e 9 e 4 e2 (1 \3 •已知f x为定义在0「:上的可导函数,且f x xf ' x恒成立,则不等式x2f — -f X - 0\ x的解集为()A. 1, ::B. :—,1C. 2, ::D. -::,2二、解答题24.已知函数f x 一-ax • Inx a R .(1)讨论f x的单调性;(2)若存在x三[1, = , f x -a,求a的取值范围5.设函数f x - -x2 ax 2 x2 -X Inx .(1)当a = 2时,讨论函数f x的单调性;(2)若x 0,亠「j时,f x ] - 0恒成立,求整数a的最小值.1 +a6 .已知函数f x 二x—al nx, g x a・ R •x 若a =1,求函数f x的极值;设函数hx=fx-gx,求函数h x的单调区间;若在区间1,e】(e =2.71828 一一)上不存在x°,使得f(x o )vg(xo )成立,求实数7.已知函数f x 二x—a Inx,a R .(1)当a = 0时,求函数f x 的极小值;(2)若函数f x在0,上为增函数,求a的取值范围a的取值范围&已知函数f X = X2「ax -a e x.(1)讨论f X的单调性;(2)若a己(0,2),对于任意x^x2^[-4,0],都有f (捲)—f (x2j c4e*+me a恒成立,求m的取值范围参考答1. Af(X ) , f '(x)—f (x)【解析】令g X —. g x x0,g 0 =2018e e因此f x ::2018h x= f二::2018= g x g 0 = x. 0,选A.e点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造•构造f (x)辅助函数常根据导数法则进行:如f x :: f x构造g x —,f x f x : 0构造ef (x )g x 二e f x,xf x f x 构造g x ,xf x f x 0 构造g x = xf x 等x2. D【解析】根据题意,设g ( x)=x2f(X),其导数g' (x) = (x2) ' f x) +x2?f (x) =2xf (x) +x2?f (x) =x[2f (x) +xf ( x)],又由当x > 0 时,有2f (x) +xf (x) <0 成立,则数g' (x) =x[2f (x) +xf ( x) ]<0 ,则函数g (x )在(0 , + g)上为减函数,若g (x)=x2f (x),且f (x)为偶函数,贝U g (-x ) = (-x ) 2f (-x ) =x 2f (x) =g (x),即g (x)为偶函数,所以g e ::g 2 即丄_匚:::二2因为f x为偶函数,所以f -2二f 2 ,4 e所以丄亘::-4 e故选D点睛:本题考查函数的导数与函数单调性的关系,涉及函数的奇偶性与单调性的应用,关键是构造函数g (x)并分析g (x)的单调性与奇偶性.3. A【解析】令g x二鼻,则g'x」x ;f xx xf x xf x••• xf x - f x : 0 ,即x 2 0 在0,=上恒成立x••• g x在0, 上单调递减f;•- - ■■■ x,即x 1 x1当0"葛时,令g x 0,得x,令g x :0,得1, -2a,故选A点睛:本题首先需结合已知条件构造函数,然后考查利用导数判断函数的单调性,再由函数的单调性和函数值的大小关系,判断自变量的大小关系•4. (1) f (X )在i上递增,在'一二,址上递减• ;(2),-I辰丿I辰丿I 2丿【解析】试题分析:(1 )对函数f X求导,再根据a分类讨论,即可求出 f X的单调性;(2 )将f 化简得a x2 -1 ?-l nx:::O,再根据定义域x^[1,亠「j,对a分类讨论,a_0时,满足题意,2a 0时,构造g x]=a x -1 -lnx,求出g x的单调性,可得g x的最大值,即可求出a的取值范围•试题解析:(1) f X —2a 1」—2a x2,x X当a乞0时,「X・0,所以f x在0「:上递增,令f'(x)>0,得x^ I 0, 1 i;令f'(x)c0 ,得/ ,邑,I 72a 丿&2a 丿所以f(x 在 ' 0-L〕上递增,在|丄,丘上递减•-、2a . -、2a(2)由f x -a,得a x2 -1 —lnx ::: 0,因为〔1,匸:,所以一1 nx 0,x2 -1. 0,当a岂0时,a x2 -1 Tnx ::: 0满足题意,1 2 t 2 ax2—1当a --时,设g x ;=a x -1 -lnx(x 1), g x 0 ,x所以g x在1,=上递增,所以g x g 1 =0,不合题意,当a 0时,令 f x =0,综上,a 的取值范围是-::,1 . I 2丿点睛:本题考查函数的单调性及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题 .处理导数大题时,注意分层得分的原则.一般涉及求函数单调性时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数 问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会1 i 5. (1) f (X )递增区间为(0,1) , (1 , +X ),递减区间为(-,1); (2)1. 2 2【解析】试题分析:(1 )求出函数f ( x )的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a>x-2 (x-1 ) Inx 恒成立,令g (x ) =x-2 (x-1 ) Inx ,根据函数的单调性求出 a 的最小值即可. 试题解析:(1 )由题意可得f (x )的定义域为(0, +8),当 a=2 时,f (x ) = - x 2+2x+2 (x 2 - x ) Inx ,所以 f ' (x ) = - 2x+2+2 (2x - 1 ) Inx+2 (x2 - x ) ?> = (4x - 2 ) Inx ,由 f ( x )> 0 可得:(4x - 2 ) Inx > 0 , r 4x-2>0 「奴 所以或,解得x > 1或0 v x v 戈;由 f ( x )v 0 可得:(4x - 2 ) Inx v 0 ,所以gxmax=g .g1=0,则 X 1 W 0,解得:2 < x v 1 .综上可知:f (X)递增区间为(0,2),(1 , +m),递减区间为(2,1 ).(2 )若x €( 0 , +R)时,f (x)> 0 恒成立,即 a > x - 2 (x - 1 ) lnx 恒成立,令g ( x) =x - 2 (x - 1 ) lnx,则a > g ( x) max因为g' (x) =1 - 2 (Inx+ ■ ) = - 2lnx - 1+ :•:,所以g' (x)在(0 , +s)上是减函数,且g' (1 )> 0 , g' ( 2 ) v 0 ,故存在x0 €( 1 , 2 )使得g (x)在(0 , x°)上为增函数,在(x°, + 上是减函数, 二x=x0 时,g ( x) max =g ( X0 ) ~0,••• a> 0 ,又因为a € Z,所以a min =1 .点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若f x 0就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为 f x . 0 ,min若f x <0恒成立,转化为f x max <0;(3)若f X g x恒成立,可转化为f X min g x max.e2+16. (1)极小值为f 1 1-1 ; (2)见解析(3) -2乞a乞eT【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导数符号,确定极值( 2)先求导数,求导函数零点,讨论1 a与零大小,最后根据导数符号确定函数单调性( 3)正难则反,先求存在一点x0,使得f X o g X o 成立时实数a 的取值范围,由存在性问题转化为对应函数最值问题,结合(2)单调性可得实数a 的取值范围,最后取补集得结果_ X —1试题解析:解:(I )当a =1时,f x = x -1nx= f' x 二 ----------------- • 0= x 1,列极值分布表x\ f (x )在(0,1 )上递减,在(1+珀)上递增,••• f(x )的极小值为f (1)=1 ;1 +a(x +1)「x _(1(11 ) h x 二 x -alnxh ' x— xx① 当a _ -1时,h' x j >0,. h x 在(0,:)上递增;② 当 a -1 时,h' x ]x 1a ,•- h x 在(0,1 a )上递减,在 1 a^:上递增;(111)先解区间1,e 1上存在一点 冷,使得f X 。

::: g X 。

成立h x 二 f x -g x ::: 0在[1,el 上有解二当 x • [1,e 1 时,h x min ": 0由(II )知①当a 乞-1时, h x 在l1,el 上递增,.h min =h 1 A 2 a :: 0= a -2• a :_2②当a -1时, h x 在(0,1 - a )上递减, 在1 • a,=上递增当 -1 :: a 一0时,h x 在1,e 1上递增,h min =h 11=2 a 0= a 一2-a 无解当a _e-1时,h x 在1,e 1上递减当0 ::: a ::: e -1时,h x 在1,1 a 1上递减,在1 a,e 上递增h min 二 h 1 a =2 a -aln 1 ahmin二 h e 二 e 「ae 2 1 e -1当 x J o,—I e 丿时, f' x :: 0 , f x 为减函数;f ' x 0 , f x 为增函数.即 h m in = 2 • a -aln 1 a ::: 0 无解;综上:存在一点x o ,使得f x o < g x o 成立,实数a 的取值范围为a 「2或a 〜所以不存在一点x 0,使得f x 0 ::: g x 0成立,实数a 的取值范围为点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的 问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数 最值问题.【解析】试题分析:(1 )当a = 0时,得出函数的解析式,求导数,令 f ' x =0,解出x 的值,禾U 用导数值的正负来求其单调区间进而求得极小值;(2)求出f' x ,由于函数f x 在0,= 是增函数,转化为 f' x -0对任意恒成立, 分类参数,利用导数 g x =xlnx x 的最小值,即可求实数 a 的取值范围.试题解析: (1)定义域为0,=.当 a = 0时,f x 二xlnx, f' x = Inx 1 .1令 f ' x 〔 = 0,得 x .a_a,、__a2_1a(2)由已知得f' x Jnx •匸旦.x因为函数f x 在0, v 是增函数,所以f' X _0对任意x 0,= 恒成立,x — a由f' x .亠0得Inx0,即xlnx x - a 对任意的[ 0, •::恒成立.x设g (x ) = xlnx +x ,要使"xlnx + x Ha 对任意x 乏(0,母y 恒成立”,只要 a 乞g(x )min •1 因为 g ' x nx • 2,令 g' x ;=0,得 x =右. e当x 1, =: i 时,g' x 0, g x 为增函数. e所以g x 的最小值是g i 1二-+ .le 丿 e故函数f x 在0,匸:是增函数时,实数 a 的取值范围是 -二,.I e 」点睛:本题主要考查了导数在函数中的综合应用,解答中涉及到利用导数求解函数的单调区间,禾U 用导 数求解函数的极值与最值等知识点的综合应用,这属于教学的重点和难点,应熟练掌握,试题有一定的 综合性,属于中档试题,解答中把函数 f x 在0, •二是增函数,所以f' x -0对任意0,二:恒成立是解答的关键.所以函数f x 的极小值是b-eg' x : 0,g x 为减函数;【解析】试题分析:(1)求出f ' x ,分三种情况讨论,分别令f ' x 0求得x 的范围,可得函数f x 增区间, f 'x :::0求得x 的范围,可得函数 f x 的减区间;(2)由(1)知,所 以 f x m 叮 -2 二 a 4 e",f -4 = 3a+16 e* -a = f 0,f (捲)—f (x 2 $ <4e^ +me a 恒成立,即 a (e^ +1 )+4e ,<4e ,+me a 恒成立,即 m a 吕(e ,+1)恒成e立,利用导数研究函数的单调性,求出e^ 1的最大值,即可得结果. e试题解析:(1)「x = x ,2 x-ae x①若a ::: -2,则f x 在(-■■, a , :;:-2,亠,j 上单调递增,在 a, -2上单调递减;②a =「2,则-::,•::在上单调递增;③若a -2,则f x 在-2 , a,:;©[上单调递增,在 -2,a 上单调递减;(2)由1知,当a ・0,2时,f x 在-4,-2上单调递增,在 -2,0单调递减,& (1)见解析;1 e 2所以f x max = f 一2ia 4 e‘, f -4〕:〔3a+16 e, -a = f 0,故f (x j-f(X2 )max T f (-2 )- f (0 卜(a +4 )e'+a = a(e‘ +1 )+4e°.f x1- f x2::4e 絃me a恒成立,即a e~ 1 4e~ ::: 4e J me a恒成立即m $ e* T 恒成立,e令g x = °,2 ,e1易知g x在其定义域上有最大值g 1 ;=—,e1 - e2e3。

相关文档
最新文档