太赫兹(THz) 科学技术及应用
太赫兹科学技术研究的新进展
太赫兹科学技术研究的新进展一、本文概述随着科学技术的飞速发展,太赫兹(Terahertz,简称THz)科学技术研究逐渐成为全球范围内的热点领域。
太赫兹波,位于微波和红外线之间,其频率范围在1-10 THz,具有独特的物理和化学性质,如高穿透性、低能量性和宽带信息等,使得太赫兹波在通信、生物医学、安全检查等领域具有广阔的应用前景。
本文旨在综述近年来太赫兹科学技术研究的新进展,包括太赫兹波的产生、检测、成像技术,以及其在不同领域的应用案例,以期为太赫兹科学技术的进一步发展和应用提供参考和借鉴。
在本文中,我们首先简要介绍太赫兹波的基本概念和特性,然后重点综述太赫兹波的产生和检测技术的最新研究进展,包括光电导天线、光整流、差频产生等太赫兹波产生方法,以及光电导采样、相干采样、热释电探测等太赫兹波检测技术。
接着,我们将介绍太赫兹成像技术的发展和应用,包括透射式太赫兹成像、反射式太赫兹成像和扫描式太赫兹成像等。
我们还将讨论太赫兹波在通信、生物医学、安全检查等领域的应用案例,以及太赫兹科学技术面临的挑战和未来的发展趋势。
通过本文的综述,我们期望能够全面展示太赫兹科学技术研究的新进展,为相关领域的研究人员和技术人员提供有益的参考和启示,推动太赫兹科学技术的进一步发展和应用。
二、太赫兹波产生与检测技术的新进展近年来,太赫兹波产生与检测技术取得了显著的进展,为太赫兹科学技术的深入研究与应用提供了有力支持。
在太赫兹波产生方面,新型太赫兹源的研究与开发成为热点,如基于光电子学等离子体、量子级联激光器等技术手段的太赫兹源,不断推动太赫兹波产生效率与稳定性的提升。
太赫兹波导与天线技术的发展也加速了太赫兹波在空间中的高效传输与辐射。
在太赫兹波检测方面,新型太赫兹探测器与成像技术的突破为太赫兹波的应用打开了新的领域。
通过改进材料结构与工艺,太赫兹探测器的灵敏度和响应速度得到了显著提升。
太赫兹成像技术在生物医学、安全检查等领域的应用逐渐普及,为疾病的早期诊断与安全监控提供了有力手段。
太赫兹原理及应用
THz在安全检查上的应用
报纸
尖刀 !!
二. THz在无损检测中的应用
使用太赫兹技术研究航天飞机失事的原因
三.THz 在医学中的 应用
mm
电光信号 (nA)
标准照片 Standard photo
THz 成像 THz Imaging
00 0
5
10
15
20
肿瘤 a tumor
25 05
10 15 20 25 mm
THz辐射主要应用领域
生物医学 安全检查 工业无损检测 空间物理和天文学 环境监测 化学分析 军事和通信领域
一、THz 在国家安全、反恐方面的作用
由于 THz 波对衣物、塑料、陶瓷、硅片、纸张 和干木材等一系列物质具有较好的穿透性能;而 且能够根据物质的THz“指纹谱”,对物质进行识 别,所以在毒品、化学生物危险品和武器等的非 接触安全检测、邮件隐藏物的非接触检测等方面 受到了反恐、保安和海关检查等部门的高度重视。
(四)大多数极性分子如水分子,对THz辐射 有强烈的吸收。
(五)瞬态性: THz脉冲的典型脉宽在皮秒量级,通过电光取样测量 技术,能够有效地抑制背景辐射噪声的干扰。在小 于3THz时信噪比高达104:1,远远高于傅立叶变换红 外光谱技术,而且其稳定性更好。
(六)宽带性:
THz脉冲光源通常包含若干个周期的电磁振荡,单 个脉冲的频带可以覆盖从GHz至几十THz的范围, 便于在大的范围里分析物质的光谱性质。
五. THz 技术在国防上的重要作用。
● THz 雷达可成为未来高精度雷达的发展方向:
由于 THz 波比通常微波的频率更高,在远程军事目 标探测、显示前方烟雾中的坦克、远距离成像、多光 谱成像等方面有重要的应用, 能够探测比微波雷达更小 的目标和实现更精确的定位,具有更高的分辨率和更
太赫兹技术应用
太赫兹技术应用的实际应用情况引言太赫兹技术是指在太赫兹频段(0.1-10 THz)进行研究和应用的一种新兴领域。
太赫兹波是介于红外线和微波之间的电磁波,具有高穿透力、非离子性和无辐射危害等特点。
近年来,太赫兹技术在多个领域得到了广泛的应用,包括材料科学、生物医学、安全检测等。
本文将详细描述太赫兹技术在这些领域中的应用背景、应用过程和应用效果。
一、材料科学领域中的太赫兹技术应用1. 应用背景材料科学是太赫兹技术最早被应用的领域之一。
传统的材料性能测试方法往往需要对样品进行破坏性测试或使用昂贵复杂的设备,而太赫兹技术可以通过非接触式测量手段实现对材料内部结构和性能的快速准确分析。
2. 应用过程太赫兹技术在材料科学中的应用过程通常包括以下几个步骤: #### a. 信号发射与接收通过太赫兹源产生太赫兹波,并使用太赫兹探测器接收反射、透射或散射的信号。
这些信号包含了材料的特征信息。
#### b. 数据处理与分析对接收到的信号进行数据处理和分析,提取有用的信息。
常用的方法包括时域分析、频域分析、图像重建等。
#### c. 结果展示与解释将处理和分析得到的数据结果进行展示,并根据结果解释材料的性能和结构。
3. 应用效果太赫兹技术在材料科学中的应用效果主要体现在以下几个方面: #### a. 材料成分分析太赫兹技术可以快速准确地检测材料中不同成分的存在和含量,例如聚合物、金属、陶瓷等。
这对于材料研发和质量控制具有重要意义。
#### b. 材料缺陷检测太赫兹技术可以探测材料中微小缺陷,如裂纹、气泡等。
这对于材料的评估和改进具有重要意义。
#### c. 材料性能表征太赫兹技术可以测量材料的电磁性能,如介电常数、导电率等。
这对于材料的设计和优化具有重要意义。
二、生物医学领域中的太赫兹技术应用1. 应用背景生物医学领域是太赫兹技术应用的另一个重要领域。
太赫兹波在生物组织中具有较好的穿透力,同时对水分子有较强的吸收作用,因此可以用于非侵入式地探测和诊断生物组织。
太赫兹技术各种应用
太赫兹技术各种应用太赫兹技术各种应用“Terahcrtz”一词是弗莱明(Fletning)于1974年首次提出的,用来描述迈克尔逊干涉仪的光谱线频率范围。
太赫兹频段是指频率从十分之几到十几太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域,THz波又被称为T-射线,在频域上处于宏观经典理论向微观量子理论的过渡区,在电子学向光子学的过渡区域,长期以来由于缺乏有效的THz辐射产生和检测方法,对于该波段的了解有限,使得THz成为电磁波谱中最后一个未被全面研究的频率窗口,被称为电磁波谱中的“太赫兹空隙(THzGap)THz波具有很多独特的性质,从频谱上看,THz辐射在电磁波谱中介于微波与红外辐射之间;在电子学领域,THz辐射被称为毫米波或亚毫米波;在光学领域,它又被称为远红外射线,从能量上看,THz波段的能量介于电子和光子之间。
THz的特殊电磁波谱位置赋予它很多优越的特性,有非常重要的学术价值和应用价值,得到了全世界各国研究人员的极大关注,美国、欧洲和日本尤为重视。
2004年美国技术评论(TechonlogyReview)评选“改变未来世界十大技术”时,将THz技术作为其中的紧迫技术之一。
2005年日本政府公布了国家10大支柱技术发展战略规划,THz位列首位。
一、THz波的特性THz波的频率范围处于电子学与光子学的交叉区域.在长波方向,它与毫米波有重叠;在短波方向,它与红外线有重叠;在频域上,THz处于宏观经典理论向微观量子理论的过渡区。
由于其所处的特殊位置,THz波表现出一系列不同于其他电磁辐射的特殊性质:1、THz脉冲的典型脉宽在亚皮秒量级,不但可以方便地对各种材料进行亚皮秒、飞秒时间分辨的瞬态光谱研究,而且通过取样测量技术能够有效地抑制背景辐射噪音的干扰,得到具有很高信噪比(大于)THz电磁波时域谱,并且具有对黑体辐射或者热背景不敏感的优点;2、THz脉冲通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从CHz至几十THz的范围,便于在大范围里分析物质的光谱性质;3、THz波的相干性源于其产生机制,它是由相干电流驱动的偶极子振荡产生,或是由相干的激光脉冲通过非线性光学差频效应产生。
太赫兹科学技术的军事应用
太赫兹(Terahertz,缩写为THz)是频率单位, 1太赫兹等于1012赫兹。
太赫兹波是指频率0.1~10太赫兹、介于毫米波和红外线之间的电磁波。
太赫兹科学技术泛指直接研究和应用太赫兹波本身,以及利用太赫兹波研究开发的所有理论和应用,是一个非常重要、尚未开发的前沿领域。
太赫兹技术之所以具有特别的吸引力,是由于太赫兹辐射的如下特点:约50%的宇宙空间光子能量、大量星际分子的特征谱线在太赫兹范围内;大量有机分子转动和振动跃迁、半导体的子带和微带能量在太赫兹范围内;太赫兹辐射能穿透非金属和非极性材料,穿透烟雾和浮尘;太赫兹光子能量小,不会引起生物组织的光致电离。
因此,太赫兹技术在物体成像、环境监测、医疗诊断、射线天文、宽带通信、雷达等领域具有重大的科学价值和广阔的应用前景。
在世界范围,太赫兹辐射物理及其应用研究方兴未艾。
包括美国国防部、航空航天局在内,全世界已有100多个机构在从事相关研究,例如,日本政府把太赫兹技术确立为“国家支柱技术十大重点战略目标之首”予以支持。
由于信息化武器装备的工作频段逐步从微波及可见光区域向太赫兹波段延伸,太赫兹科学技术在军事上的重要性不言而喻。
谁优先掌握这一重要频段的相关技术,谁就有可能在军事上领先一个时代。
我们应该抓住太赫兹科学技术刚刚起步的机遇,不失时机地加速开展太赫兹领域的理太赫兹科学技术的军事应用张振伟 牧凯军 张存林论与应用研究,为我国的经济发展和国防建设做出贡献。
太赫兹波在军事上的优势太赫兹波的频率介于微波与红外之间,因此太赫兹系统兼顾电子学系统和光学系统的优势。
作为美国能源部的宣传页,从中可以一窥太赫兹技术的概貌。
电磁波谱图,注意太赫兹波段的位置。
一个尚待深入开发的频段资源,太赫兹波在军事上,尤其在雷达及目标识别、宽带通信、危险物探测和无损检测等方面具有潜在的应用前景。
在雷达及目标识别方面。
相对于微波,太赫兹波波长短、波束窄、方向性好,因此作用在目标上的功率密度高,成像的分辨率高,系统的体积小、易于实现空间功率合成。
THz (太赫兹)电磁波段的物理、器件及应用研究
THz (太赫兹)电磁波段的生物物理、器件及应用研究——光学物理在生物中应用东南大学无线电系高昊04002227(本人目前参与该项目前期准备,中国科学院西安光机所)THz辐射通常指的是波长在1mm~33mm区间(300GHz~10THz)的电磁辐射,其波段位于微波和红外光之间。
近十几年来超快激光技术的迅速发展,极大地促进了THz辐射的机理研究、检测技术和应用技术的发展。
这一曾被称为"THz空白"的电磁波段领域,近几年来取得了许多进展,成为一个引人注意的前沿领域。
物质的THz光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,如凝聚态物质的声子频率、大分子(包括蛋白质等生物分子)的振动光谱均在THz波段有很多特征峰,凝聚态物质和液体中的载流子对THz辐射也有非常灵敏的响应。
研究有关物质在这一波段的光谱响应,探索其结构性质及其所揭示的新的物理内容已成为一个新的研究方向。
此外,作为一种新型相干光源,THz辐射的独特性质在物理、信息、材料和生物等领域具有广阔的应用前景,如凝聚态体系中的各种超快过程探测、宽带通讯、高速光电子器件、材料表征、无标记生物芯片、医学诊断等等。
由此带动的交叉研究将会有力地推动和促进这些相关学科的进一步发展。
科学目标对THz辐射源的机理和新型器件、THz辐射与物质的相互作用、THz辐射的探测成像及其应用,开展跨学科、多层次的综合研究。
突出科学问题的原创性,促进与技术创新的结合,在THz辐射理论和实验两个方面取得标志性的成果,使我国的研究在国际上这一新兴领域占有一席之地。
为各相关学科研究和THz辐射在其他高新技术领域的应用奠定理论和实验基础。
研究内容1、THz辐射源的机理和新型器件(1)超短脉冲强激光产生的THz脉冲辐射:研究TW级超强激光脉冲与半导体和非线性光学晶体的相互作用,探索超强激光场作用下载流子和介质极化的动力学过程;研究超短脉冲强激光产生THz辐射的机理,产生强THz脉冲。
太赫兹科学技术的新发展
太赫兹科学技术的新发展一、本文概述随着科技的飞速发展,太赫兹科学技术已成为一个备受瞩目的新兴领域。
太赫兹波,位于微波与红外线之间,具有独特的物理和化学性质,使得其在众多领域,如通信、生物医学、安全检查等,展现出广阔的应用前景。
本文旨在全面概述太赫兹科学技术的最新发展,探讨其基础原理、技术挑战和应用前景,以期为推动该领域的发展提供参考和启示。
我们将简要介绍太赫兹波的基本概念和特性,阐述其在不同领域的应用价值和潜力。
随后,我们将重点回顾近年来太赫兹科学技术在基础理论、关键技术和实际应用方面所取得的重大突破和进展。
在此基础上,我们将讨论当前太赫兹科学技术所面临的挑战和问题,并探讨可能的解决方案和发展方向。
我们将展望太赫兹科学技术的未来发展趋势,预测其在不同领域的应用前景,并探讨如何进一步推动该领域的发展。
通过本文的阐述,我们希望能够为读者提供一个全面、深入的太赫兹科学技术发展新视角,促进该领域的学术交流和技术创新,推动太赫兹科学技术在各个领域的应用和发展。
二、太赫兹波产生与检测技术的发展随着科学技术的飞速发展,太赫兹波(Terahertz, THz)产生与检测技术已成为当前研究的热点领域。
太赫兹波位于微波与红外线之间,具有独特的物理和化学性质,因此在通信、生物医学、安全检查等领域具有广泛的应用前景。
近年来,太赫兹波产生与检测技术的发展取得了显著的进步,为太赫兹科学技术的应用提供了有力支持。
在太赫兹波产生方面,研究者们不断探索新的方法和技术。
目前,已经发展出了多种产生太赫兹波的方法,如光电导天线、光整流、差频产生等。
其中,光电导天线是最常用的方法之一,它通过将超短激光脉冲照射在光电导材料上,产生瞬态电流并辐射出太赫兹波。
随着激光技术和光电导材料的发展,光电导天线产生的太赫兹波功率和频率范围得到了显著提高。
在太赫兹波检测方面,研究者们同样取得了重要进展。
目前,已经有多种太赫兹波检测技术被开发出来,如光电导采样、相干探测、热释电探测等。
太赫兹(THz)物理、器件及其应用
MC solution of Boltzmann equation
The semi-classical BE for transport of Bloch electrons: f (r , k , t ) 1 F f |coll , k E (k ) r f k f t t
• Used to solve mathematical problems by random-number technology • Using random numbers in an essential way to simulate scattering processes • The differential-integral equations usually include high-order numerical integrations
发展了THzQCL MC模拟程序,设计了基于共振 声子散射的THzQCL。研究了子带激光器动力学
Phys. Rev. Lett. 90, 077402 (2003) Appl. Phys. Lett. 88, 061119 (2006) J. Appl. Phys. 104, 043101 (2008)
完成了THzQCL材料生长、器件制作
-
优化了THzQCL器件设计
-
Roadmap of THzQCL
The first THzQCL - Kö hler et.al, Nature 2002 (Pisa, Italy)
•
• • •
Chirped-superlattice
Semi-insulating surface plasmon waveguide Lasing at 4.4 THz Maximum operating temperature of 50 K
太赫兹综述―THz技术的应用及展望.
THz 技术的应用及展望*王少宏1许景周1汪力2张希成1(1 美国伦斯勒理工学院物理系特洛伊 NY 12180(2 中国科学院物理研究所光物理开放实验室北京 100080摘要自20世纪80年代中期以来,THz 辐射的研究取得了重要的进展.文章介绍和讨论了以THz 辐射为探测光源的时域光谱测量在基础物理、信息材料、化学和生物材料研究中的应用,以及THz 成像和THz 雷达技术在材料研究、安全检查和生物医学等领域的应用前景.关键词 THz 辐射,时域光谱,成像APPLIC ATIONS AND PROS PECTS OF TER AHERTZ TECHNOLOGYWANG Shao Hong 1XU Jing Zhou 1WANG Li 2ZHANG Xi Cheng1(1 De pa rtmen t o f Ph ysic s ,Ren ssela er Polite chn ic Institu te ,Tory ,NY 12180(2 Laboratory o f Optica l Ph ysic s ,Institu te o f Physics ,Ch in ese Ac ad emy o f Scie nce s ,Bei jing 100080,Ch inaAbstract Re markable progress in research on terahe rtz(THzradia t ion has been achieved since the mid 80!s.We re view the applications of time domain spectroscopy with THz radiation as the probe source in basic physic s,infor mation materials science,che mistry and biology,along with the prospects of THz imaging and THz radar applied to ma terials research,security inspec tion and biomedicine.Key words THz radiation,time domain spec trosc opy,imaging* 2000-12-04收到初稿,2001-06-01修回THz 辐射通常指的是波长在1mm ∀100 m (300GHz ∀3THz区间的远红外电磁辐射,其波段位于微波和红外光之间.在20世纪80年代中期以前,由于缺乏有效的产生和检测方法,科学家对于该波段电磁辐射性质的了解非常有限,以致该波段被称为电磁波谱中的THz 空隙.近十几年来超快激光技术的迅速发展,为THz 脉冲的产生提供了稳定、可靠的激发光源,使THz 辐射的机理研究、检测技术和应用技术得到蓬勃发展[1].THz 技术之所以引起广泛的关注,首先是由于该波段电磁波的重要性.物质的THz 光谱(包括发射、反射和透射包含有丰富的物理和化学信息,研究材料在这一波段的光谱对于物质结构的探索具有重要意义.其次,THz 脉冲光源与传统光源相比具有很多独特的性质,其中包括:(1瞬态性:THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辨的研究,而且通过取样测量技术,能够有效地抑制背景辐射噪音的干扰.目前,辐射强度测量的信噪比可大于1010.(2宽带性:THz 脉冲源通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从GHz 至几十THz 的范围.(3相干性:THz 的相干性源于其产生机制.它是由相干电流驱动的偶极子振荡产生,或是由相干的激光脉冲通过非线性光学差频变换产生.(4低能性:THz 光子的能量只有毫电子伏特,因此不容易破坏被检测的物质.这些特点决定了THz 技术存在的价值,并可以预见其巨大的应用潜能.下面分别叙述THz 光谱的若干技术应用.1 THz 技术作为材料的分析和测试手段在THz 技术中,THz 时域谱(THz-TDS是一种非常有效的测试手段.典型的THz 时域谱实验系统主要是由超快脉冲激光器、THz 发射元件、THz 探测和时间延迟控制系统组成,如图1所示.来自超快激光器的具有飞秒脉宽的激光脉冲串列被分为两路.一路作为抽运光,激发THz 发射元件产生THz 电磁波.THz 发射元件可以是利用光整流效应产生THz 辐射的非线性光学晶体,也可以是利用光电导机制发射THz 辐射的赫兹偶极天线.另一路作为探测光与THz 脉冲汇合后共线通过THz 探测元件.由于THz 波的周期通常远大于探测光的脉宽,因此探测光脉冲通过的是一个被THz 电场调制的接收元件.和THz 脉冲的激发方式类似,检测技术也分为两种:(1使用电光(EO晶体作为THz 脉冲接收元件,这里利用了晶体的Pockels 效应,即THz 电场对探测光脉冲的偏振状态进行调制;(2使用半导体光电导赫兹天线作为THz 接收元件,利用探测光在半导体上产生的光电流与THz 驱动电场成正比的特性,测量THz 脉冲的瞬间电场.延迟装置通过改变探测光与抽运光间的光程差,使探测光在不同的时刻对THz 脉冲的电场强度进行取样测量,最后获得THz 脉冲电场强度的时间波形.图1 THz 时域谱测试系统示意图对THz 时间波形进行傅里叶变换,就可以得到THz 脉冲的频谱.分别测量通过试样前后(或直接从试样激发的THz 脉冲波形,并对其频谱进行分析和处理,就可获得被测样品介电常数、吸收系数和载流子浓度等物理信息.THz 测量技术的高信噪比和单个THz 脉冲所包含的宽频带,使得THz 技术能够迅速地对材料组成的微细变化作出分析和鉴定.随着信息技术的发展,目前对光电子材料响应速率的要求已经达到了GHz 甚至THz 的范围.THz 时域光谱技术的非接触测量性质在这一方面具有独特的优势[2],能够对半导体和电介质薄膜及体材料的吸收率和折射率进行快速、准确的测量[3],得到吸收率和折射率在GHz ∀THz 频段精确的分布.特别应该指出的是,THz 脉冲的相干测量技术在获得脉冲电场振幅的同时,也直接测量了脉冲各频率分量的位相,而不需要求助于Kramers-Kronig 关系来间接得出.这一特性使THz 技术尤其适用于材料折射率的检测,这往往是传统的光学方法所难以测量的.在传统的THz 时域谱测量系统的基础上,加入对被测样品的调制,就形成了THz 时域差异谱技术.应用此技术可实现对微米乃至亚微米量级厚度的薄膜进行介电常数的测量[4].THz 时域光谱技术对材料的光学常数测量的精度可高于1%[5].由于许多大分子的振动能级或转动能级间的间距正好处于THz 的频带范围,THz 时域光谱技术在分析和研究大分子(质量数大于100的分子方面具有广阔的应用前景.实验表明,利用THz 时域谱技术进行DNA 鉴别是可能的(见图2[6].此外,THz 还被用来研究某些生化试剂和酶的特性[7],等等.由于探测系统的取样窗口在亚皮秒的时间尺度,当存在强背景辐射时,绝大部分背景噪音信号可以被完全排除,这一特点使THz 时域谱技术在某些场合具有不可替代的作用.例如,在对火焰的研究方面,THz 时域谱技术就是目前仅有的、对非相干辐射不敏感的探测系统[8].图2 不同DN A 样品THz 吸收率随波数的变化[6]在基础物理学研究中,THz 技术同样发挥着重要的作用.由于THz 辐射脉冲的时间宽度在皮秒和亚皮秒的量级,因此THz 技术被广泛应用于超快时间分辨的光谱探测,如半导体和超导体中的超快载流子动力学过程和电声子相互作用过程[9,10],高温超导材料中库伯电子对在临界温度附近的位相相关性的动力学研究[11]等.2 THz 成像技术可见光、X 射线、电子束、中近红外光和超声波是医学诊断、材料分析以及在工业生产等诸多领域广泛应用的主要成像信号源,与以上的光源相比,THz 辐射对于电介质材料具有类似的穿透效果,除了可测量由材料吸收而反映的空间密度分布外,还可通过位相测量得到折射率的空间分布,获得材料的更多信息,这是THz 时域光谱的独特优点.此外,THz 源的光子能量极低,没有X 射线的电离性质,不会对材料造成破坏.因此,THz 成像技术有望在安全检查和医学检查等方面成为X 射线检测的补充手段.THz 成像所依据的基本原理是:透过成像样品(或从样品反射的THz 电磁波的强度和相位包含了样品复介电函数的空间分布.将透射THz 电磁波的强度和相位的二维信息记录下来,并经过适当的处理和分析,就能得到样品的THz 图像.THz 成像系统的构成如图3所示.THz 成像系统的构成和工作原理与THz 时域谱测试系统相似.THz 波被聚焦元件聚焦到样品的某一点土.收集元件则将透过样品(或从样品反射的THz 波收集后聚焦到THz 探测元件上.THz 探测元件将含有位置信息的THz 信号转化为相应的电信号.图像处理单元将此信号转换为图像.图3 THz 成像系统示意图贝尔实验室的一个研究组已成功地应用THz 扫描成像技术拍摄到封装在IC 芯片中的封装金属引线[12].THz 成像技术还可以对半导体材料或超导体材料物理特性的分布特征进行研究,如测量超导电流的矢量场分布图像等[13].THz 成像在生物医学样品中的应用也已经得到了广泛的关注[14,15].THz 的近场成像技术已经使得其分辨率达到了波长以下的尺度.利用近场成像和动态孔径的原理,目前THz 显微成像的分辨率已达到几十微米,实例见图4[16].在图4中,为提高传统THz 显微成像的分辨率,增加了一路控制(gating光,控制光经聚焦照射在半导体中激发光生载流子,使焦点处光生载流子的局部浓度高于未遇控制光的部分,局部浓度高的部分对THz 的阻挡本领偏高,这样就造出一个负的动态小孔 .使用了动态孔径的近场成像系统大大提高了THz 成像的分辨率.在较长的一段时间里,THz 成像技术应用中的障碍之一在于设备复杂昂贵,对图像信息的分析和处理技术也有待进一步实用化.目前,THz系统已经图4(a使用了动态孔径的近场成像系统;(b利用带有动态孔径的近场成像系统扫描出的图片实现了小型化,而连续THz 辐射的产生技术也将使THz 技术不再依赖于昂贵的飞秒激光器.可以乐观地期望,随着技术的发展,THz 成像的应用前景将是非常广阔的.3 应用THz 雷达技术进行敏感探测能否同微波一样,THz 也用来制成雷达 ?能否利用来自目标各层次界面反射的THz 电磁波的波形和时间差信息,探知目标或探测其内部形貌呢?答案是肯定的.图5就是利用上述技术获得的硬币不同层面的反射像.从技术特点上看,由于THz 辐射具有比微波更短的波长以及更为精确的时间检测装置,THz 雷达技术可以探测比微波雷达更小的目标和实现更精确的定位,因而THz 雷达技术有望在军事装备的实验室模拟研制、安全监测和医学检验上发挥其潜力.在实验室,已经利用THz 雷达技术对动物组织的烧伤进行了探测,并且可以对烧伤深度和程度作出标定,以辅助诊断皮肤的烧伤程度[2].综上所述,作为一种新兴的光谱分析手段,THz 技术由于光源本身和探测技术所具有的特点,在时域光谱研究和应用等领域正呈现出蓬勃的发展趋势,在基础研究、信息和光电子材料的检测、化学和图5 利用THz发射接收装置测量硬币的逐层像(aTHz发射接收装置成像系统图;(b硬币的THz逐层成像和光学像的比较(图中纵、横坐标的单位为cm生物样品的分析鉴定、生物医学、物体内部逐层探测,乃至现代通信技术等领域都展现出巨大的应用潜力.参考文献[1]Verghese S,McIn tos h K A,Brown E R.IEEE Tran s.Mic rowaveTh.Tech.,1997,45:1301[2]Mittleman D M,Gup ta M,Neela mani R e t al.Ap pl.Ph ys.B,1999,68:1085[3]Gri schk owsk y D,S oren Keidi ng,Martin van Exter et a l.J.Op t.Soc.Am.B,1990,7(10:2006[4]Jiang Z P,Li M,Zhan g X C.Ap pl.Phys.Lett.,2000,76:3221[5]Lionel Du vi llaret,Frederic Garet,Jean Lou is Coutaz.App l.Op t., 1999,38:409[6]Markelz A G,Roi tb erg A,Heil weil E J.Chem.Phys.Le tt,2000, 320:42[7]Woolard D,Kaul R,Suen ram R et a l.IEEE MIT S Digest,1999, p.925[8]Ch eville R A,Grisch ko wsky D,Op t.Lett.,1995,20:1646[9]Tanichi N,W ad a N,Nagash ima T e t a l.Physica C,1997,293: 229[10]Dekorsky,Au er H,W aschke C e t al.Ph ys.Rev.Let t.,1995,74: 738[11]Corson J,Mallozzi R,Oren stei n J et al.Natu re,1999,398:221[12]Smith P R,Auston D H,Nu ss M C.IEEE J.Qu an tu m Electron., 1988,QE 24:255[13]Han gyo M,S hikii S,Ya mashi ta M et a l.IEEE Trans.App l. Sup ercond uct.,1999,9:3038[14]Das B B,Yoo K M,Alfan o R P.Opt.Lett.,1993,18:1092[15]Han P Y,Ch o G C,Zhan g X C.Op t.Le tt.,2000,25:242[16]Ch en Q,Jiang Z P,Xu G X et a l.Op tic s Letter,2000,25:1122封面说明封面是用扫描隧道显微镜观察到的吸附在硫醇自组装单层膜表面的C60二维取向畴界负偏压图像的立体图示.图中C60分子排成完整的二维紧密堆阵列,但阵列内存在两种明显不同的分子取向,由此形成一种新型的取向畴界结构.该畴界附近没有结构缺陷存在,C60分子的位置序和键向序都得到了完整的保持.由于C60分子与衬底硫醇分子只有弱的范德瓦耳斯相互作用,因此这种结构反映了C60二维系统的本征性质.(中国科学技术大学结构研究开放实验室王克东王兵杨金龙侯建国。
太赫兹(THz)技术及其在深空探测中的应用
太赫兹(THz)技术及其在深空探测中的应用余小游,李仁发,余方,谌晓明,李斌(湖南大学计算机与通信学院,湖南长沙 410006)摘要:随着微纳器件工艺的长足进步,太赫兹波的产生、探测与发射已经成为可能,消除电磁波谱中的太赫兹空隙指日可待。
太赫兹技术在深空探测遥感成像、深空探测通信方面的应用前景十分广阔。
本文在简要介绍太赫兹基本理论和技术(简称THz技术)的基础上,对其应用于深空探测的前景进行初步探讨。
1 引言太赫兹波是指频率介于0.1-10THz之间的电磁波(波长为),是处于毫米波和红外波之间的相当宽范围的电磁辐射区域,涵盖了毫米波(0.03-0.3THz)高端(0.1-0.3THz)、亚毫米波(0.3-3THz)、远红外波(0.3-6TGHz)、中红外波(6-120THz)低端(6-10THz)的广泛波谱区域。
太赫兹波虽然广泛存在于自然界,如人体热辐射、生物大分子的振动和转动频率、天体辐射到地球的电磁波中的大部分、约50%的宇宙空间光子能量、大量星际分子的特征谱线等都处于太赫兹频段,但长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,导致太赫兹频段的电磁波未得到充分的研究和应用,这个现象被称为电磁波谱中的“太赫兹空隙”。
太赫兹波段处于电子学和光子学的交叉区域,太赫兹波的理论研究也处在经典电磁场理论和量子跃迁理论的过渡区,其性质表现出一系列不同于其他电磁辐射的特殊性,从而可广泛应用于波谱分析、成像和通信等领域。
太赫兹波又被称为T-射线,它在物理学、材料科学、医学和遥感成像、射电天文、宽带保密通信、深空探测测控通信方面具有重大的应用前景。
2 THz技术的研究现状太赫兹空隙现象存在多后,随着60GHz以下电磁波频段的日益拥挤、以及应用的不断发展需要,太赫兹波段成为人们重点关注的对象,太赫兹科学和技术也成为倍受各国政府支持和重视的先进科学技术,欧、美、日、俄等国家和地区投入大量人力、物力和财力进行相应的基础性理论研究和技术应用开发。
太赫兹技术应用简介
太赫兹技术应用简介太赫兹波(THz波)是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm 范围,介于微波与红外之间。
一百多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。
在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近十几年,随着科研手段的提高,人们在这一领域的研究才有了较大发展。
太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。
由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。
太赫兹成像技术和太赫兹光谱技术由此构成了太赫兹应用的两个主要关键技术。
同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。
另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。
太赫兹的应用仍然在不断的开发研究当中,其广阔的科学前景为世界所公认。
(1)THz时域光谱技术。
THz时域光谱技术的基本原理是利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,由于大分子的振动和转动能级大多在THz波段,而大分子,特别是生物和化学大分子是具有本身物性的物质集团,进而可以通过特征频率对物质结构、物性进行分析和鉴定。
一个比较重要的应用可以作为药品质量监管。
设想一下制药厂的流水线上安装一台THz时域光谱仪,从药厂出场的每一片药都进行进行光谱测量,并与标准的药物进行光谱对比,合格的将进入下一个环节,否则在流水线上将劣质药片清除掉,避免不同药片或不同批次药片的品质差仪,保证药品的品质。
(2)THz成像技术。
跟其他波段的成像技术一样,THz成像技术也是利用THz射线照射被测物,通过物品的透射或反射获得样品的信息,进而成像。
太赫兹技术及其应用研究
太赫兹技术及其应用研究摘要:太赫兹技术是一个具有广泛应用前景的新兴学科,近10年来,太赫兹技术理论研究的蓬勃发展带动了太赫兹波应用研究的迅速扩大。
作为一种新型的相干光源,太赫兹辐射在物理化学、信息和生物学等基础研究领域,以及材料、国防、医学等技术领域具有重大的科学价值和广泛的应用前景。
文章简要介绍了太赫兹波的重要特性集、太赫兹技术的研究现状及应用前景,重点介绍了太赫兹技术的特性、及在国防领域的应用。
关键词:太赫兹;特性;太赫兹波成像;应用1 引言太赫兹(Terahertz,简称THz)辐射是对一个特定波段的电磁辐射的统称,通常它是指频率在0.1THz一10 THz(波长在3um~3 mm)之间的电磁波,在某些特定场合,指0.3 THz一3 THz 之间的电磁波,还有一种更广泛的定义,其频率范围高达100THz.直到上世纪80年代中期以前,人们对这个频段的电磁波特性知之甚少,形成了远红外线和毫米波之间所谓的“太赫兹空隙”(Teraheaz Gap),对太赫兹波段广泛的研究兴趣还是在20世纪80年代中期以超快光电子学为基础的脉冲太赫兹技术产生以后.近20年来,随着低尺度半导体技术、超快激光技术以及超快光电子技术的飞速发展,太赫兹技术表现出了极大的应用潜力.作为一种新型的相干光源,太赫兹辐射在物理、化学、信息和生物学等基础研究领域。
以及材料、国防、医学等技术领域具有重大的科学价值和广泛的应用前景.本文将对太赫兹辐射的特性进行介绍,并在介绍太赫兹技术的常见应用基础上,着重对太赫兹技术在有关国防领域的潜在应用进行介绍.2 特性太赫兹波之所以引起科学界浓厚的研究兴趣,并不仅仅因为它是一类广泛存在而并不为人所熟悉的电磁辐射,更重要的原因是它具有很多独特的性质,正是这些性质赋予太赫兹波广泛的应用前景.从频谱上看,太赫兹辐射在电磁波谱中介于微波与红外辐射之间;在电子学领域。
太赫兹辐射被称为毫米波或亚毫米波;在光学领域,它又被称为远红外射线;从能量上看,太赫兹波段的能量介于电子和光子之间.2.1 波粒二相性太赫兹辐射是电磁波,因此它具有电磁波的所有特性.太赫兹波具有干涉、衍射等波动特性;在与物质互相作用时,太赫兹波还显示出粒子特性.2.2 穿透性太赫兹辐射对很多介电材料和非极性的液体具有良好的穿透性.因此,太赫兹波可以对很多不透明的物体进行透视成像.太赫兹的透视性使它作为x射线成像和超声波成像的补充,用于安全检查或者在质量控制中进行无损探伤.太赫兹波成像技术包括二维成像、飞行时间成像、复合孑L径成像、计算机辅助层析成像以及近场成像等.2.3 安全性太赫兹辐射的另一个显著特点就是它的安全性.相比于X射线有千电子伏的光子能量,太赫兹辐射的能量只有毫电子伏.它的能量低于各种化学健的键能,因此它不会引起有害的电反应.这一点在针对旅客身体的安全检查和对生物样品的检查等应用中至关重要.2.4 光谱分辨特性尽管太赫兹辐射的光子能量相对较低,但这一波段仍然包含了丰富的光谱信息.许多有机分子在太赫兹频段具有强的吸收和色散特性.物质的太赫兹光谱(发射、反射和透射光谱)包含丰富的物理和化学信息,使得它们具有类似指纹一样的惟一特点.因此,太赫兹光谱成像技术不仅能够分辨物体的形貌,还能识别物体的组成成分.2.5 其他特性与微波相比,太赫兹辐射具有更高的频率和带宽,作为通信载体时可以承载更多的信息,更强咕勺发射方向性.因此,太赫兹波在中短距离大容量无线通信中极具应用潜力.在成像应用中,太赫兹波具有更高的空间分辨率,在保持相同空间分辨率时,其成像具有更大的景深.由于THz有很多优越的特性,其重要的学术和应用价值已引起学术界的广泛关注和极大兴趣。
太赫兹简介及特点和应用
太赫兹简介及特点和应用嘉兆科技THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。
太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。
实际上,早在一百年前,就有科学工作者涉及过这一波段。
在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um (0.02mm),之后又有到达50um的记载。
之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。
但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制,因此这一波段也被称为THz间隙。
随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。
2004年,美国政府将THz科技评为“改变未来世界的十大技术”之四,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。
我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。
另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。
THz研究领域的开拓者之一,美国著名学者张希成博士称:“Next ray,T-Ray !”目前国内已经有多家研究机构开展太赫兹领域的相关研究,其中首都师范大学,是入手较早,投入较大的一家,并且在毒品和炸药太赫兹光谱、成像和识别方面,利用太赫兹对非极性航天材料内部缺陷进行无损检测方面做出了许多开拓性的工作,同时由于太赫兹射线在安全检查方面的独特优势,首都师范大学太赫兹实验室正集中力量研发能够用于实景测试的安检原型设备。
太赫兹作用
太赫兹作用太赫兹作用(Terahertz,缩写为THz)是指在电磁频谱中介于红外和微波之间的电磁波。
太赫兹技术的研究和应用已经引起了广泛的关注。
它具有许多独特的特性,使其成为未来科学和技术领域的重要工具。
太赫兹波是排列在一秒钟内振动10万亿次的电磁场。
这种频率的电磁波能够穿透许多非金属物质,如纸张、塑料、布料和漆等。
与X射线相比,太赫兹波对生物无辐射危害,使其在医学成像和生物医学领域具有很大的潜力。
太赫兹技术可用于检测和诊断人体内的病变,并有望在癌症和神经系统疾病的早期诊断中发挥重要作用。
太赫兹波还具有独特的分子和结构敏感性,能够探测和分析物质的化学结构和组分。
这使得太赫兹技术在药物品质控制、食品安全和爆炸物检测等领域具有广泛的应用前景。
通过测量反射和透射谱,太赫兹技术可以确定物质的分子振动模式和晶格结构,从而实现纯度、含水量和组分等的无接触测量。
太赫兹波在材料科学和纳米技术中也起着重要作用。
由于太赫兹波可以探测材料的电磁特性,因此可以用于研究材料的电子、光学和超导等性质。
此外,太赫兹波还可以通过控制太赫兹辐射与材料相互作用,实现对材料性能的调控和改善。
这使得太赫兹技术在材料研究、器件制造和纳米技术等领域具有广泛的应用前景。
此外,太赫兹波还可以应用于通信和雷达领域。
由于其高频率和大带宽特性,太赫兹波可以用于高速无线数据传输、非线性光学通信和超高清图像传输等。
在雷达系统中,太赫兹技术可以实现对复杂场景的三维成像和探测隐形目标等功能。
这使得太赫兹技术在无线通信和国防安全等领域具有重要的应用前景。
然而,太赫兹技术的研究和应用还面临许多技术难题和挑战。
由于太赫兹波在大气层中的吸收和散射,使其传输距离相对较短。
此外,太赫兹器件和元器件的制备和集成也面临许多困难和挑战。
因此,需要继续深入研究和开发太赫兹技术,以进一步发掘其潜力和应用。
总之,太赫兹技术具有广阔的研究和应用前景。
它在医学成像、物质分析、材料科学和通信雷达等领域具有重要作用。
国内外太赫兹技术发展及应用
国内外太赫兹技术发展及应用太赫兹(THz)指的是电磁频谱上频率为0.1~10THz的辐射,波长范围为0.03~3mm,介于无线电波和光波之间。
太赫兹波具有穿透性强、使用安全性高、定向性好、带宽高等技术特性。
太赫兹是电磁波谱最后的处女地,具有独特的优越性及极重要的应用,是新一代产业的科学技术基础。
太赫兹科学综合了电子学与光子学的特色,是典型的交叉前沿科学领域,蕴含着原创性重大机理和方法并亟待突破,具有重大的科学意义。
太赫兹科学技术也将是后摩尔时代信息技术发展的重要支撑,因此世界各国都对太赫兹技术进行了广泛而深入的研究,并获得了一系列成果。
太赫兹技术的发展过程在美国国内有数十所大学都在从事THz的研究工作,特别是美国重要的国家实验室,都在开展THz科学技术的研究工作。
美国国家基金会(NSF)、国家航空航天局(NASA)、能源部(DOE)和国家卫生学会(NIH)等从90年代中期开始对THz科技研究进行大规模的投入。
如航天飞机表面隔热材料THz成像检测系统、THz 雷达、安检系统、环境监测设备等。
欧洲的一些国家相继建立THz 科学研究机构,已取得了较大进展。
英国的Rutherford国家实验室,剑桥大学、里兹大学、Strathclyde 等十几所大学,德国的若干所大学,都积极开展THz研究工作。
欧洲国家还利用欧盟的资金组织了跨国家的多学科参加的大型合作研究项目。
在俄国国家科学院专门设立了一个THz研究计划,IAP,IGP及一些大学也都在积极开展THz研究工作。
日本于2005年1月8日,公布了日本国十年科技战略规划,提出十项重大关键技术,将THz列为首位。
东京大学、京都大学、大阪大学、东北大学、福井大学以及各公司都大力开展THz的研究与开发工作。
特别在THz通信方面取得了重要进展,研发出120GHz 毫米波无线通信系统和300GHz~400GHz的无线通信系统。
目前的移动通信无线接入网络均是采取低于5 GHz频点的物理频段,并采取高阶调制方式(比如QAM)来提高无线频谱资源利用效率与有限带宽内的移动接入速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chopper
(四) THz波的应用
美国: 主要研究力量
目前全世界有 100个以上的研 究小组在进行 与THz 有关的 研究 欧洲: Teravision, Terabridge Teraview Ltd. 日本: Tera-photonics
台湾: Tera-photonics
China: NNSFC 新的 THz 项目
’
三. 在医学成像、诊断上的特殊作用
● MR, CT, PET 在医学成像中发挥很大的作用,但有局限性。
● CT, PET 均采用离子化辐射,可能会引起别的疾病; ● MR 和 CT不能对骨头成像; ● PET 有很高的灵敏度但空间分辨率差。 ● T-ray 成像可能解决上述问题: THz 与 X-ray 的最大区别在于,它在远红外区,光子能量 比 X-ray 小约百万倍,没有离子化辐射问题; THz 频率段正好处在分子相互作用段,它可以给出位置和密 度的信息。可用于分子活动的研究,并给出很高的空间分辨率 (~ 300um)。 它很少散射,使成像很简单,不需要进行散射校正。 THz –ray在成像中的最重要的特性是,在THz –ray 作用下, 不同的分子具有特定的相互作用,可用于在分子尺度上的材料 确定,用于诊断疾病和癌疹的早期发现。 THz –ray可用于计算机照相,THz –ray CT可获得三维分子 或化学的图象,其分辨率可达 um 量级。
1. THz在安全检查上的应用
报纸
尖刀 !!
THz在安全检查上的应用
恐怖分子
T-射线 收发器
人质
当警察需要从屋外确知人质、恐怖分子和武器的详细位置和 状况的时候,我们可否使用THz收发器来帮忙?
2. THz在毒品检测中的应用
测量环境:充氮气后,测量系统湿度低于4%,温度为室温
以氯胺酮为例的THz光谱测量结果
THz 成像 (Hu & Nuss, 1995)
树叶
新鲜 火腿肉
2天后
(五)瞬态性: THz脉冲的典型脉宽在皮秒量级,通过电光取样测量 技术,能够有效地抑制背景辐射噪声的干扰。在小 于3THz时信噪比高达104:1,远远高于傅立叶变换红 外光谱技术,而且其稳定性更好。 (六)宽带性: THz脉冲光源通常包含若干个周期的电磁振荡,单 个脉冲的频带可以覆盖从GHz至几十THz的范围, 便于在大的范围里分析物质的光谱性质。
600 500 400 300 200 100 Wavenumber (cm-1)
0
几种炸药的远红外谱线
二. THz在无损检测中的应用
使用太赫兹技术研究航天飞机失事的原因
Defects near the Foam/Substrate Interface
49 of 57 defects were detected
(三) THz 辐射对于很多非极性物质,如电介质 材料及塑料、纸箱、布料等包装材料有很强的穿透 力, 可用来对已经包装的物品进行质检或者用于安 全检查。
(四)大多数极性分子如水分子,对THz辐射 有强烈的吸收。
在THz成像技术中,可以利用对水的强烈吸收特性分辨生 物组织的不同状态,如对人体烧伤部位的损伤程度进行诊断, 还可以进行产品质量控制,如测量食品表面水分含量以确定 其新鲜程度。
癌变组织和正常组织的THz波具有不同的振幅,波形和时间 延迟,我们可以从中得到肿瘤的大小和形状。
四.
THz 在生物、环境监测上的应用
● 由于生物大分子的振动和转动能量均在 THz 波段, 因而利用THz 辐射技术可得到 DNA 的重要信息,这对 粮食选种、优良菌种选择等起着重要作用;
● THz 在生物化学应用以及药物的分析和检测等方面 都具有良好的功能; ● THz 辐射可以穿透烟雾,又可检测有毒或有害分 子,所以在环境监测和保护方面将得到应用。
2 0.5 THz 2 1 THz
cm
cm
0 1 2
1
0
2 0
1 0 2 THz
1
2
2
1.5 THz
cm
cm
0 1 2
0
1
0 0
1
1
2
杨氏干涉实验
空间相干 20 X (mm) 双缝干涉 T-ray
10
0
0
14 Time (ps)
27
T-射线的干涉图样
2 0.5 THz 2 1 THz
cm
0
2
1.5 THz
THz辐射主要应用领域
生物医学 安全检查 工业无损检测 空间物理和天文学 环境监测 化学分析
军事和通信领域
一、THz 在国家安全、反恐方面的作用
由于 THz 波对衣物、塑料、陶瓷、硅片、纸张 和干木材等一系列物质具有较好的穿透性能;而且 能够根据物质的THz“指纹谱”,对物质进行识别, 所以在毒品、化学生物危险品和武器等的非接触安 全检测、邮件隐藏物的非接触检测等方面受到了反 恐、保安和海关检查等部门的高度重视。
是成正比的。
返回
电光取样的方法
电光取样测量技术基于线性电光效应:当太赫
兹脉冲通过电光晶体时,它会发生瞬态双折射,从 而影响探测(取样)脉冲在晶体中的传播。
当探测脉冲和太赫兹脉冲同时通过电光晶体时,
太赫兹脉冲电场会导致晶体的折射率发生各向异性 的改变,致使探测脉冲的偏振态发生变化。 调整探测脉冲和太赫兹脉冲之间的时间延迟, 检测探测光在晶体中发生的偏振变化就可以得到太
80
60
60
2.00 1.62
40
40
2.55
0.55
20
20
1.23
0 0.5 1.0 1.5 2.0 2.5
0 0.5 1.0 1.5 2.0 2.5
Frequency (THz)
Frequency (THz)
不同厂家地西泮药(a)以及其有效成分纯地西泮(b)在0.2~2.6 THz范围的吸收光谱
路之中,用一束探测脉冲打到光电导介质上,这 时在介质中能够产生出电子-空穴对(自由载流
子),而此时同步到达的太赫兹脉冲则作为加在
光导天线上的偏置电场,以此来驱动那些载流子 运动,从而在光导天线中形成光电流。 最后,用一个与光导天线相连的电流表来探测这 个电流即可。其中,这个光电流与THz瞬时电场
THz 在医学中的应用
标准照片 Standard photo
00 0 5 10 15 20 25
THz Imaging THz 成像
THz 波形 电光信号 (nA)
4 3 2 1 0
癌变组织 正常组织
a tumor
肿瘤
mm
0
5
10
15
20
25
mm
THz 乳腺肿瘤(模型)成像
0 10 20 30 40 Time Delay (ps)
不同厂家镇静类药的太赫兹光谱研究
1.不同厂家地西泮药及其有效成分的太赫兹光谱比较
有效成分含量: 3.7%
120
厂家:北京益民制药厂、天津力生制药厂
120
1.39 2.52
100
Pure diazepam
100
2.18
tjlsdxp bjymdxp
Absorption (cm-1)
80
Absorption (cm-1)
光学前沿------
THz 科学技术及应用
内容概要
(一) 什么是THz波? (二) THz波的主要特征 (三) THz波的产生与探测 (四) THz波的应用
(一) 什么是THz波?
THz在电磁波谱中的位置
THz辐射(T射线)通常指的是频率在0.1THz~ 10THz(波长在3mm~ 30μm)之间的电磁波,其 波段在微波和红外光之间,属于远红外波段,此 波段是人们所剩的最后一个未被开发的波段。
产生大量的电子-空穴对。这些光生自由载流子会 在外加偏置电场和内建电场的作用下作加速运动, 从而在光电导半导体材料的表面形成瞬变的光电流。 最终这种快速的、随时间变化的电流会向外辐射出
太赫兹脉冲。
返回
光整流的基本原理
光整流是产生太赫兹脉冲的另一种机制,它是一种非 线性效应,是电光效应的逆过程。 超短激光脉冲入射到非线性介质中,由差频振荡效应 会产生一个低频振荡的时变电极化场。这个电极化场 就可以辐射出太赫兹波来。
2
0
1
2
0
cm
1
1
0
2 THz
1
2
cm
0
0Байду номын сангаас
1
2
0
cm
1
1 0
1
2
(二) THz波的主要特征
T-射线的几个主要特性
(一)相干性 THz技术的相干测量技术能够直接测量电场振幅和 相位,可以方便地提取样品的折射率、吸收系数.
(二)低能性 (4.1 meV ~1 THz) X-射线~30kev 相差7个数量级 !!
0.50 Absorbance 0.40 0.30 0.20 0.10 0.00
0
0.15 Absorbance
600 500 400 300 200 100 Wavenumber (cm-1) TNT
0
2-amino-4,6-DNT
0.12 0.09 0.06 0.03 0.00 600 500 400 300 200 100 Wavenumber (cm-1) 0
Capital Normal University
3. THz在爆炸物检测中的应用
0.20 Absorbance 0.15 2,4-DNT 0.15 1,3-DNT
0.10
0.05 0.00
0.10
0.05 0.00
600 500 400 300 200 100 Wavenumber (cm-1)