生物反应工程第七章

合集下载

《生物反应工程》课件

《生物反应工程》课件

9. 结语
生物反应工程对于推动生物技术的发展和提升人类生活质量具有重要意义。通过不断学习和实践,我们可以不 断突破与改进。
6.效、更可持续的反应过程,并在结果分析和评估中加以 验证。
7. 生物反应器的应用
生物反应工程在各个领域都有广泛的应用。我们将探讨生物转化与合成以及 生物降解与治理的应用案例。
8. 生物反应工程的发展
了解生物反应工程的现状、趋势以及未来发展方向,对于我们在这个领域中 保持创新思维和持续学习至关重要。
3. 生物反应器设计
生物反应器是进行生物反应的关键设备。了解反应器的基本组成和设计参数 对于优化反应过程至关重要。
4. 生物反应器操作
对于生物反应器的操作和参数调节有着重要的影响。我们将讨论不同的操作模式和调节方法。
5. 生物反应器的监控
通过监控生物反应器的指标和测量参数,我们可以及时了解反应器状态并做 出必要的调整。
生物反应工程
通过创新的生物反应工程技术,我们可以利用生物体内的反应机制来解决各 种实际问题,为人类提供更好的生活。
1. 介绍
生物反应工程涉及使用生物体和生物体内的反应机制来开发和改善产品和过 程的工程学科。本章将介绍生物反应工程的概念和生物反应器的分类。
2. 生物反应动力学
生物反应动力学研究生物反应的速度和机理。我们将探索反应动力学方程和确定动力学参数的方法。

生物反应工程 第7章 生物反应器

生物反应工程 第7章  生物反应器

将列管并列焊接在一起,组成挡板; [2]
直接利用列管当挡板
H—筒身高度 D—罐径 W—挡板宽度 HL—液位高度 Di—搅拌器直径 S—两搅拌器间距 B—下搅拌器距底 间距
1.罐体

结构:圆柱体和椭圆封头或碟形封头焊 接而成。小型发酵罐罐顶和罐身采用法 兰连接。顶部设有清洗用的手孔。
材料为碳钢或不锈钢。大型发酵罐可用 不锈钢或复合不锈钢制成。小大型发酵 罐可用不锈钢或玻璃钢制成。 刚度和强度:受压容器,空消或实消, 通常灭菌的压力为2.5Kg/m3。

生物催化剂在反应器中的分布方式 生物团块(包括细胞、絮凝物、菌丝体)反应 生物膜反应器两大类。 固相催化剂的运动状态来分类 填充床 流化床 生物转盘等多种型式反应器。 按反应体系的相态来分类 均相——可溶的酶催化反应 非均相

•反应物系在反应器内的流动与混合状态 (反应器内流体的流动类型) 活塞流反应器 (continuous plug flow reactor, CPFR ) 全混流反应器( continuous stirred-tank reactor,
表 通用式发酵罐的几何尺寸与操作条件
几何尺寸与操 作条件范围 H/D=1~4
Di/D=1/2~1/4 W/D=1/8~1/12 B/ Di =0.8~1.0
搅 拌 转 速 N=30 ~ 1000 (r/min) 单位醪液体积的冷却面 积0.6~1.5 (m2/m3)
典型数值
奥地利某公司 200m3
4.温度控制系统:
电极、热交换装置和及其控制 排除发酵过程中由于生物氧化作用及机械 搅拌产生的热量的装置 在发酵过程中,放出的热量可用如下的热 平衡方程式:

Q发酵=Q生物+Q搅拌-Q蒸发-Q显-Q辐射

习题库——精选推荐

习题库——精选推荐

第一章 绪论1.什么是生物反应工程、生化工程和生物技术?2.生化反应工程研究的主要内容是什么?3.生化反应工程的研究方法有那些?4.解释生物反应工程在生物技术中的作用?5.为什么说代谢工程是建立在生化反应工程与分子生物学基础之上的?6.何为系统生物学?7.简述生化反应工程的发展史。

8.如何理解加强“工程思维能力”的重要性。

9.为什么在当今分子生物学渗入到各生物学科领域的同时,工程思维也成为当今从事生物工程工作人员共同关注的话题?第二章生物反应工程的生物学与工程学基础1. 试说明以下每组两个术语之间的不同之处。

生物工程与生物科学、发酵工程与生物工程、速率和速度、反应速率与传质速率2. 何为准数和雷诺准数?并解释后者的物理意义3. 工程思维的具体含义是什么?4. 简述酶的催化特性与调节功能。

5. 在一个实际的生物催化过程中如何确保生物催化剂(如酶)的稳定性,并提高催化效率?6. 酶在应用过程中有哪些不同于化学催化剂和微生物作为生物催化剂的地方?7. 微生物培养过程中微生物的世代时间与倍增时间是否是同一概念。

8. 在生物工业中,微生物细胞的量一般采用干重表示,为什么?9. 为什么要固定化酶或微生物细胞?10. 进行生物催化剂(酶或微生物细胞)催化机理研究时,采用固定化酶或微生物细胞是否更有利于清楚了解催化过程机理?11. 何为生物分子工程? 12. 在微生物培养过程中,操作工人观察到发酵罐上的压力表中的读数为0.025MPa,罐中的发酵液深度为10米,试问在罐底处的微生物细胞承受多大压力?在发酵液表面呢? 13. 如果在2小时完成生物反应器中70m 3的装液量,请计算物料输入管的管径。

如果要求50分钟将反应液排空,请计算物料输出管的管径。

第三章 酶促反应动力学1. 简述酶促反应的特征及其与化学反应的主要区别是什么?。

2 .应用直线作图法(Lineweaver —Burk 法;Haneswoolf 法;Eadie —Hofstee 法和积分法)求取米氏方程中的动力学参数K s 和r max ,并比较由各种方法所得结果的误差大小。

《生物反应工程》课程教学大纲

《生物反应工程》课程教学大纲

《生物反应工程》课程教学大纲一、课程性质本课程是生物工程专业的一门专业必修课,是一门以生物学、化学、工程学、计算机与信息技术等多门学科为基础的交叉学科。

它以生物反应动力学为基础,将传递过程原理、设备工程学、过程动态学及最优化原理等化学工程学方法与生物反应过程的反应特性方面的知识相结合,进行生物反应过程分析与开发,以及生物反应器的设计、操作和控制等。

生物反应工程主要研究生物反应过程中带有共性的工程技术问题,其在生物工业中起着举足轻重的作用。

从学科分类看,生物反应工程是工业生物技术的核心。

二、教学目的通过本课程的学习,使学生掌握生物反应过程动力学基本规律,掌握生物反应器的基本理论和设计的基本方法,了解本领域国内外的研究进展,能够运用所学的理论知识进行生物反应过程的工程分析与开发,以及生物反应器的设计、扩大、操作和优化控制等工作。

三、教材教参教材:《生物反应工程原理》,贾士儒,科学出版社,2008年3月。

教参:《生物反应工程》,岑沛林,高等教育出版社,2005年5月;《生物化学工程基础》,李再资,化学工业出版社,2006年1月;《生化工程》,伦世仪,中国轻工业出版社,1997年7月。

四、教学方式本课程以课堂讲授为主,自学和讨论为辅的方式组织教学。

借助多媒体教学系统实物展示台,将实物、图表等抽象东西尽量展示,制作图文并茂的课件进行教学,增加课堂信息量,扩大学生知识面。

五、教学内容及时数根据生物工程专业人才培养方案,本课程共2学分,总的教学时数为32学时,其中讲授32学时。

具体如下:1.绪论(2学时,其中讲授2学时)基本内容:本课程的学科性质、研究内容、及学科的形成与发展。

重点:生物反应工程的定义、生物反应工程研究的目的、生物反应工程的研究内容与方法。

难点:生物反应工程的定义和生物反应工程研究的目的、生物反应工程的研究内容与方法。

新知识点:生物反应工程的定义、生物反应工程研究的目的、生物反应工程的研究内容与方法。

生物反应工程原理

生物反应工程原理

第一章生物工程导论1.生化反应工程的概念以生物反应动力学为基础,利用化学工程方法研究生物反应过程的一门学科。

2.生化反应工程研究对象研究生物反应动力学反应器设计3.生化反应特点优点:反应条件温和设备简单同一设备进行多种反应通过改良菌种提高产量缺点:产物浓度低,提取难度大废水中的COD和BOD较高前期准备工作量大菌种易变异,容易染杂菌4.生化反应动力学本征动力学:又称微观动力学,生化反应所固有的速率没有物料传递等工程因素影响。

反应器动力力学:宏观动力学,在反应器内所观察到的反应速率是总速率考虑。

5.生化工程研究中的数学模型结构模型:由过程机理出发推导得出半结构模型:了解一定机理结合实验数据经验模型:对实验数据的一种关联第二章生物反应工程的生物学与工程基础1.因次:导出单位,也称量纲。

2.红制及基本单位密度比容气体密度压力第三章微生物反应计量学教材p53-641.反应计量学:对反应物组成及转化程度的数量化研究2.得率系数与维持因数:得率系数:细胞生成量与基质消耗量的比值维持因数:单位质量细胞进行维持代谢时所消耗的基质。

3.细胞组成表达式及元素衡算方程细胞组成表达式CH1-8O0.5N0.2元素衡算方程CHmOn+aO2+bNH3=CCH2O3Nr+d H2O +e CO24.得率系数与计量系数关系当细胞反应是细胞外产物的简单反应时,得率系数与计量系数关系如下:5.呼吸商:二氧化碳产生速率与氧气消耗速率之比6.实例计算第四章均相酶反应动力学(教材P8-10,26-38)1.酶活力表达方法及催化特性催化特性:酶具有很强的专一性较高的催化效率反应条件温和易失活,温热,氧化失活2.了解反应速率方程的几种形式零级反应:反应速率与底物浓度零次方成正比一级反应:反应速率与底物浓度一次方成正比二级反应:反应速率与浓度二次方成正比连锁酶促反应:3.米式方程快速平衡和拟稳态三点假设4.米式方程推导5.M-M方程与B-M方程比较6.酶反应一级动力学表达式及计算7.动力学常数Km与Vm的求取8.影响酶反应速率的因素:底物浓度酶浓度产物浓度PH值温度激活剂抑制剂9.竞争性、非竞争性、和反竞争性抑制的概念及动力学表达式竞争性:抑制剂为底物类似物,酶结合位点结合阻碍底物一般可逆非竞争性:抑制剂与酶活性位点以外结合,不影响底物的结合,最终可形成三联复合物反竞争性:抑制剂不与游离酶结合,但与复合物ES结合形成三联复合物10.酶失活动力学模型及测定方法第五章固定化酶与固定化细胞(教材P15-17,39-46)1.固定化酶、细胞制备方法与特点固定化细胞:物理化学手段将细胞限制哎一定空间保持活性并连续使用2.固定化酶与游离酶区别3.评价固定化酶生物催化剂指标固定化酶活力偶联率及相对活力4.固定化酶促反应动力学本征速率及本征动力学代表酶的真实特性;固定化酶催化反应速率受扩散和传质影响;所测速率是宏观有效反应速率和游离酶不同。

《生化工程》学习指南

《生化工程》学习指南

《生化工程》学习指南一、课程性质生化工程,也称生物反应工程,是化学工程与生物技术的交叉学科,也是应用化学工程的原理与方法将生物技术的实验室成果进行工业开发的一门学科,是生物工程专业的一门核心课程。

该研究主要采用化学动力学、传递过程原理、设备工程学、过程动态学及最优化原理等化学工程学原理,也涉及到生物化学、微生物学、微生物生理学和遗传学等许多学科领域。

二、学习方法《生化工程》是一门理论与工程实践相结合的应用基础课程。

它重点研究了酶反应动力学、细胞反应动力学、理想反应器模型、传质与传递过程以及反应器的选择、设计与放大,这些内容都是相互关联,有机结合的。

在学习过程中,要理解各种理想数学模型的原理和推导过程,重点考察物料平衡,注意培养逻辑推理能力,多想、多看,理解并记住一些经典理论方程。

另外,以工程放大的角度,从点到面,系统思考一个生物过程体系的方方面面。

三、各章学习指南本课程是学习如何将实验室的研究成果进行工业化开发的一门学科,是工程放大的基础。

本课程的模式和公式比较多,有些必须要记住,有些可以推导或了解一下。

第一章绪论主要内容:从青霉素、链霉素的发现及其工业化生产中引出现代发酵工程及产业,生化工程的研究进展重点:生化工程的定义,生物反应过程的特点难点:了解生化工程与化学工程之间的差别与共同点。

第二章均相酶催化反应动力学主要内容:包括酶反应的特征,可逆酶反应的动力学,影响酶反应的因素重点:酶促反应的影响因素,米氏方程表达式,Km的含义,L-B双倒数法测定参数,别构酶的Hill方程,pH的对酶动力学的影响及pK-pH关系。

难点:反应级数判定和计算理解快速平衡学说与稳态学说之间的区别,会用两种学说进行反应动力学推导掌握几种不同可逆抑制的原理及动力学推导,包括竞争性抑制、非竞争性抑制和反竞争抑制第三章固定化酶反应动力学主要内容:包括固定化酶反应动力学的特征,外扩散限制反应,内扩散限制反应。

重点:固定化酶的定义、优缺点,几种固定化酶的方法,外扩散限制下的酶反应速率与传质关系,内扩散限制条件下的φ(Thile)西勒模数的意义,如何减少内扩散限制的对酶动力学的影响。

第七章-生化反应器

第七章-生化反应器

微生物反应器
动植物细胞反应器
第七章 生化反应器
反应器的特点与设计原则
生化反应( 生化反应(器)的特点
在接近中性的pH、 在接近中性的pH、较低的温度及近似细胞生理条件下进行 pH 使反应过程控制最优化, 使反应过程控制最优化,以达到最佳酶反应状态 维持最佳发酵状态, 维持最佳发酵状态,使细胞保持良好生长状态 可以定向的产生一些用一般化学方法难以甚至无法得到的 产品 极大多数生化反应皆在水相中进行
河南
第七章 生化反应器
反应器的种类及选择与操作 动物细胞培养生物反应器
设计必须考虑如下要求 安全因素:具备严密的防污染性能, 安全因素:具备严密的防污染性能,还应有防止反应器中 有害物质或生物体散播到环境的功能。 有害物质或生物体散播到环境的功能。 操作因素:便于操作和维护。 操作因素:便于操作和维护。
第七章 生化反应器
反应器的种类及选择与操作 生化反应( 生化反应(器)的种类 机械搅拌式反应器机械搅拌式反应器-发酵罐的部分部件
消泡器 消泡器的作用是将泡沫打破。最常用的形式有锯齿式、 消泡器的作用是将泡沫打破。最常用的形式有锯齿式、梳 状式及孔板式。 状式及孔板式。
甘肃
第七章 生化反应器
反应器的种类及选择与操作 生化反应( 生化反应(器)的种类 机械搅拌式反应器机械搅拌式反应器-发酵罐的部分部件
• 1、搅拌罐式反应器:
• (1)分批搅拌罐式反应器 • 优点是:装置较简单,造价较低,传质阻力很小,反应能 很迅速达到稳态。 • 缺点是:操作麻烦,固定化酶经反复回收使用时,易失去 活性,故在工业生产中,间歇式酶反应器很少用于固定化 酶,但常用于游离酶。
第七章 生化反应器
• 反应器的种类及选择与操作 • 酶反应器

《生物反应工程》课程笔记

《生物反应工程》课程笔记

《生物反应工程》课程笔记第一章绪论1.1 定义、形成与展望生物反应工程,简称BRE(Bioreaction Engineering),是一门应用化学工程原理和方法,研究生物反应过程和生物系统的科学。

它涉及到生物学、化学、物理学、数学等多个学科,是一门典型的多学科交叉领域。

生物反应工程的研究对象包括微生物、细胞、酶等生物催化剂,以及它们在生物反应器中的行为和相互作用。

生物反应工程的形成和发展与生物技术的快速崛起密切相关。

生物技术是指利用生物系统和生物体进行物质的生产、加工和转化的技术。

随着生物技术的不断发展,生物反应工程逐渐成为生物技术领域的一个重要分支,为生物制品的生产提供了重要的理论支持和实践指导。

展望未来,生物反应工程将继续在生物技术领域发挥重要作用。

随着科学技术的进步和生物产业的发展,生物反应工程将不断完善和发展,为人类的生产和生活带来更多的便利和福祉。

特别是随着合成生物学、系统生物学等新兴学科的发展,生物反应工程将面临新的机遇和挑战,有望在生物制造、生物医药、生物能源等领域取得更大的突破。

1.2 生物反应工程的主要内容生物反应工程的主要内容包括以下几个方面:(1)生物反应动力学:研究生物反应过程中反应速率、反应机理和反应物质量的变化规律。

包括酶促反应动力学、微生物反应动力学、细胞反应动力学等。

(2)生物反应器设计:根据生物反应的特性和要求,设计合适的生物反应器,使其能够高效、稳定地进行生物反应。

包括反应器类型的选择、反应器尺寸的确定、反应器内部构件的设计等。

(3)生物反应器操作:研究生物反应器中生物反应的运行规律,优化操作条件,提高生物反应的效果。

包括分批式操作、流加式操作、连续式操作等。

(4)生物反应器优化:通过对生物反应器的设计和操作进行优化,提高生物反应的产率和质量。

包括过程优化、参数优化、控制策略优化等。

(5)生物反应器控制:研究生物反应过程中的控制策略和方法,实现对生物反应过程的稳定控制。

第七章 生物反应器的检测和控制 2生物反应过程常用检测方法及仪器

第七章  生物反应器的检测和控制 2生物反应过程常用检测方法及仪器

7.2 生物反应过程常用检测方法及仪器
2、传感器性能指标 (1)准确度(Accuracy) 准确度是指真实数据和测量数据之间的差别。由于很难 获得绝对意义上的真实数据,因此也就很难获得绝对的准确 度。准确度高低依赖于精确的标定过程和一些外部条件,如, 传感器在反应器内的放置位置等。当传感器从一个反应器移 到另一个反应器,或者反应器内情况发生改变,或者传感器 改变了放置位置,都需要重新标定,否则将产生测量误差。
7.2 生物反应过程常用检测方法及仪器
(4)响应时间
响应时间代表了传感器对测量参数变化响应的快慢,可
以简单地用时间常数τ表示。时间常数τ是以下方程中(7-
1)的常数:
y=y0[1-e-t/τ]
(7-1)
这个方程表示了当传感器从被测参数为0的系统中快速转
移到被测参数为y0的体系,测量显示值y和时间t 的变化关系。
7.2 生物反应过程常用检测方法及仪器
图7-3 玻璃电极结构原理示意图
7.2 生物反应过程常用检测方法及ห้องสมุดไป่ตู้器
图7-4是商业上使用的pH电极的外观和各部分组成。 这种电极将测量极和参比极做到一起,又称复合pH电 极。安装在生物反应器上的复合pH电极都带有不锈钢保护 套,以免培养液内固体伤害电极头部。 像溶氧电极一样,pH电极也需要进行原位标定,在蒸 汽灭菌前进行。玻璃pH电极在使用前先要浸泡在水溶液中 一段时间使玻璃膜充分润湿,保存时要将探头浸泡在和参 比电解质相同的缓冲溶液中以免玻璃膜过于干燥影响日后 使用。
7.2 生物反应过程常用检测方法及仪器
图7-2是某种商业溶解氧浓度电极外观图和安装在生物反 应器上进行测量时的情况。
图7-2 某种商业溶氧测量电极外观和使用时的情况

生物反应工程第二版课后习题答案

生物反应工程第二版课后习题答案

生物反应工程第二版课后习题答案生物反应工程第二版课后习题答案生物反应工程是一门研究利用生物体进行工程化生产的学科,它涉及到生物体的生理学、微生物学、化学工程学等多个学科的知识。

生物反应工程的目标是通过合理设计和优化反应条件,提高生物体的生产能力和产物质量,从而实现高效、可持续的生产。

在学习生物反应工程的过程中,课后习题是检验学生对知识掌握程度的重要方式。

下面是《生物反应工程第二版》课后习题的答案,供大家参考。

第一章:生物反应工程概述1. 生物反应工程是一门研究利用生物体进行工程化生产的学科。

2. 生物反应工程的目标是通过合理设计和优化反应条件,提高生物体的生产能力和产物质量。

3. 生物反应工程涉及到生物体的生理学、微生物学、化学工程学等多个学科的知识。

第二章:微生物生长动力学1. 微生物生长动力学是研究微生物生长和代谢的数量关系的学科。

2. 在生物反应工程中,通常使用生长速率方程来描述微生物生长的动力学过程。

3. 常见的生长速率方程有Monod方程、麦克斯韦方程等。

第三章:反应器设计与操作1. 反应器是进行生物反应工程的核心设备,其设计与操作对反应过程的效果有重要影响。

2. 常见的反应器类型有批式反应器、连续流动反应器、气液循环反应器等。

3. 反应器的设计应考虑反应物的输送、温度、pH值等因素。

第四章:质量传递与传质过程1. 质量传递是指物质在反应器中的传输过程,包括物质的输送和扩散。

2. 传质过程对反应的速率和效果有重要影响,需要进行合理的设计和优化。

3. 常见的传质方式有对流传质、扩散传质等。

第五章:反应动力学与反应机理1. 反应动力学是研究反应速率与反应物浓度之间关系的学科。

2. 反应机理是指反应过程中发生的化学反应步骤和反应物之间的转化关系。

3. 反应动力学和反应机理的研究对于反应过程的优化和控制具有重要意义。

总结起来,生物反应工程是一门综合性学科,涉及到生物体的生理学、微生物学和化学工程学等多个学科的知识。

《生物反应工程》课件

《生物反应工程》课件

04
生物反应工程的应用实例
生物燃料的生产
生物燃料的生产是生物反应工程的重要应用之一。通过利用 微生物或酶,将植物油、废弃油脂、二氧化碳等转化为可再 生能源,如生物柴油和生物乙醇。
生物燃料的生产有助于减少对化石燃料的依赖,降低温室气 体排放,并促进可持续能源的发展。
生物塑料的生产
生物塑料是利用生物反应工程生产的 可降解塑料,具有环保、可持续的优 点。
农药的生产等。
生物反应工程的重要性
提高生产效率
通过优化生物反应过程, 可以提高生产效率,降低
生产成本。
保护环境
优化生物反应过程可以减 少废物的产生,降低对环
境的污染。
促进可持续发展
生物反应工程的进步有助 于推动可持续发展,促进 人类社会与自然环境的和
谐共生。
02
生物反应工程的基本原理
生物反应工程的基本原理
酶的生产和应用
酶是生物反应工程中的关键物质,具 有高效催化的特点。
通过微生物培养或酶的提取,可以生 产出各种酶,用于催化各种化学反应 ,如水解、酯化、氧化还原等。酶在 制药、化工、食品等领域有广泛应用 。
05
生物反应工程的未来发展
提高生物反应的效率
优化微生物菌种
通过基因工程技术对微生物菌种 进行改良,提高其代谢效率和产 物产量。
节能减排
研究节能减排技术,降低 生物反应过程中的能耗和 排放,减少对环境的负面 影响。
绿色生产
研究绿色生产技术,减少 对原材料和能源的消耗, 降低生产过程中的环境污 染,实现可持续发展。
谢谢您的聆听
THANKS
GelTorrent堞油烟-毡, mehizer 油烟 coat,毡:,毡,毡:a毡毡,长安一 层 chip,长安一体的 MARS Coast陲:11,毡:,毡:蔫 (1 *1毡,毡, 悟,毡_毡,毡:K毡,毡*,毡毡长安毡 股市道实战 on, on, on-悟/

第七章 反应-分离耦合催化反应新技术

第七章  反应-分离耦合催化反应新技术

• 根据以上原则,催化精馏塔的装填通常采用如下4种方式: • (1)板式塔装填方式; • (2)填充式装填方式; • (3)悬浮式装填方式; • (4)催化剂散装填料。
板式塔催化剂填装示意图
1-升气孔,2-塔板,3-底隙,4-催化剂筐,5-集液板, 6-催化剂,7-提液管,8-填料,9-填料筐,10-塔板液层
催化反应精馏塔示意图
• (2)填充式装填方式
捆扎包的结构
催化剂在塔内的布置
• (3)悬浮式装填方式
(4)催化剂散装填料 散装催化剂填料主要是由离子交换树脂直接加工成的填料。
散装催化剂填料的作用:具有催化作用和散装填料的分离作用
散装催化精馏塔的特点:
具有单位体积催化精馏塔效率最高; 反应段比表面积和空隙率大; 床层压降低等特点。
• 近年来,诸如催化精馏、膜精馏、吸附精馏、反应萃取、络合吸附、 反胶团、膜萃取、发酵萃取、络合吸附、化学吸收和电泳萃取等新型 耦合分离技术得到了长足的发展,并成功地应用于生产。它们综合了 两种分离技术的优点,具有独到之处。
• 例如催化精馏在MTBE等工艺中的成功应用简化了流程,提高了收率 和降低单耗。
1%
表皮层,孔径
(8-10)×10-10m
过渡层,孔径 200×10-10m
99%
多孔层,孔径 (1000-4000) ×10-10m
显 微 镜 下 膜 的 照 片
中空纤维超滤膜结构
单内皮层
双皮层
蛋白质的精制
再生剂
亲 和 剂
蛋白质混合液
再生器
洗脱器
亲和剂
超滤器 洗脱剂
产品蛋白
吸附池
超滤器
杂质蛋白
• 简介
原料预处理

第7章生物反应器及其工程放大

第7章生物反应器及其工程放大
如需
工业重要特性 主要应用领域
人事费用高 流速受冲出限制 空压机出口压力 要高 可采用鼓风机 需转子高速旋转 人事费用高 无需通风设备 剪切应力小
需光源
大多数工业生产 污水处理、SCP生产等 有机酸,如柠檬酸生产等
面包酵母等生产 乙酸、酵母等生产 麸曲、酶制剂和麦芽生产等 酒精、啤酒等生产 杂交瘤单克隆抗体、烟草细胞 培养等 微藻等生产
7-1 生物反应器设计基础
1 生物反应器的特点与生物学基础
内容提纲
4
2 生物反应器的分类和结构特点 3 生物反应器中的混合
ห้องสมุดไป่ตู้生物反应器传热
7-1 生物反应器设计基础
生物反应器定义:
生物反应器(Bioreactor)是指任何提供生物活性环境的 制造或工程设备,是有效利用生物反应机能的系统或场所。
生物工业中使用的生物反应器有多种型式,即使在同一行 业中也可能采用不同型式的生物反应器。
基因、细胞代谢和反应器工程水平上多尺度的系统反应,虽 然,不同尺寸的反应器可能只是大小的不同,但是引起的细 胞内的生物反应的种类和速度可能大不相同,因此,达到上 述目的存在一定的挑战。
7-1-1 生物反应器设计特点与生物学基础
4)生物反应器选型与设计的要点 (1)选择适宜的生物催化剂。
7-1-1 生物反应器设计特点与生物学基础
表1 生物反应器的操作特性
反应器类型 pH 温度
控制 控制
批式(通用罐) 如需 如需 连续搅拌罐式 如需 如需 气升式反应器 如需 如需
鼓泡式反应器 自吸式反应器 通风制曲设备 嫌气反应器
动植物细胞用 反应器 光合反应器
如需 如需 难控 如需 如需
如需
如需 如需 如需 如需 如需

生化工程知识点

生化工程知识点

生物反应工程知识点第一章绪论*生物反应过程:将生物技术的实验室成果经工艺及工程开发而成为可供工业生产的工艺过程。

技术产品的生产过程。

生物反应过程最重要特征:有生物催化剂的参与*由四部分组成:原材料的预处理---生物催化剂的制备---生物反应器及反应条件的选择与监控---产品的分离纯化。

整个生物反应过程以生物反应器为核心把反应前与后称为上游加工和下游加工。

重点内容:1)建立生物反应过程动力学,以确定包括传质因素影响在内的生物反应过程的宏观速率;2)建立与设计生物反应器,以保证为生物反应过程提供适宜的物理和化学环境,实现反应过程的优化。

反应过程的特点:1)采用可再生资源为主要原料,来源丰富,价格低廉,原料成分难以控制。

2)反应条件温和。

3)生物催化剂易失活,难以长期使用。

4)生产设备较简单、能耗较低。

5)反应基质与产物浓度不能太高,生产效率较低。

6)反应机理复杂,较难检测与控制。

7)反应液杂质多,分离提纯困难1.2.2.1生物反应动力学①本征动力学:(微观动力学)它是指没有传递等工程因素影响时,生物反应固有的速率。

该速率除反应本身的特性外,只与反应组分的浓度、温度、催化剂及溶剂性质有关,而与传递因素无关。

②宏观动力学:(反应器动力学)它是指在一反应器内所观测得到的总反应速率及其影响因素,这些影响因素包括反应器的形式和结构、操作方式、物料的流动与混合、传质与传热等。

研究方法(细胞反应动力学模型--数学模型方法):机理模型(结构模型)、半经验模型、经验模型生物技术的最终目的:建立工业生产过程,并且又以生化反应过程为核心。

第二章均相酶催化反应动力学酶催化作用的特点:高效的催化活性;高度的专一性;催化作用条件温和;酶活性的不稳定性(易变性失活);常需要辅因子的参与(金属离子、辅酶、辅底物);酶活性的可调节性(酶浓度调节、共价修饰调节、抑制调节、反馈调节、神经体液调节、别构调节)酶催化反应类型:氧化还原酶类;转移酶类;水解酶类;裂合酶类;异构酶类;合成酶类(连接酶类)酶的转化数Kcat:每个酶分子每分钟催化底物转化的分子数,是酶催化效率的一个指标催化周期T=1/KcatKm 是酶的特征常数之一,一般只与酶的性质有关,而与酶的浓度无关,可用于鉴定酶。

生物化工工艺学--第7章--生物反应器

生物化工工艺学--第7章--生物反应器

十一 冷却装置 • 5M3以下发酵罐一般采用夹套冷却。大型发酵罐采用列管 冷却(四至八组)。带夹套的发酵罐罐体壁厚要按外压计 算。 • 夹套内设置螺旋片导板,来增加换热效果,同时对罐身起 加强作用。冷却列管极易腐蚀或磨损穿孔,最好用不锈钢 制造。
十二 发酵罐装料容积 • 发酵罐装料容积:在一般情况下,装料高度取罐圆柱 部分高度,但须根据具体情况而定。采用有效的机械 消泡装置,可以提高罐的装料量。
第二节 鼓泡反应器
鼓泡反应器是以气体为分散相、液体为连续相、涉及气液界面的反应器。 高径比较大的反应器常称为塔式反应器。 特 点:结构简单,易于操作,操作成本低,混合和传质传热性能好,因此广 泛应用于生物工程行业中,例如乙醇发酵、单细胞蛋白发酵、废水处理、 废气处理(例如用微生物处理气相中的苯)等。鼓泡反应器无传动部件,
• 通常通风管的空气流速取20米/秒。为了防止吹管吹入的空 气直接喷击罐底,加速罐底腐蚀,在空气分布器下部罐底上 加焊一块不锈钢补强。可延长罐底寿命。 • 通风量在0.02~0.5ml/sec时,气泡的直径与空气喷口直径的 1/3次方成正比。也就是说,喷口直径越小,气泡直径也越 小。因而氧的传质系数也越大。但是生产实际的通风量均超 过上述范围,因此气泡直径仅与通风量有关,而与喷口直径 无关。
原生流速与搅拌转速成正比,次生流速近似地与搅拌转速的平方成正比。因此, 当转速提高时,主要靠次生流加速流体的轴向混合,使传热传质速率提高。因 此,新型桨型的开发主要侧重于使轴向流速得到加强。
二、发酵罐的结构
• 罐体 :由圆柱体及椭圆形或碟形封头焊接而成,材料为碳钢或不 锈钢,对于大型发酵罐可用衬不锈钢板或复合不锈钢制成,衬里 用的不锈钢板厚为2-3毫米。 • 为了满足工业要求,在一定压力下操作、空消或实消,罐为一个 受压容器,通常灭菌的压力为2.5公斤/厘米2(绝对压力)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 生物反应器中的传质过程
主要内容
生物反应体系的流变学特性 氧的传质反应模型 溶解氧,摄氧率和k 溶解氧,摄氧率和kLa的测定方法
7.1 生物反应体系的流变学特性
流变学(Rheology)是研究物质在力作用 流变学(Rheology) 下形变和流动的科学 流变特性影响发酵液混合的程度及其传质、 流变特性影响发酵液混合的程度及其传质、 传热的速率฀ 发酵液是由固、 气构成的多相体系, 发酵液是由固、液、气构成的多相体系, 存在不同相间传质、 存在不同相间传质、传热过程฀
气相 气膜
液相
液膜
氧从气泡到细胞中传递过程示意图
气液界面阻力1/k 气膜阻力 1/k1;气液界面阻力1/k2 ; 液膜阻力 1/k3; 反应液阻力 1/k4 细胞外液膜阻力 1/k5; 液体与细胞之间界面的阻力 1/k6 ; 细胞之间介质的阻力 1/k7 ;细胞内部传质的阻力 1/k8
若总阻力计为R, 若总阻力计为 ,则,
微生物
诺尔斯氏链霉菌 产黄青霉菌 产黄青霉菌 产黄青霉菌 灰色链霉菌 雪白链霉菌 卡那霉素菌 卡那霉素链霉菌 卡那霉素链霉菌 卡那霉素链霉菌
发酵液流变特性
牛顿性流体 假塑性流体 塑性流体 胀塑性流体 塑性流体 塑性流体 假塑性流体 塑性流体 假塑性流体 假塑性流体
7.2氧的传递特性 氧的传递特性
氧的传递过程
营养物质通过细胞膜的传递形式主要有: 营养物质通过细胞膜的传递形式主要有:
被动传递(又称单纯扩散) 被动传递(又称单纯扩散) 主动传递(又称主动运输) 主动传递(又称主动运输) 促进传递(又称促进扩散) 促进传递(又称促进扩散)
一种溶解物从浓度C1一边转送到浓度 一 一种溶解物从浓度 一边转送到浓度C2一 一边转送到浓度 边时,有以下规则: 边时,有以下规则: 自由能的变化△ 为 自由能的变化△G为:
2
通风培养液中氧的物料衡算: 通风培养液中氧的物料衡算:
dC = k L a (C * − C ) − QO2 ⋅ X dt
当停止通风, 当停止通风,有:
C=−
dC = −QO2 ⋅ X dt
1 dC + QO2 ⋅ X + C * k L a dt

dC + Q O2 ⋅ X dt
∆G = RGT ln C2 C1
式中, 式中,RG和T分别为气体常数和绝对温度
7.3 k a的测定方法及其影响因素 的测定方法及其影响因素
L
7.3.1 kLa的测定方法 的测定方法
亚硫酸盐法
2Na2SO3+O2
Cu2+
2Na2SO4 Na2SO4 + 2HI
Na2SO3 + I2 + H2O I2+ 2Na2S2O3
R=
∑R
i =1
n
i
i = 1,2,3......n
式中R 阶段的分阻力 阶段的分阻力。 式中 i为i阶段的分阻力。 稳态时,各阶段的氧传递速率N为一定,则 为一定, 稳态时,各阶段的氧传递速率 为一定
N= ∆C n ∆C1 ∆C 2 = = ......... = R1 R2 Ri (i = n)
×1000
t:两次取样时间间隔 : V0:取样分析液体积
优点:不需专用的仪器, 优点:不需专用的仪器,适用于摇瓶及小型试验设备中 的测定。 kLa的测定。 缺点:测定的是亚硫酸钠溶液的体积溶氧系数k 缺点:测定的是亚硫酸钠溶液的体积溶氧系数kLa,而不 是真实的发酵液中的k 是真实的发酵液中的kLa。
( dC + QO 2 X ) dt
为一直线, 为一直线,直线斜率 − 由此可计算出kLa。 由此可计算出kLa。 kLa
1 kLa

优点: 优点:只需要单一的溶氧电 极,可以测得实际发酵系统 中的k 中的kLa值
流变特性分类
根据流动状态方程中的有无τ 根据流动状态方程中的有无τ0和n的取值范 围,流变特性分如下几类
牛顿流体 非牛顿流体
假塑型流体 (Pseudoplastic) 膨胀型流体(Dilatant) 膨胀型流体 平汉塑型流体(Bingham) 平汉塑型流体 凯松塑型流体(Casson) 凯松塑型流体
P
气液 膜膜
气 相 主 流
Ci
Pi C
液 相 主 流
传氧方向 气液界面附近氧传递的双膜理论模型
N = k g ( P − Pi ) = k L (Ci − C ) = KG(P - P*) = KL(C * -C)
N:传氧速率(kmol/m2.h) :传氧速率 kL:液膜传质系数(m/h) 液膜传质系数 kg:气膜传质系数 [kmol/(m2.h.atm)] P*为与液相主流中溶氧浓度 相平衡的氧的分压强(atm) 为与液相主流中溶氧浓度C相平衡的氧的分压强 为与液相主流中溶氧浓度 相平衡的氧的分压强
C*为与气相主流中氧的分压强相平衡的氧的浓度 为与气相主流中氧的分压强相平衡的氧的浓度(kmol/m3) 为与气相主流中氧的分压强相平衡的氧的浓度 KG:以氧的分压差为总推动力的总传质系数 以氧的分压差为总推动力的总传质系数[kmol/(m2.h.atm)] KL:以氧的浓度差为总推动力的总传质系数 以氧的浓度差为总推动力的总传质系数(m/h)
细胞浓度
发酵液细胞浓度低,且形态是球形(如细菌、 发酵液细胞浓度低,且形态是球形(如细菌、 酵母等), ),属牛顿流体 酵母等),属牛顿流体
细胞形态
丝状菌悬浮液菌呈丝状或团状
胞外产物
如多糖发酵体系
常见培养液的流变学特性
产物
制霉菌素 青霉素 青霉素 青霉素 链霉素 新生霉素 卡那霉素 曲古霉素 曲古霉素 非洛霉素
粘 度 对 不 同 过 程 的 影 响
7.1.1流体的流变学特性 流体的流变学特性
基本概念
y
A F
剪切力(τ): 剪切力(τ):单位流 (τ) 体面积上的内摩擦力 τ=F/A 剪切速率(γ)(速度梯 剪切速率(γ)(速度梯 (γ)( 度或切变率) 度或切变率) γ=du/dy 表观粘度 τ µa = γ
亨利定律: 亨利定律:C*=P/H或P*=HC 或 H为亨利常数,随气体及溶剂及温度而异,它表示气体 为亨利常数, 为亨利常数 随气体及溶剂及温度而异, 溶于溶剂的难易。 溶于溶剂的难易。
1 1 1 = + K L H ⋅ kg kL
氧气H值很大,因此kL≈KL 氧气H值很大,因此
N = k L (C ∗ − C )
式中 ∆C1 , ∆C 2 ......∆C n 为各阶段的溶解氧浓度差。 为各阶段的溶解氧浓度差。
氧的传递模型
停滞膜模型(双膜理论 停滞膜模型(双膜理论two-film theory ):
气膜和液膜在任何流体动力学条件下,均呈滞流状态。 气膜和液膜在任何流体动力学条件下,均呈滞流状态。 界面上不存在氧传递阻力。 界面上不存在氧传递阻力。 在两膜以外的气液两相的主流中,由于流体充分流动, 在两膜以外的气液两相的主流中,由于流体充分流动, 氧的浓度基本上是均匀的,也就是无任何传质阻力。 氧的浓度基本上是均匀的,也就是无任何传质阻力。
τ = f (γγ= τ 0 + Kγ n )
牛顿型 假塑型 膨胀型 平汉塑型 凯松塑型
τ = µγ
τ = Kγ n ,0 < n < 1
τ = KK pγ
τ = τ 1 2 + K 'p γ 1 2 0
7.1.2微生物培养液的流变学特性 微生物培养液的流变学特性
Na2S4O6+2NaI
kLa =
Na C*
将测得得反应液中残留的Na 浓度与取样时间作图, 将测得得反应液中残留的 2SO3浓度与取样时间作图, 由Na2SO3消耗曲线的斜率求出 dC Na2 SO 3 dt

kLa =
Na C
*
=
dC Na
C
2 SO 3 *
dt
Na =
∆VNa2 S 2O3 C Na2 S 2O3 4tV0
动态法
先提高发酵液中溶氧浓度, 先提高发酵液中溶氧浓度,使其远高于临界 溶氧浓度处,稳定后停止通气而继续搅拌, 溶氧浓度处,稳定后停止通气而继续搅拌,此时 溶氧浓度直线下降,待溶氧浓度降至C 之前, 溶氧浓度直线下降,待溶氧浓度降至 crit之前, 恢复供气,发酵液中溶氧即开始上升。 恢复供气,发酵液中溶氧即开始上升。在这种条 件下,并不影响微生物生长。而且由于时间较短, 件下,并不影响微生物生长。而且由于时间较短, 增量不计, 为常量。 X增量不计,Qo 为常量。
u+du dy u u
流变性方程
的作用下, 当给定的流体在外加剪切力τ的作用下,一定产生相应 的剪切速率γ 的剪切速率γ,两者之间的关系为该流体在给定温度和压 力下的流变特性: 力下的流变特性:
τ = f (γγ= τ 0 + Kγ n )
K稠密度指数,或称指数律系数Pa·s 稠密度指数,或称指数律系数 稠密度指数 为屈服应力Pa τ0为屈服应力 n流变性指数,或称指数律的方次 流变性指数, 流变性指数
对C作图, 作图,
从所得直线的斜率求出k 并由截距得到C 从所得直线的斜率求出kLa值,并由截距得到C*
用溶氧电极测定整个过程的 溶解氧浓度C 在停气阶段, 溶解氧浓度C。在停气阶段, C的降低与t成线性关系,直 的降低与t成线性关系, 线的斜率 −QO2 X 。恢复通气 后,C逐渐回升,在恢复平衡 逐渐回升, 的过渡阶段内,C对 的过渡阶段内,
Na = k L a(C * − C )
a ——单位体积反应液中气液比表面积 单位体积反应液中气液比表面积 Na——单位体积反应液中氧的传质速率 单位体积反应液中氧的传质速率mol/m3s; 单位体积反应液中氧的传质速率 ; k a——体积传质系数 -1 体积传质系数s 体积传质系数
相关文档
最新文档