奥数最大公约数与最小公倍 数例题、练习及答案

合集下载

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a,b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作[a,b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

(90,42)=6.至少能剪90×42÷(6×6)=105(块).例3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1.[2,3,4,5,6,7]=420,最小数是:420+1=421。

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室______ 姓名_________ 学号________【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a, b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作]a, b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a, b)x[ a, b] =a x b;(2)若a>b,则a- b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168 X 4 - 24 = 28.例2•将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

( 90, 42) =6.至少能剪90X 42-( 6 X 6) =105 (块).例3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473 ;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43 X 11 , 407 = 37 X 11,所以甲数是47,甲乙两数的乘积应为:47X 11=517 或1X477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2, 3, 4, 5, 6, 7的最小公倍数加上 1. [2, 3, 4, 5, 6, 7] =420, 最小数是:420+1=421。

奥数最大公约数及最小公倍数例题、练习及答案

奥数最大公约数及最小公倍数例题、练习及答案

最大公约数与最小公倍数(一)教学目标: 1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。

2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。

3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。

教学过程:一、基本概念知识1.公约数和最大公约数 ①如果一个自然数a 能被自然数b 整除,那么称a 为b 的倍数,b 为a 的约数。

②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

例如:12的约数有:1,2,3,4,6,12;18的约数有:1,2,3,6,9,18。

自然数n a a a ,,,21 的最大公约数通常用符号(n a a a ,,,21 )表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。

(8,12)=4,(6,9,15)=3。

2.公倍数和最小公倍数③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

例如:12的倍数有:12,24,36,48,60,72,84,…18的倍数有:18,36,54,72,90,…自然数n a a a ,,,21 的最小公倍数通常用符号[n a a a ,,,21 ]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。

[8,12]=24,[6,9,15]=90。

3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

用短除法求若干个数的最大公约数与最小公倍数的区别:求n 个数的最大公约数:(1)必须每次都用n个数的公约数去除;(2)一直除到n个数的商互质(但不一定两两互质);(3)n个数的最大公约数即为短除式中所有除数的乘积。

最大公因数和最小公倍数应用的典型例题和专题练习

最大公因数和最小公倍数应用的典型例题和专题练习

最大公因数和最小公倍数应用的典型例题和专题练习TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】最大公因数和最小公倍数应用的典型例题和专题练习[典型例题]例1、有三根铁丝,一根长18米,一根长24米,一根长30米。

现在要把它们截成同样长的小段。

每段最长可以有几米一共可以截成多少段分析与解:截成的小段一定是18、24、30的最大公因数。

先求这三个数的最大公因数,再求一共可以截成多少段。

解答:(18、24、30)=6(18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。

例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米能截多少个正方形分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。

解答:(36、60)=12(60÷12)×(36÷12)=15个答:正方形的边长可以是12厘米,能截15个正方形。

例3、用96朵红玫瑰花和72朵白玫瑰花做花束。

若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束每个花束里至少要有几朵花分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。

解答:(1)最多可以做多少个花束(96、72)=24(2)每个花束里有几朵红玫瑰花96÷24=4朵(3)每个花束里有几朵白玫瑰花72÷24=3朵(4)每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。

第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。

(完整word版)五年级奥数-最大公因数和最小公倍数

(完整word版)五年级奥数-最大公因数和最小公倍数

最大公因数和最小公倍数基本概念1.公约数和最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

2.公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。

例题分析例1 用一个数去除30、60、75,都能整除,这个数最大是多少?例2 一个数用3、4、5除都能整除,这个数最小是多少?例3 有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?例4 加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?例5 一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?练习提高1.一个数用3、4、5除都余1,这个数最小是多少?2.一盒钢笔,可以平均分给2、3、4、5、6个同学,这盒钢笔最少有多少支?3.花花、林林、和阳阳三人在一个椭圆的跑道上跑步,花花3分钟跑了一圈,林林4分钟跑了一圈,阳阳5分钟跑了一圈,她们同时从A点一起同向出发,多少分后,三人再次在A 点同时出发?4.有批书大约300到400本。

包成每包12本,剩下11本;每包18本,缺1本;每包15本,就有7包每包各多2本,这批书有多少本?5.有一个钟,每走9分钟亮一次灯,每到整点时响一次铃,中午12点时,既响铃又亮灯,问下一次既响铃又亮灯是几点钟?6.7月6日,宝柱从避暑山庄打电话给乾隆问好,贾六来看望乾隆,春喜在打扫房间。

如果春喜每隔3天打扫一次,宝柱每隔6天打一次电话,贾六每隔5天看望一次,则至少经过多少天,问好、看望、打扫这三件事才能同时发生?7.一段长90厘米的绳子,每隔2厘米点一个点,再每隔3厘米点一个点,最后在有点的地方,将绳子剪段,共可剪成几段?8.一张长方形白纸,长1.36米,宽0.8米,要剪成同样大小的正方形,并使它们的面积尽可能的大,剪完后又正好没有剩余,可剪出多少个正方形?9.把160只铅笔、128个练习本、96册故事书最多可以分成多少份同样的奖品,每份奖品的组成怎样?10.美丽加工厂加工一批零件,每个零件需要一个螺栓,三个螺母,7个螺钉,已知每个工人每小时可完成3个螺栓或12个螺母或18个螺钉,要想能均匀生产,使每件零件都配上套,生产这三种零件各需安排多少人?抽测综合练习:1、在下面3个数中,最接近1的是()。

最大公约数和最小公倍数奥数

最大公约数和最小公倍数奥数

最大公约数和最小公倍数例1、一个长方体木块,长2.7米,宽1.8分米,高1.5分米;要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米思路导航2.7米=270厘米,1.8分米=18厘米,1.5分米=15厘米;要把长方体切成大小相等的正方体,不许有剩余,正方体的棱长应该是长、宽、高的公约数;现要求正方体的棱长最大,所以棱长就是长、宽、高的最大公约数;270,18,15=3 3厘米=0.3分米答:正方体的棱长最大是0.3分米;练习1、有50个梨、75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组练习2、有三根钢管,它们的长度分别是240厘米,200厘米,480厘米,如果把它们截成同样长的小段,且不许有剩余,每小段最长可以是多少厘米例2、一个数除200余4,除300余6,除500余10;求这个数最大是多少思路导航200-4=196,300-6=294,500-10=490;196、294和490都是这个数的倍数;196=2×2×7×7294=2×3×7×7490=2×5×7×7则196、294和490的最大公因数是:2×7×7=98;答:这个数最大是98;练习1、一个数除425余5,除500少4,除300余6,这个数最大是多少练习2、如果把110本练习本平均分给五1班同学,则多5本;如果把210本练习本平均分给这个班同学则正好分完;如果把240本练习本平均分给这班同学,还少5本,五1班最多有多少名同学例3、一条道路由甲村经过乙村到丙村;已知甲、乙村相距360米,乙、丙村相距675米;现在准备在路边栽树,要求相邻两棵树之间距离相等,并在甲、乙两村和乙、丙两村的中点都要种上树,求相邻两棵树之间的距离最多是多少米思路导航因为要在甲、乙,乙、丙两村的中点栽上树,甲、乙,乙、丙两村距离的一半分别是360÷2=180米,675÷2=337.5米;因为360与675的最大公因数为45,且360÷2=180、675÷2=337.5,所以180与337.5的最大公因数为45÷2=22.5,也就是说相邻两棵树之间的最大距离是22.5米;答:相邻两棵树之间的距离最多是22.5米;练习1、一条公路由A经B到C.已知A、B相距300米,B、C相距200米.现在路边植树,要求相邻两树间的距离相等,并在B点及AB、BC的中点上都要植一棵,那么两树间的距离最多有多少米练习2、有336支铅笔,252块橡皮,210个文具盒,用这些文具,最多可以分成多少份同样的礼物在每份礼物中,铅笔、橡皮、文具盒各有多少例4、已知两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少思路导航这是一道关于最大公因数和最小公倍数的题目,根据求两个数的最大公因数和最小公倍数的方法;根据题意,先分别把15和90分解质因数;再根据求两个数的最大公因数和最小公倍数的方法,找出原来两数分别是多少;然后进一步分析,是否还有其它的可能,把所有可能的情况找全即可;15=3×590=2×3×3×5则这两个数分别是:15×2=3015×3=45或者是:3×5=1515×2×3=90答:这两个数分别是30、45或者是15、90;练习1、两个数的最大公约数是12,最小公倍数是60,求这两个数的和是多少练习2、两个自然数的和是52,它们的最大公约数是4,最小公倍数是144.这两个自然数各是多少例5、今年祖父的年龄是小明的6倍,几年后,祖父的年龄将是小明的5倍,又过几年以后,祖父的年龄是小明年龄的4倍.问祖父今年多少岁思路导航于祖父与小明的年龄差是一定的,今年二者的年龄差是小明年龄的6-1=5倍,以后是5-1=4倍,4-1=3倍,这说明年龄差是5,4,3的倍数,能被5,4,3整除,所以其最小公倍数是60,这个数是60的倍数,显然120和180是不可能的,所以只能是60,因此今年小明的年龄是60÷5=12岁,则祖父的年龄是12×6=72岁.练习1、有一堆苹果,无论是5个一数,还是8个一数,或是12个一数,都正好数完,而没有剩余.这堆苹果至少有多少个练习2、甲、乙、丙三人沿一环形跑道跑步,甲跑一圈要60秒,乙跑一圈要40秒,丙跑一圈要50秒.三人同时从起点出发后,保持速度不变,至少再过多长时间,他们又在起点相遇例6、一块砖长20厘米,宽12厘米,厚6厘米,要堆成正方体至少需要这样的砖头多少块思路导航正方体的棱长应该是长方体长宽高的公倍数,20、12、6的最小公倍数是60堆成正方体至少需要这样的砖头:60×60×60÷20×12×6=150块练习1、用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块练习2、有200块长6厘米、宽4厘米、高3厘米的长方体木块,要把这些木块堆成一个尽可能大的正方体,这个正方体的体积是多少立方厘米例7、有一个自然数,被10除余7,被7除余4,被4除余1.这个数最小是多少思路导航由题意得,有一个自然数除以10余7,除以7余4,除以4余1就是:这个自然数除以10缺3,除以7缺3,除以4缺3,求出10、7、4的最小公倍数,再减去3即可.10,7,4=140 140-3=137答:这个自然数最小是137.练习1、学校六年级有若干个同学排队做操,如果3人一行余2人,7人一行余2人,11人一行也余2人,六年级最少有多少人练习2、一个数能被3,5,7整除,但被11除余1.这个数最小是多少。

奥数最大公因数最小公倍数讲义及答案

奥数最大公因数最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a,b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作[a,b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1.[2,3,4,5,6,7]=420,最小数是:420+1=421。

奥数最大公约数与最小公倍数例题、练习及答案

奥数最大公约数与最小公倍数例题、练习及答案

最大公约数与最小公倍数(一)教学目标:1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。

2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。

3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。

教学过程: 一、基本概念知识1.公约数和最大公约数①如果一个自然数a 能被自然数b 整除,那么称a 为b 的倍数,b 为a 的约数。

②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。

自然数n a a a ,,,21 的最大公约数通常用符号(n a a a ,,,21 )表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。

(8,12)=4,(6,9,15)=3。

2.公倍数和最小公倍数③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

例如:12的倍数有:12,24,36,48,60,72,84,… 18的倍数有:18,36,54,72,90,… 自然数na a a ,,,21 的最小公倍数通常用符号[na a a ,,,21 ]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。

[8,12]=24,[6,9,15]=90。

3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

用短除法求若干个数的最大公约数与最小公倍数的区别: 求n 个数的最大公约数:(1) 必须每次都用n 个数的公约数去除;(2) 一直除到n 个数的商互质(但不一定两两互质); (3) n 个数的最大公约数即为短除式中所有除数的乘积。

最大公因数和最小公倍数应用的典型例题和专题练习-答案

最大公因数和最小公倍数应用的典型例题和专题练习-答案

最大公因数和最小公倍数应用的典型例题和专题练习1、有三根铁丝,一根长18米,一根长24米,一根长30米。

现在要把它们截成同样长的小段。

每段最长可以有几米?一共可以截成多少段?分析与解:截成的小段一定是18、24、30的最大公因数。

先求这三个数的最大公因数,再求一共可以截成多少段。

解答:(18、24、30)=6(18+24+30)÷6=12段2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。

解答:(36、60)=12(60÷12)×(36÷12)=15个3、公共汽车站有三路汽车通往不同的地方。

第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。

三路汽车在同一时间发车以后,最少过多少分钟再同时发车?分析与解:这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。

解答:[5、10、6]=304、某厂加工一种零件要经过三道工序。

第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。

要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?分析与解:安排每道工序人力时,应使每道工序在相同的时间内完成同样多的零件个数。

这个零件个数一定是每道工序每人每小时完成零件个数的公倍数。

至少安排的人数,一定是每道工序每人每小时完成零件个数的最小公倍数。

解答:(1)在相同的时间内,每道工序完成相等的零件个数至少是多少?[3、12、5]=60 (2)第一道工序应安排多少人60÷3=20人(3)第二道工序应安排多少人60÷12=5人(4)第三道工序应安排多少人60÷5=12人5、有一批机器零件。

小学数学奥数专项《公约数与公倍数初步》

小学数学奥数专项《公约数与公倍数初步》

奥数专项:公约数与公倍数最大公因数和最小公倍数
例题1:用短除法计算
(1)(54,90),[54,90](2)(45,75,90)
练习1:用短除法计算
(1)(36,48),[36,48](2)(28,42,70)
分解质因数
例题2:利用分解质因数法找出下列各组数的最大公约数和最小公倍数(1)144和250(2)240、80和96
练习2:利用分解质因数法找出下列各组数的最大公约数和最小公倍数(1)1024和72(2)60、84、90和700
辗转相除法
例题3:利用辗转相除法求下列各组数的最大公约数
(1)377和211(2)511和1314
练习3:利用辗转相除法求出3009和2537的最大公约数
公约数和公倍数的应用
例题4:老陈在班上发水果,一共有59个苹果,97个梨,平均分给班上的学生,最后剩下5个苹果,7个梨。

请问班上一共有多少学生?
练习4:老陈把62个奶糖和75个水果糖平均分给班上的同学们,最后剩下2个奶糖,3个水果糖,问老陈班上一共有多少个同学?。

五年级上册奥数最大公约数和最小公倍数 (例题含答案)

五年级上册奥数最大公约数和最小公倍数 (例题含答案)

五年级上册奥数最大公约数和最小公倍数(例题含答案)第三讲:最大公约数和最小公倍数一、基本概念和知识1.公约数和最大公约数几个数公有的约数,称为这几个数的公约数;其中最大的一个,称为这几个数的最大公约数。

例如:12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18.12和18的公约数有1、2、3、6,其中6是12和18的最大公约数,记作(12,18)=6.2.公倍数和最小公倍数几个数公有的倍数,称为这几个数的公倍数;其中最小的一个,称为这几个数的最小公倍数。

例如:12的倍数有12、24、36、48、60、72、84……;18的倍数有18、36、54、72、90……。

12和18的公倍数有36、72……,其中36是12和18的最小公倍数,记作[12,18]=36.3.互质数如果两个数的最大公约数是1,那么这两个数称为互质数。

二、例题例1:用一个数去除30、60、75,都能整除,这个数最大是多少?分析:要求的数去除30、60、75都能整除,因此要求的数是30、60、75的公约数。

又因为要求符合条件的最大的数,因此就是求30、60、75的最大公约数。

解:(30,60,75)=5×3=15,这个数最大是15.例2:一个数用3、4、5除都能整除,这个数最小是多少?分析:由题意可知,要求的数是3、4、5的公倍数,且是最小的公倍数。

解:[3,4,5]=3×4×5=60,用3、4、5除都能整除的最小的数是60.例3:有三根铁丝,长度分别是120厘米、180厘米和300厘米。

现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?分析:要截成相等的小段,且无剩余,因此每段长度必是120、180和300的公约数。

又因为每段要尽可能长,因此要求的每段长度就是120、180和300的最大公约数。

解:(120,180,300)=30×2=60,每小段最长60厘米。

五年级下册数学专项训练 奥数第四讲 最大公约数和最小公倍数 _ 全国版 (含答案)

五年级下册数学专项训练  奥数第四讲  最大公约数和最小公倍数 _ 全国版 (含答案)

第四讲最大公约数和最小公倍数本讲重点解决与最大公约数和最小公倍数有关的另一类问题——有关两个自然数.它们的最大公约数、最小公倍数之间的相互关系的问题。

定理1 两个自然数分别除以它们的最大公约数,所得的商互质.即如果(a,b)=d,那么(a÷d,b÷d)=1。

证明:设a÷d=a1,b÷d=b1,那么a=a1d,b=b1d。

假设(a1,b1)≠1,可设(a1,b1)=m(m>1),于是有a1=a2m,b1=b2m.(a2,b2是整数)所以a=a1d=a2md,b=b1d=b2md。

那么md是a、b的公约数。

又∵m>1,∵md>d。

这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)≠1的假设是不正确的.所以只能是(a1,b1)=1,也就是(a÷d,b÷d)=1。

定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略)定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略)下面我们就应用这些知识来解决一些具体的问题。

例1 甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数.解法1:由甲数×乙数=甲、乙两数的最大公约数×两数的最小公倍数,可得36×乙数=4×288,乙数=4×288÷36,解出乙数=32。

答:乙数是32。

解法2:因为甲、乙两数的最大公约数为4,则甲数=4×9,设乙数=4×b1,且(b1,9)=1。

因为甲、乙两数的最小公倍数是288,则 288=4×9×b1,b1=288÷36,解出 b1=8。

所以,乙数=4×8=32。

答:乙数是32。

例2 已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?解:要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,a<b。

最大公约数和最小公倍数奥数

最大公约数和最小公倍数奥数

最大公约数和最小公倍数奥数GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-最大公约数和最小公倍数例1、一个长方体木块,长2.7米,宽1.8分米,高1.5分米。

要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?【思路导航】2.7米=270厘米,1.8分米=18厘米,1.5分米=15厘米。

要把长方体切成大小相等的正方体,不许有剩余,正方体的棱长应该是长、宽、高的公约数。

现要求正方体的棱长最大,所以棱长就是长、宽、高的最大公约数。

(270,18,15)=3 3厘米=0.3分米答:正方体的棱长最大是0.3分米。

练习1、有50个梨、75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?练习2、有三根钢管,它们的长度分别是240厘米,200厘米,480厘米,如果把它们截成同样长的小段,且不许有剩余,每小段最长可以是多少厘米?例2、一个数除200余4,除300余6,除500余10。

求这个数最大是多少?【思路导航】200-4=196,300-6=294,500-10=490;196、294和490都是这个数的倍数。

196=2×2×7×7294=2×3×7×7490=2×5×7×7则196、294和490的最大公因数是:2×7×7=98。

答:这个数最大是98。

练习1、一个数除425余5,除500少4,除300余6,这个数最大是多少?练习2、如果把110本练习本平均分给五(1)班同学,则多5本;如果把210本练习本平均分给这个班同学则正好分完;如果把240本练习本平均分给这班同学,还少5本,五(1)班最多有多少名同学?例3、一条道路由甲村经过乙村到丙村。

已知甲、乙村相距360米,乙、丙村相距675米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大公约数与最小公倍数(一)教学目标:1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。

2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。

3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。

教学过程:一、基本概念知识1.公约数和最大公约数①如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。

②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。

自然数的最大公约数通常用符号()表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。

(8,12)=4,(6,9,15)=3。

 2.公倍数和最小公倍数 ③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

例如:12的倍数有:12,24,36,48,60,72,84,… 18的倍数有:18,36,54,72,90,…自然数的最小公倍数通常用符号[]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。

[8,12]=24,[6,9,15]=90。

3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

用短除法求若干个数的最大公约数与最小公倍数的区别:求个数的最大公约数:(1)必须每次都用个数的公约数去除;(2)一直除到个数的商互质(但不一定两两互质);(3)个数的最大公约数即为短除式中所有除数的乘积。

求个数的最小公倍数:(1)必须先用(如果有)个数的公约数去除,除到个数没有除去1以外的公约数后,在用个数的公约数去除,除到个数没有除1以外的公约数后,再用个数的公约数去除,如此继续下去,为保证这一条,每次所用的除数均可选质数;(2)只要有两个数(被除数)能被同一数整除,就要继续除,一定要除到个数的商两两互质为止;(3)个数的最小公倍数即为短除式中,所有除数和最后两两互质的商的乘积。

例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。

现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?分析与解: 因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶 叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。

题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是 144,180,240的最大公约数。

是144,180,240的最大公约数。

所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。

 例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少? 分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。

498-450=48,450-414=36,498-414=84。

所求数是(48,36,84)=12。

例3 现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少? 分析与解: 只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数。

只能从唯一的条件“它们的和是1111”入手分析。

三个数的和是1111,它们 的公约数一定是1111的约数。

因为1111=101×11,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数 都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909。

所以所求数是101。

例4 在一个30×24的方格纸上画一条对角线(见下页上图),这条对角线除两个端点外,共经过多少个格点(横线与竖线的交叉点)?  分析与解:(30,24)=6,说明如果将方格纸横、竖都分成6份,即分成6×6个相同的矩形,那么每个矩形是由(30÷6)×(24÷6)=5×4(个)小方格组成。

在6×6的简化图中,对角线也是它所经过的每一个矩形的对角线,所以经过5个格点(见左下图)。

在对角线所经过的每一个矩形的5×4个小方格中,对角线不经过任何格点(见右下图)。

所以,对角线共经过格点(30,24)-1=5(个)。

例5 甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒。

三人同时从起点出发,最少需多长时间才能再次在起点相会? 分析与解:甲、乙、丙走一圈分别需60秒、75秒和90秒,因为要在起点相会,即三人都要走整圈数,所以需要的时间应是60,75,90的公倍数。

所求时间为[60,75,90]=900(秒)=15(分)。

例6 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗? 分析与解:爷爷和小明的年龄随着时间的推移都在变化,但他们的年龄差是保持不变的。

爷爷的年龄现在是小明的7倍,说明他们的年龄差是6的倍数;同理,他们的年龄差也是5,4,3,2,1的倍数。

由此推知,他们的年龄差是6,5,4,3,2的公倍数。

[6,5,4,3,2]=60,爷爷和小明的年龄差是60的整数倍。

考虑到年龄的实际情况,爷爷与小明的年龄差应是60岁。

所以现在小明的年龄=60÷(7-1)=10(岁), 爷爷的年龄=10×7=70(岁)。

二、随堂练习最大公约数与最小公倍数(二)摘要:这一讲主要讲最大公约数与最小公倍数的关系,并对最大公约数与最小公倍数的概念加以推广。

在求18与12的最大公约数与最小公倍数时,由短除法可知,(18,12)=2×3=6,[18,12]=2×3×3×2=36。

如果把18与12的最大公约数与最小公倍数相乘,那么 (18,12)×[18,12] =(2×3)×(2×3×3×2) =(2×3×3)×(2×3×2) =18×12。

也就是说,18与12的最大公约数与最小公倍数的乘积,等于18与12的乘积。

当把18,12换成其它自然数时,依然有类似的结论。

从而得出一个重要结论:两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。

即,(a,b)×[a,b]=a×b。

例1 两个自然数的最大公约数是6,最小公倍数是72。

已知其中一个自然数是18,求另一个自然数。

解:由上面的结论,另一个自然数是(6×72)÷18=24。

例2 两个自然数的最大公约数是7,最小公倍数是210。

这两个自然数的和是77,求这两个自然数。

分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公约数是1,最小公倍数是30。

这两个自然数的和是11,求这两个自然数。

” 改变以后的两个数的乘积是1×30=30,和是11。

30=1×30=2×15=3×10=5×6, 由上式知,两个因数的和是11的只有5×6,且5与6互质。

因此改变后的两个数是5和6,故原来的两个自然数是 7×5=35和7×6=42。

例3 已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。

分析与解:因为12,15都是a的约数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数。

再由[a,b,c]=120知, a只能是60或120。

[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。

因为a是c的倍数,所以求a,b的问题可以简化为:“a是60或120,(a,b)=12,[a,b]=120,求a,b。

”当a=60时, b=(a,b)×[a,b]÷a=12×120÷60=24;当a=120时,b=(a,b)×[a,b]÷a=12×120÷120=12。

所以a,b,c为60,24,15或120,12,15。

要将它们全部分别装入小瓶中,每个小瓶装入液体的重量相同。

问:每瓶最多装多少千克?分析与解:如果三种溶液的重量都是整数,那么每瓶装的重量就是三 种溶液重量的最大公约数。

现在的问题是三种溶液的重量不是整数。

要解决这个问题,可以将重量分别乘以某个数,将分数化为整数,求出数值后,再除以这个数。

为此,先求几个分母的最小公倍数,[6,4,9]=36,三种溶液的重量都乘以36后,变为150,135和80,(150,135,80)=5。

上式说明,若三种溶液分别重150,135,80千克,则每瓶最多装5千克。

可实际重量是150,135,80的1/36,所以每瓶最多装在例4中,出现了与整数的最大公约数类似的分数问题。

为此,我们将最大公约数的概念推广到分数中。

如果若干个分数(含整数)都是某个分数的整数倍,那么称这个分数是这若干个分数的公约数。

在所有公约数中最大的一个公约数,称为这若干个分数的最大公约数。

由例4的解答,得到求一组分数的最大公约数的方法: (1)先将各个分数化为假分数; (2)求出各个分数的分母的最小公倍数a; (3)求出各个分数的分子的最大公约数b;(4)即为所求。

例5 求,,的最大公约数。

类似地,我们也可以将最小公倍数的概念推广到分数中。

如果某个分数(或整数)同时是若干个分数(含整数)的整数倍,那么称这个分数是这若干个分数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个分数的最小公倍数。

求一组分数的最小公倍数的方法: (1)先将各个分数化为假分数; (2)求出各个分数的分子的最小公倍数a; (3)求出各个分数的分母的最大公约数b; 一个陷井。

它们之中谁先掉进陷井?它掉进陷井时另一个跳了多远? 同理,黄鼠狼掉进陷井时与起点的距离为所以黄鼠狼掉进陷井时跳了31 1/2÷6 3/10=5(次)。

相关文档
最新文档