初二下动点与面积问题

初二下动点与面积问题
初二下动点与面积问题

一、已知,矩形OABC 在平面直角坐标系内的位置如图所示,点O 为坐标原点,点A 的坐

标为(10,0),点B 的坐标为(10,8).

⑴直接写出点C 的坐标为:C ( , ); ⑵已知直线AC 与双曲线)0(≠=m x

m

y 在第一象限内有一点交点Q 为(5,n )

; ①求m 及n 的值;

②若动点P 从A 点出发,沿折线AO →OC 的路径以每秒2个单位长度的速度运动,到达C 处停止.求△OPQ 的面积S 与点P 的运动时间t (秒)的函数关系式,并求当t 取何值时S=10.

已知:如图,正比例函数y ax =的图象与反比例函数k

y x

=

的图象交于点()32A ,. (1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形

OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.

二、 如图 1,在矩形ABCD 中,cm AB 6=,cm BC 8=, 动点N M 、同时从点A 出发,

M 点按折线A →C →B →A 的路径以3

cm/s 的速度运动, N 点按折线A →C →D →A 的路径以2s cm /的速度运动.运动时间为t (s ),当点M 回到A 点时,两点都停止

运动.

(1)求对角线AC 的长度;

(2)经过几秒,以点A 、C 、M 、N 为顶点的四边形是平行四边形? (3)设△CMN 的面积为s )(2

cm , 求:当5>t 时,s 与t 的函数关系式.

五、如图1,直线4

3

y x b =-

+分别与x 轴、y 轴交于A 、B 两点,与直线y kx =交于点C ??

? ??342 . 平行于y 轴的直线l 从原点O 出发, 以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;直线l 分别交线段BC 、OC 、x 轴于点D 、E 、P ,以DE 为斜边向左侧作等腰..直角..△DEF ,设直线l 的运动时间为t (秒). (1)填空:k = ;b = ;

(2)当t 为何值时,点F 在y 轴上(如图2所示);

(3)设△DEF 与△BCO 重叠部分的面积为S ,请直接写出....S 与t 的函数关系式(不要求写解答过程),并写出t 的取值范围.

(图1)

(图2)

(备用图)

四、如图,直线y=x与y=-x+2交于点A,点P是直线OA上一动点(点A除外),作PQ∥x轴

交直线y=-x+2于点Q,以PQ为边,向下作正方形PQMN,设点P的横坐标为t.

(1)求交点A的坐标;

(2)写出点P从点O运动到点A过程中,正方形PQMN与△OAB重叠的面积s与t的函数关

系式,并写出相应的自变量t的取值范围;

(3)是否存在点Q,使△OCQ为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,

请说明理由.

六、如图12,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0).P 是线段OC上的一动点(点P与点O、C不重合),过点P的直线x=t与AC相交于点Q.设四边形ABPQ关于直线x=t的对称的图形与△QPC重叠部分的面积为S.

⑴点B关于直线x=t的对称点B′的坐标为________;

⑵求S与t的函数关系式.

图12

三、已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC

于点E、F,垂足为O。

(1)如图1,连接AF、CE,求AF的长;

(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,

①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当

A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值。

②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q

四点为顶点的四边形是平行四边形,求a与b满足的数量关系式。

七、已知:如图,四边形ABCD 是等腰梯形,其中AD ∥BC ,AD =2,BC =4,AB =DC =2,点M 从点B 开始,以每秒1个单位的速度向点C 运动;点N 从点D 开始,沿D —A —B 方向,以每秒1个单位的速度向点B 运动.若点M 、N 同时开始运动,其中一点到达终点,另一点也停止运动,运动时间为t (t >0).过点N 作NP ⊥BC 与P ,交BD 于点Q . (1)点D 到BC 的距离为 ; (2)求出t 为何值时,QM ∥AB ;

(3)设△BMQ 的面积为S ,求S 与t 的函数关系式; (4)求出t 为何值时,△BMQ 为直角三角形.

A B C D

M N P

Q

如图,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D .

(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?

(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距

离为)40<

图(1)

图(2)

图(3)

如图,直线364y x =-

+分别与x 轴、y 轴交于A B 、两点,直线5

4

y x =与AB 交于点C ,与过点A 且平行于y 轴的直线交于点D .点E 从点A 出发,以每秒1个单位的速度沿x 轴向左运动.过点E 作x 轴的垂线,分别交直线AB OD 、于P Q 、两点,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与ACD △重叠部分(阴影部分)的面积为S (平方单位).点E 的运动时间为t (秒).

(1)求点C 的坐标.(1分)

(2)当05t <<时,求S 与t 之间的函数关系式.(4分) (3)求(2)中S 的最大值.(2分)

(4)当0t >时,直接写出点942?

? ??

?

,在正方形PQMN 内部时t 的取值范围.(3分)

【参考公式:二次函数2

y ax bx c =++图象的顶点坐标为2424b ac b a

a ??

-- ???,.

如图(十二),直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤). (1)求A B 、两点的坐标;

(2)用含t 的代数式表示MON △的面积1S ;

(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S , ①当2t <≤4时,试探究2S 与t 之间的函数关系式;

②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的516

如图,已知直线128

:

33

l y x =

+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.

(1)求ABC △的面积;

(2)求矩形DEFG 的边DE 与EF 的长;

(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.

初二数学动点问题练习(含答案)

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始 沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A,C同时出发,设移动时间为t秒。 当 t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点, 则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①30,1;②60,; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC∵CE∴AB=4,AC=23. ∴AO= 1 2 AC = 3 .在Rt△AOD 中,∠A=300,∴AD=2. O E C D A α l O C A (备用图)

∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形 4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E. (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB ② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE (3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD. 5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证 AME ECF △≌△,所以AE EF =. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗如果正确,写出证明过 C B A E D 图1 N M A B C D E M N 图2 A C B E D N M 图3

初二数学坐标系动点问题汇总

初二数学坐标系动点问 题汇总 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

坐标系动点问题 1、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6, 0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到度都是每秒1个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC (2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值 若有是多少 (3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直 若存在,求出这时的t 值;若不存在,请说明理由. 2、(山东济宁)如图,A 、B 分别为x 轴和y 轴正半轴上的点。OA 、OB 的长分别是方 程x 2-14x +48=0的两根(OA >OB),直线BC 平分∠ABO 交x 轴于C 点,P 为BC 上一动点,P 点以每秒1个单位的速度从B 点开始沿BC 方向移动。 (1)设△APB 和△OPB 的面积分别为S 1、S 2,求S 1∶S 2 的值; (2)求直线BC 的解析式; (3)设PA -PO =m ,P 点的移动时间为t 。 ①当0<t ≤54时,试求出m 的取值范围; ②当t >54时,你认为m 的取值范围如何(只要求写出结论 )

3、(金华)如图1 ,在平面直角坐标系中,已知点(0 A,点B在x正半轴上,且 30 ABO ∠.动点P在线段AB上从点A向点B 时间为t秒.在x轴上取两点M N ,作等边PMN △. (1)求直线AB的解析式; (2)求等边PMN △的边长(用t的代数式表示),并求出当等边PMN △的顶点M运动到与原点O重合时t的值; (3)如果取OB的中点D,以OD为边在Rt AOB △内部作如图2所示的矩形ODCE,点C在线段AB上.设等边PMN △和矩形ODCE重叠部分的面积为S,请求出当 02 t ≤≤秒时S与t的函数关系式,并求出S的最大值. 4 A(18,0),B (18,6), Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动. (1)求直线OC的解析式. (2)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围. (3)设从出发起,运动了t秒.当P,Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分如有可能,请求出t 的值;如不可能,请说明理由. 5、如图2所示,在直角坐标系中,四边形OABC为直角梯形,OA∥BC, BC=14cm,A点坐标为(16,0),C点坐标为(0,2).点P、Q分别从C、A同时出(图(图

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

初二数学动点问题练习(含答案)

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点 ,它们在线段、射线或弧线上运动的一类 6 c N t4 o o AD 的长为 度时 AD 的长为 ②当 .度时 o C B C B A (备用图) E N E A B B B A A E 时 时 M C ” 图1 l E EDBC 是否为菱形,并说明理由 C ,且 (1)① 当 四边形EDBC 是直角梯形,此时 开放性题目 关键: 数学思想 1、如图1 C 开始沿向点 秒 当 当 CE // AB 交直线I 于点E ,设直线I 的旋转角为 2、如图2,正方形的边长为 4,点M 为 5 90 ° ,直线经过点 3、如图,在只也ABC 中,ACB 四边形是平行四边形; 四边形是等腰梯形?8 90° B 60°, BC 2 .点O 是AC 的中点,过 四边形EDBC 是等腰梯形,此时 (2 )当 90「时,判断四边形 解:(1 [① 30, 1 :② 60, 1.5 ; (2)当/% =900时,四边形是菱形? ???/a =Z 90°,.?..???,???四边形是平行四边形 在△中,/ 900,/ 6002, ???/ 30°. 在边上,且1 , N 为对角线上任意一点,则的最小值 .解决这类问题的关键是动中求静 ,灵活运用有关数学知识解决问题 . 动中求静? 分类思想 数形结合思想转化思想 梯形中,// ,/ 90°, 141821,点P 从A 开始沿边以1秒的速度移动,点 Q 从 B 以2秒的速度移动,如果 P , Q 分别从A , C 同时出发,设移动时间为 t D ,丄于 E M C 点o 的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D ?过点C 作 ? 2. ???. 又??四边形是平行四边形 ?四边形是菱形 4、在△中 M D C A D 1 42 . 3. ? 2AC 3 .在△中,/ 3。0, (2) 图2 N

初二数学经典动点问题

动点问题 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 3、如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形? (2)当t为何值时,四边形MNCD是等腰梯形?

4、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D 出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值; 如果不能,请说明理由. 5、直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O?B?A运动. (1)直接写出A、B两点的坐标; (2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

初二动点问题(含答案)

动点问题 灵活运用有关数学知识解决问题 转化思想 6 c 1 8 4 0 0 II ②当 0 C B C AB=4,AC=2 B A (备用图) D C E N D E A B B B A A E (1)①当 点M 在边 5 图1 l E - 2 .点°是AC 的中点,过 BE 丄MN 于E 60° BC 且AD 丄MN 于 度时,四边形EDBC 是直角梯形,此时 AD 的长为 DC 上,且 CE // AB 交直线l 于点E ,设直线I 的旋转角为 交AB 边于点D .过点C 作 度时,四边形EDBC 是等腰梯形,此时AD 的长为 放性题目?解决这类问题的关键是动中求静 关键:动中求静. 数学思想:分类思想 数形结合思想 1、如图 1,梯形 ABCD 中,AD // BC , A 开始沿AD 边以1cm/秒的速度移动,点 如果P , Q 分别从A , C 同时出发,设移动时间为 当t= 时,四 边形是平行四边形 当t= 时,四边形是等腰梯形 2、如图2,正方形 ABCD 的边长为 意一点,贝U DN+MN 的最小值为 / B=90 ° , AB=14cm,AD=18cm,BC=21cm,点 P 从 -Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动, t 秒。 3、如图,在 Rt △ ABC 中,ACB 90° B 解:(1)① 30, 1;② 60, 1.5; (2)当/a =900 时,四边形EDBC 是菱形. ???/a = / ACB=90°,「. BC//ED. ?/ CE//AB,二四边形 EDBC 是平行四边形 在 Rt △ ABC 中,/ ACB=900,/ B=600,BC=2, /./ A=30°. (2)当 90°时,判断四边形 EDBC 是否为菱形,并说明理由 点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转 M D C ??? BD=2. ??? BD=BC. 又??四边形 EDBC 是平行四边形, ???四边形EDBC 是菱形 4、在厶ABC 中,/ ACB=90° , AC=BC ,直线 MN 经过点C M C 1 AC AO= 2 = ■ 3 .在 Rt △ AOD 中,/ A=30°,二 AD=2 A D 所谓“动点型问题”是指题设图形中存在一个或多个动点 ,它们在线段、射线或弧线上运动的一类开 N 图2 A ____________ …n 1 DM=1 , N 为对角线AC 上任

初二数学动点问题专题分析

初二数学“动点问题”分析 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。 在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等. 一、建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢? 1.应用勾股定理建立函数解析式。 2.应用比例式建立函数解析式。 3.应用求图形面积的方法建立函数关系式。 二、动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 (一)以动态几何为主线的压轴题。 1.点动问题。 2.线动问题。 3.面动问题。 (二)解决动态几何问题的常见方法有: 1.特殊探路,一般推证。 2.动手实践,操作确认。 3.建立联系,计算说明。 (三)本大类习题的共性: 1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数. 2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。 三、双动点问题 点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为中考试题的热点, 1.以双动点为载体,探求函数图象问题。 2.以双动点为载体,探求结论开放性问题。 3.以双动点为载体,探求存在性问题。 4.以双动点为载体,探求函数最值问题。 双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。 四:函数中因动点产生的相似三角形问题五:以圆为载体的动点问题 动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。

(完整版)初二动点问题(含答案)2

L F E H F G E C G 图2 F H 动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 数形结合思想 转化思想 一、单动点问题 小菜一碟:如图 2,正方形 ABCD 的边长为 4,点 M 在边 DC 上,且 DM=1,N 为对角线 AC 上任意一点,则 DN+MN 的最小值为 例 (10 年房ft 二模压轴)25. (1)如图 1,已知矩形 ABCD 中,点 E 是 BC 上的一动点,过点 E D A D A D B C B B C 图1 图3 作 EF ⊥BD 于点 F ,EG ⊥AC 于点 G ,CH ⊥BD 于点 H ,试证明 CH=EF+EG; (2) 若点 E 在BC的延长线上,如图 2,过点 E 作 EF ⊥BD 于点 F ,EG ⊥AC 的延长线于点 G ,CH ⊥BD 于点 H , 则 EF 、EG 、CH 三者之间具有怎样的数量关系,直接写出你的猜想; (3) 如图 3,BD 是正方形 ABCD 的对角线,L 在 BD 上,且 BL=BC, 连结 CL ,点 E 是 CL 上任一点, EF ⊥BD 于点 F ,EG ⊥BC 于点 G ,猜想 EF 、EG 、BD 之间具有怎样的数量关系,直接写出你的猜想; (4) 观察图 1、图 2、图 3 的特性,请你根据这一特性构造一个图形, 使它仍然具有 EF 、EG 、CH 这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.

初二数学动点问题归类复习(含例题、练习及答案)

初二数学动点问题归类复习(含例题、练习及答案) 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。 一、等腰三角形类:因动点产生的等腰三角形问题 例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC =8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC 上的一动点,且∠PDQ=90°. (1)求ED、EC的长; (2)若BP=2,求CQ的长; (3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长. 图1 备用图 思路点拨 1.第(2)题BP=2分两种情况. 2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系. 3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.解答:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10. 在Rt△CDE中,CD=5,所以 315 tan5 44 ED CD C =?∠=?=, 25 4 EC=. (2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3. 由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN. 因此△PDM∽△QDN. 所以 4 3 PM DM QN DN ==.所以 3 4 QN PM =, 4 3 PM QN =. 图2 图3 图4 ①如图3,当BP=2,P在BM上时,PM=1. 此时 33 44 QN PM ==.所以 319 4 44 CQ CN QN =+=+=. ②如图4,当BP=2,P在MB的延长线上时,PM=5.

初二上动点问题

初二上动点问题 1.如图,已知△ABC中,∠B=90 o,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒. (1)出发2秒后,求线段PQ的长? (2)当点Q在边BC上运动时,出发几秒钟后,△PQB是等腰三角形? (3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间? 2.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=10cm,直线CM⊥BC,动点D从点C开始沿射线 ....CB..方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM..上以每秒2厘米的速度运动,连接AD、AE,设运动时间为t秒. (1)求AB的长;(2)当t为多少时,△ABD的面积为15cm2? (3)当t为多少时,△ABD≌△ACE,并简要说明理由.(请在备用图中画出具体图形)

3.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系. 小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的 点,且∠EAF=∠BAD上述结论是否仍然成立,并说明理由; (3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进 1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离. 4.(12分)在等腰△ABC中,AB=AC=2, ∠BAC=120°,AD⊥BC于D,点O、点P分别在射线AD、BA上的运动,且保证∠OCP=60°,连接OP. (1)当点O运动到D点时,如图一,此时AP=______,△OPC是什么三角形。 (2)当点O在射线AD其它地方运动时,△OPC还满足(1)的结论吗?请用利用图二说明理由。 (3)令AO=x,AP=y,请直接写出y关于x的函数表达式,以及x的取值范围。 图一图二

人教版_人教版八年级数学关于动点问题的分析

动点问题专项练习 1、如图,在直角坐标系中,O是原点,A,B,C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P,Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动. (1)求直线OC的解析式. (2)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.(3)设从出发起,运动了t秒.当P,Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由. 2、如图1所示,在△ABC中,点O在AC边上运动,过O作直线MN∥BC交∠BCA内角平分线于E点,外角平分线于F点.试探究:当点O运动到何处时,四边形AECF是矩形?

3、如图2所示,在直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14cm,A点坐标为(16,0),C 点坐标为(0,2).点P、Q分别从C、A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q停止运动时,点P也停止运动,设运动时间为ts(0≤t≤4). (1)求当t为多少时,四边形PQAB为平行四边形. (2)求当t为多少时,PQ所在直线将梯形OABC分成左右两部分的面积比为1:2,求出此时直线PQ的函数关系式.

巩固提高: 1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向 D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 2. 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点 F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 3. 如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点 C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒. (1)求NC,MC的长(用t的代数式表示); (2)当t为何值时,四边形PCDQ构成平行四边形; (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC为等腰三角形.

(完整)八年级数学动点问题专题

八年级数学动点问题专题 班级 姓名 1.如图:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,求DN+MN 的最小值是 。 2.等边三角形ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 上一点,若AE=2,则EM+CM 最小值为 。 第1题 第2题 第3题 A B C M N D

3.如图,锐角三角形ABC 中,∠C=45°,N 为BC 上一点,NC=5,BN=2,M 为边AC 上的一个动点,则BM+MN 的最小值是 。 4.如图,在直角梯形ABCD 中,∠ABC=90°,DC//AB ,BC=3,DC=4,AD= 5.动点P 从B 点出发,由B→C→D→A 沿边运动,则△ABP 的最大面积为( ) A.10 B.12 C.14 D.16 5.如图,在锐角△ABC 中,AB=6,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 ( ) A .62 B . 6 C . 32 D . 3 第4题 第5题 6如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON=30°, (1)当∠A= 时,△AOP 为直角三角形; (2)当∠A 满足 时,△AOP 为钝角三角形. 7.如图,在Rt△ABC 中,∠C=90 °,AC=4cm ,BC=6cm ,动点P 从点C 沿CA 以1cm/s 的速度向A 运动,同时动点Q 从点C 沿CB , 以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动。则运动过程中所构成的△CPQ 的面积y 与运动时间x 之间的关系是 。 第6题 第7题 8.如图,在梯形ABCD 中,364360AD BC AD DC AB === =?∥,,,,∠C .动点 A B D C P C A B Q P

初二动点问题(非常经典)

初二动点问题1姓名时间 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从A 开始沿AD边向D以1cm/s 的速度运动;动点Q 从点C 开始沿CB边向B 以3cm/s 的速度运动.P、Q 分别从点A、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t 为何值时,四边形PQCD 为平行四边形? (2)当t 为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQCD 为直角梯形? 2、如图,直角梯形ABCD 中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P 从B 点出发,沿线段BC向点C 作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q 点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1 个单位长度.当Q 点运动到A点,P、Q两点同时停止运动.设点Q 运动的 时间为t 秒. (1)求NC,MC的长(用t 的代数式表示); (2)当t 为何值时,四边形PCDQ 构成平行四边形; (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t 的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC 为等腰三角形.

3、如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P 从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线 段CB 上以每秒 1 个单位长的速度向点 B 运动,P、Q 分别从点 D 、C 同时出发,当点Q 运动到点B时,点P随之停止运动,设运动时间为t(s). (1)设△BPQ 的面积为S,求S与t之间的函数关系; 4、直线y=- 3/4x+6 与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达 A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1 个单位长度,点P 沿路线O ?B?A 运动. (1)直接写出A、B 两点的坐标; (2)设点Q 的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 48/5时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M 的坐标. 5、如图,△ABC中,点O 为AC边上的一个动点,过点O 作直线MN∥BC,设MN交∠ BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O 运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC 的形状并证明你的结论.

最新初二上学期初二数学动点问题练习含答案

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从 A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动, 如果P,Q分别从A,C同时出发,设移动时间为t秒 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任 意一点,则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作 CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解(1)①30,1;②60,1.5; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形 在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴AB=4,AC=2 3. ∴AO= 1 2 AC =3.在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形 4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. O E C D A α l O C A (备用图) C E D N M C D M C E M

初二数学动点问题总结材料

初二动点问题 1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm, 动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB 边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 分析: (1)四边形PQCD为平行四边形时PD=CQ. (2)四边形PQCD为等腰梯形时QC-PD=2CE. (3)四边形PQCD为直角梯形时QC-PD=EC. 所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可. 解答: 解:(1)∵四边形PQCD平行为四边形 ∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形. (2)过D作DE⊥BC于E 则四边形ABED为矩形 ∴BE=AD=24cm

∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形 ∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s) 即当t=7(s)时,四边形PQCD为等腰梯形. (3)由题意知:QC-PD=EC时, 四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s) 即当t=6.5(s)时,四边形PQCD为直角梯形. 点评: 此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2. 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 分析: (1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO. (2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形. (3)利用已知条件及正方形的性质解答. 解答: 解:(1)∵CE平分∠ACB, ∴∠ACE=∠BCE, ∵MN∥BC, ∴∠OEC=∠ECB,

初二数学动点问题

动点问题训练 姓名________ 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 数形结合思想 转化思想 1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动 ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵ P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间 4 33BP t = =秒, ∴ 515 443Q CQ v t = ==厘米/秒。 (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 3210 4x x =+?,解得 803x =秒. ∴点P 共运动了80 380 3?=厘米. ∵8022824=?+,∴点P 、点Q 在 AB 边上相遇, ∴经过80 3秒点P 与点Q 第一次在边AB 上相遇. 3、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平分线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. A D F C G B 图1

初二数学动点问题-初二数学动点问题分析-初二数学动点问题总结

初二动点问题解题技巧 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握

方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点 --- 问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

相关文档
最新文档