微波技术与天线第六章 天线
天线基本理论《微波技术与天线》培训讲解
基于群体行为原理,通过个体间的协 作和竞争,寻找最优解。
模拟退火算法
基于物理退火过程,通过随机搜索, 寻找最优解。
天线优化算法与实现
梯度优化算法
基于梯度信息,通过迭代计算,寻找 最优解。包括最速下降法、牛顿法等。
随机优化算法
基于随机搜索,通过大量随机尝试, 寻找最优解。包括遗传算法、粒子群 算法等。
具有定向辐射特性的天线,通过螺旋形状的结构实现圆极化。
详细描述
螺旋天线广泛应用于卫星通信、雷达探测等领域。它可以实现圆极化波的发射和接收,增强信号的抗 干扰能力。螺旋天线的方向图可以通过改变螺旋的匝数和直径进行调整,以满足不同应用需求。
微带天线
总结词
一种薄型、轻量级的天线,由介质基片 上金属贴片构成。
均匀线阵列
均匀线阵列是指天线单元在一 条直线上等间距排列形成的阵 列。
在均匀线阵列中,各天线单元 的激励幅度相等,相位则根据 阵列的波束指向和天线单元的 排列位置确定。
均匀线阵列的主瓣宽度和副瓣 电平取决于阵列的单元数目、 单元间距以及波长等因素。
均匀圆阵列
均匀圆阵列是指天线单元在圆周上等 间距排列形成的阵列。
天线阻抗匹配与馈电系统
总结词
天线阻抗匹配是指天线输入阻抗与馈线阻抗相等的状态 ,馈电系统则是将信号功率传输到天线的装置。
详细描述
天线阻抗匹配是实现高效传输的关键,通过调整馈线的 特性阻抗可以使其与天线输入阻抗相匹配,从而提高信 号传输效率。馈电系统包括馈线和连接器等元件,其设 计应考虑信号传输的稳定性、可靠性和效率。在实际应 用中,需要根据天线的类型和规格选择合适的馈电系统 ,以确保信号传输的质量和稳定性。
导电材料
如铜、铝等,用于制作天线的辐射单元和反射面。
微波技术与天线课程总结
1
《天线技术基础》要点
第二章 对称阵子 理解对称振子的概念、辐射场计算方法(叠加原理); 电流分布公式与各种不同长度对称振子的电流分布图象; 方向性函数表达通式与各种不同长度对称振子的方向图、方向性系数和有效 长度; 随振子长度的逐渐增大,其方向性系数、旁瓣电平和半功率宽度如何变化; 熟悉天线的辐射场幅度与辐射功率、方向性系数及距离的关系; 输入阻抗的计算思路和随振子长度的变化曲线。
2
《天线技术基础》要点
第三章 阵列天线的方向性 二元阵的方向性函数与方向图(会描点绘图); 方向图相乘定理与应用; 均匀直线阵的方向性函数,会画阵因子的方向图,明确阵因子参数(半功率 宽度、零点位置,旁瓣电平等)的计算思路; 侧射阵、端射阵和斜射阵的实现条件、特性差异与原因; 可见区的概念、栅瓣抑制条件; 掌握地面影响的处理方法(镜像原理处理各种方向放置的单个与多个天线) 。
4 8
并联混和支节)。
6
《微波技术基础》要点
第三章 规则波导理论
TE10 模的场结构、管壁电流分布;
波导的单模传输条件、传输特性参数、等效阻抗; 波导中填充介质与否,波导的传输特性参数的计算。
7
《微波技术基础》要点
第四章 其它形式的微波传输线 同轴线、带状线、微带的特性阻抗随结构参数的变化规律; 同轴线、带状线:主模(高次模)、横截面场结构; 微带:主模(高次模)、横截面场结构,等效介电常数; 耦合线:等效电路、奇偶模方法、特性阻抗。
8
《微波技术基础》要点
第五章 微波谐振腔 为什么微波中不能用 LC 回路作为谐振器? 微波谐振器与 LC 回路的异同点有哪些? 品质因数的概念及公式; 传输线型谐振器,谐振波长的概念与计算。
9
《微波技术基础》要点
第六章 天线基本原理与技术
分贝数表示为:D 10lg1.5 1.76(dB)
19:22
电子科技大学电子工程学院
微波技术与天线
第六章
天线基本原理与技术
6.4.5
输入阻抗
输入阻抗和输入电压 U in 和电流 I in的关系是
U in Z in Rin X in I in
注:输入阻抗取决于天线本身的结构与尺寸、工作频率以及邻近天 线周围物体等的影响。 1 l le Idz 6.4.6 有效长度 I 0 l 天线有效长度定义:在保持实际天线最大
Idl j r E j 60 sin e r
19:22
电子科技大学电子工程学院
微波技术与天线
第六章
天线基本原理与技术
6.4 天线的电参数
6.4.1 天线方向性特性参数 一、方向函数
方向函数:描述天线的辐射强度与空间坐标之间的函数关系,分
场强方向函数和功率方向函数。 场强方向函数F ( , ):由辐射场电场表达式中与方位有关的表达
第六章
天线基本原理与技术
辐射电阻RΣ:
辐射电阻定义: 某电阻上通过电流等于天线上的最大电流, 若其损耗的功率等于天线的辐射功率 ,则该电阻值即为该天 P 线的辐射电阻。
1 2 2 P P I m R R 2 2 Im
天线的辐射电阻表示了天线辐射电磁波的能力,与馈电电流 的大小无关,是天线自身具有的属性。
半功率主瓣宽度 2 0.5 :功率方向图中两个半功率点之间的角
宽度,或场强方向图中最大场强的1
宽。
E
1 0 .9 0 .8 0 .7 0 .6 0 .5 0 .4 0 .3 0 .2 0 .1 0
2 10 °
2 两点之间的角宽度;
微波技术与天线
课程名称:微波技术与天线课程代码:02367理论第一部分课程性质与目标一、课程性质与特点微波技术与天线是电子与信息工程专业、通信技术专业的一门专业基础课;该课程研究的基本内容是电磁场的基础理论、导行电磁波和导模概念、各个导行波场的求解方法、传输线的基本理论和计算方法、微波网络基础与器件、天线的基本概念、基本理论及天线的基本结构并且与现代通信紧密相关的新技术;二、课程目标与基本要求通过本课程的学习,可以使学生掌握微波与天线的基本概念、基本理论和基本分析方法;并在此基础上,学会利用所学知识去解决微波与天线领域的工程实际问题,为今后从事微波与天线研究和工程设计工作打下良好的基础;三、与本专业其他课程的关系本课程的前导课程是高等数学、电路分析基础、数学物理方法、电磁场理论;是无线通信技术的基础课程;第二部分考核内容与考核目标第一章场论与静态电磁场一、学习目地与要求本章主要研究静态电磁场的基本规律和分析方法;通过本章的学习,使学生能够理解电荷与电流密度的概念,理解并掌握电流连续性方程;理解并掌握静电场和恒定磁场的基础—库仑定律和安培力定律,牢固建立静电场和恒定磁场的概念,并能根据不同电荷分布和电流分布的相关电磁场强度计算表达式,计算一些典型电荷分布和电流分布的电场强度和磁感应强;牢固掌握静电场和恒定磁场的基本方程 ,深刻理解静电场和恒定磁场的基本性质;深刻理解电位和磁位的物理意义,掌握电位与电场强度、磁位与磁感应强度的关系;了解电介质极化和磁介质磁化的物理过程;二、考核知识点与考核目标(一)场论一般识记:矢量运算中的相关规则及矢量恒等式理解:标量场与矢量场的概念、标量场的等值面和矢量场的矢量线、矢量场的散度与旋度、标量场的梯度;应用:应学会应用矢量分析这一重要数学工具去研究电磁场在空间的分布和变化规律;(二)静电场次重点识记:电荷与电荷密度、电场强度、均匀介质中的电场理解:、电场强度的相关计算公式、库仑定律应用:用静电场的基本方程高斯定律求解静电场、计算点电荷系统和一些连续分布电荷系统的电位(三)稳恒电流场一般识记:电流密度、欧姆定律、焦耳定律的微分形式理解:、电荷守恒定律、稳恒电流场的基本方程四恒定磁场次重点识记:磁感应强度、介质的磁化理解:稳恒磁场的基本方程、矢量磁位、磁介质中的安培定律应用:运用安培环路定律求解具有一定对称性分布的磁场、利用矢量磁位求解一些简单的磁场分布问题第二章电磁波原理一、学习目地与要求本章主要讨论了时变电磁场的普遍规律、电场和磁场在交替变化的过程中所形成的电磁波的相关特性,并重点讲述了均匀平面电磁波在无界空间的传播特性和在分界面上的反射和透射特性;通过本章的学习,要求学生们必须牢固掌握麦克斯韦方程组的积分形式、微分形式,深刻理解其物理意义;必须正确理解和使用边界条件、深刻理解坡印廷矢量的物理意义并能用其分析计算电磁能量的传输情况;掌握电磁场的波动方程以及理解矢量位和标量位的概念和满足的相应方程;深刻理解和掌握均匀平面电磁波在无界理想介质中的传播特性,理解描述传播特性的参量的物理意义;掌握三种极化方式的产生条件;熟练掌握平面电磁波对理想导体和理想介质垂直入射时的分析方法和过程;理解平面电磁波向理想导体界面的斜入射;二、考核知识点与考核目标(一)时变电磁场重点识记:正弦电磁场的复数表示法、坡印廷定理、波动方程、唯一性定理理解:麦克斯韦方程、时变场的边界条件、坡印廷矢量应用:从麦氏方程出发,结合边界条件求解相关问题;(二)平面电磁波重点识记:沿任意方向传播的平面波理解:理想介质中的均匀平面波、波的极化应用:计算在自由空间传播的均匀平面波的电场强度或磁场强度;计算描述均匀平面波传播特性的参量如波矢量、波阻抗等;计算坡印廷矢量(三)平面电磁波的反射与折射次重点识记:垂直极化波、平行极化波、理解:垂直极化波入射、平行极化波入射、全透射与全反射(四)平面电磁波向理想导体界面的斜入射一般识记:垂直极化波斜入射、平行极化波斜入射第三章 导行电磁波一、 学习目地与要求本章主要讨论电磁波在导波系统中的传输问题;通过本章的学习,要求同学们必须掌握求解波导中场的重要方法—纵向场分析法,该方法中所涉及到的有关物理量,如传播常数、截止波数的物理意义必须深刻理解,计算公式必须牢固掌握;牢固掌握波沿规则波导传输的一般特性;熟知波沿不同形状的波导传输的相关特性,如矩形波导、圆形波导等,重点掌握矩形波导中的主要传输模式—10TE 模;必须了解同轴线中的传输模式,并能通过恰当选择尺寸的情况下,保证TEM 波的传输;了解波导激励与耦合的方式;二、考核知识点与考核目标(一)规则波导的分析方法和一般特性重点识记:波导中的波型—TE,TM 和TEM 波、波的速度—相速度,群速度、波导波长、波阻抗理解:不同模式的传输条件、截止现象和截止波长应用:能用纵向场法求解波导中电磁波的场解、应用相关公式求出波导中描述波传输特性的相关参量;(二)金属矩形波导的场解重点理解:矩形波导中不同波型的场解、矩形波导中的传输特性、波导的功率容量应用:计算不同模式的截止波长、能确定波导中能传输或截止的模式、熟悉单模传输条件、能绘出10TE 模式的场结构,壁电流分布、计算10TE 模式的相关传输参量(三)圆柱形波导次重点识记:圆波导中不同波型的场解理解:圆波导中的三个主要波型及其应用(四)同轴传输线次重点识记:、同轴线中的高模及尺寸选择理解:同轴线中的TEM 波(五)波导的激励与耦合一般识记:波导激励的方式及激励装置第四章 微波传输线的基本理论一、 学习目地与要求本章以双导线为例用路的分析方法主要讨论了微波传输线上的传输特性和电压电流的分布规律,同时推出了一种重要的计算工具—阻抗圆图,并将这一计算工具应用于工程实际中,如阻抗匹配技术;通过本章的学习,要求同学们必须深刻理解微波传输线的分布参数概念,了解传输线方程及其解以及传输线的工作特性参数;必须掌握传输线的三种不同工作状态的条件和特点;必须掌握用阻抗圆图来解决传输线应用中的计算问题;了解不同阻抗匹配器的匹配方法,学会在阻抗匹配时用阻抗圆图来进行计算;了解微波集成电路的主要组成部分—微带线二、考核知识点与考核目标(一)微波传输线的分析次重点识记:分布参数概念、传输线方程及其一般解理解:传输线方程的定解已知终端电压和电流、传输线的工作参数,如特性阻抗、反射系数、输入阻抗、传播常数、相速及波长;应用:应用相关公式计算传输线上的电压和电流、反射系数、输入阻抗(二)均匀无耗传输线的工作状态重点理解:形成行波状态、驻波状态、行驻波状态的条件和特点应用:求出不同工作状态下的电压、电流、输入阻抗、驻波比,并能绘制出相关图形;(三)阻抗圆图重点应用:在传输线问题的相关运算中使用阻抗圆图来进行计算;(四)传输线的阻抗匹配重点应用:会采用不同的阻抗匹配器进行传输线的阻抗匹配(五)微带传输线一般识记:对称微带和不对称微带的演变过程及结构、它们中所传输的波型第五章微波网络与元器件一、学习目地与要求本章主要讨论了微波等效电路的方法,这就是将本质上是场的问题转化为电路问题来处理的重要方法,这对处理横截面形状不均匀物体时极为有用,如微波元器件的分析和处理;通过本章的学习,要求同学们必须掌握如何将波导等效为双线传输线、不均匀体等效为网络,必须深刻理解模式电压和模式电流的意义;必须深刻理解网络参量的物理意义,并学会用任意网络参量去描述一个具体的微波电路;对于二端口网络的级联其重点放在A 参量, 其余参量中的S参量是微波网络所乐于采用的重要参量;微波网络理论的主要应用场合就是对各种微波元器件的分析和处理,对于各种不同的元器件,必须了解其功能及结构,熟知其工作原理及应用场合;二、考核知识点与考核目标(一)微波网络的等效重点理解:模式电压和模式电流的概念、模式矢量函数的归一化条件、归一化模式电压和归一化模式电流的概念;应用:根据相关条件求对应模式的模式电压和模式电流(二)双端口网络的阻抗矩阵、导纳矩阵及A矩阵A重点,Z、Y次重点识记: 阻抗矩阵、导纳矩阵的特点及性质理解:A参量的特点及性质以及不同电路的A矩阵应用:用A矩阵解决二端口网络的级联问题(三)双端口网络的散射矩阵重点理解:散射参量的物理意义、散射参量的性质应用:求解具体电路的S参量(四)多端口网络的散射矩阵一般识记:多口网络的特点及性质(五)微波元件一般识记:各元件的功能及工作原理第六章天线基本原理一、学习目地与要求本章主要讨论了天线产生辐射场的基本原理和各种不同天线的辐射性能;通过本章的学习,要求同学们必须掌握基本振子的辐射性能;必须深刻理解为了增加辐射电阻,提高天线的辐射能力所采用的振子天线的工作原理;必须了解为了获得较强的方向性和其它特性所采用的天线阵列的性能;必须熟知发射天线和接收天线的电参数;简单了解各种线天线和面天线的辐射性能和应用场合;二、考核知识点与考核目标(一)基本振子的辐射重点理解:电流的场解、电基本振子场解、电偶极子的近区场、电偶极子的远区场、磁基本振子;应用:分析和计算天线的辐射场、辐射方向性、半功率宽度、零功率宽度和副瓣电平以及辐射电阻;(二)振子天线重点理解:对称振子的场解、对称振子的方向性,辐射电阻,输入阻抗、发射天线的参数、天线的极化和天线的频带宽度应用:对称振子天线的辐射与电长度之间的关系,重点掌握半波振子天线的方向图(三)天线阵次重点理解: 直线阵列天线的方向图、波瓣宽度、旁瓣电平等的分析与计算(四)接收天线一般识记:接收天线的电参数(五)常用线天线一般识记:各种常用线天线的工作原理(六)面天线一般识记:抛物面天线和双反射面天线的工作原理说明:该项需编纲教师全面考量该课程内容,并对各章节都给出相应的知识层次重点、次重点、一般,在知识层次下对各知识点提出相应的能力层次要求识记、理解、应用;在分配知识层次和能力层次过程中,应注意以下问题:1、知识层次包括“重点、次重点、一般”三个层次,此三层次在命题中的固定比重分别为:65% ,25%,10%;要求编纲教师在分配知识层次时,除考虑知识点本身的重要性外,兼顾各层次在命题中的比例要求;避免出现某一层次知识点过少,不能满足命题中比例要求的情况;2、①能力层次包括“识记、理解、应用”三个层次,此三层次在命题中无固定比重要求,需编纲教师结合本课程的具体考核要求给出比例在“有关说明与实施要求”中给出比例,并在分配知识点能力层次时结合命题比例,做到大纲与试卷要求统一;②大纲中知识点的能力层次分配应全面涵盖三个能力层次,尽量不要缺少,但各章节不是必须全有三个层次的知识点,应根据各章实际情况具体安排;3、大纲中的考核知识点只具体到章,不需要将知识点细化到节;第三部分有关说明与实施要求一、考核的能力层次表述本大纲在考核目标中,按照“识记”、“理解”、“应用”三个能力层次规定其应达到的能力层次要求;各能力层次为递进等级关系,后者必须建立在前者的基础上,其含义是:识记:能知道有关的名词、概念、知识的含义,并能正确认识和表述,是低层次的要求;理解:在识记的基础上,能全面把握基本概念、基本原理、基本方法,能掌握有关概念、原理、方法的区别与联系,是较高层次的要求;应用:在理解的基础上,能运用基本概念、基本原理、基本方法联系学过的多个知识点分析和解决有关的理论问题和实际问题,是最高层次的要求;说明:省考委统一加以说明,编纲教师不需自行解释;二、教材1、指定教材电磁波工程国防科技大学出版社朱建清第一版2、参考教材微波技术与天线电子工业出版社殷际杰第一版说明:1、大纲中的指定教材为省自考委核准的指定教材,此次配合我省自考教材清理工作,部分课程教材已由主考校提出审核意见并要求调整为推荐教材,如编纲教师认为需更换指定教材或推荐教材不合理,需提交由主考校盖章的教材变更报告,经批准后,方可更改;2、所列教材均需写明:书名、出版社、作者、版本,参考教材可以没有;三、自学方法指导1、在开始阅读指定教材某一章之前,先翻阅大纲中有关这一章的考核知识点及对知识点的能力层次要求和考核目标,以便在阅读教材时做到心中有数,有的放矢;2、阅读教材时,要逐段细读,逐句推敲,集中精力,吃透每一个知识点,对基本概念必须深刻理解,对基本理论必须彻底弄清,对基本方法必须牢固掌握;3、在自学过程中,既要思考问题,也要做好阅读笔记,把教材中的基本概念、原理、方法等加以整理,这可从中加深对问题的认知、理解和记忆,以利于突出重点,并涵盖整个内容,可以不断提高自学能力;4、完成书后作业和适当的辅导练习是理解、消化和巩固所学知识,培养分析问题、解决问题及提高能力的重要环节,在做练习之前,应认真阅读教材,按考核目标所要求的不同层次,掌握教材内容,在练习过程中对所学知识进行合理的回顾与发挥,注重理论联系实际和具体问题具体分析,解题时应注意培养逻辑性,针对问题围绕相关知识点进行层次步骤分明的论述或推导,明确各层次步骤间的逻辑关系;说明:该项省考委统一说明,若编纲教师需做个别说明,该部分也可自行撰写;四、对社会助学的要求1、应熟知考试大纲对课程提出的总要求和各章的知识点;2、应掌握各知识点要求达到的能力层次,并深刻理解对各知识点的考核目标;3、辅导时,应以考试大纲为依据,指定的教材为基础,不要随意增删内容,以免与大纲脱节;4、辅导时,应对学习方法进行指导,宜提倡"认真阅读教材,刻苦钻研教材,主动争取帮助,依靠自己学通"的方法;5、辅导时,要注意突出重点,对考生提出的问题,不要有问即答,要积极启发引导;6、注意对应考者能力的培养,特别是自学能力的培养,要引导考生逐步学会独立学习,在自学过程中善于提出问题,分析问题,做出判断,解决问题;7、要使考生了解试题的难易与能力层次高低两者不完全是一回事,在各个能力层次中会存在着不同难度的试题;8说明:1、该项1-7省考委统一说明;若编纲教师需做个别说明,该部分也可自行撰写;2、该项中对助学学时的分配,需由编纲教师完成;高等教育自学考试规定每学分18学时,请教师按此规定分配学时;涉及实践考核的课程,实践与理论课时应分别列出;五、关于命题考试的若干规定包括能力层次比例、难易度比例、内容程度比例、题型、考试方法和考试时间等1、本大纲各章所提到的内容和考核目标都是考试内容;试题覆盖到章,适当突出重点;2、试卷中对不同能力层次的试题比例大致是:"识记"为 20 %、"理解"为 30 %、"应用"为 50%;3、试题难易程度应合理:易、较易、较难、难比例为2:3:3:2;4、每份试卷中,各类考核点所占比例约为:重点占65%,次重点占25%,一般占10%;5、试题类型一般分为:试题类型一般分为:填空题、简答题、证明题、计算题等;6、考试采用闭卷笔试,考试时间150分钟,采用百分制评分,60分合格;说明:1、该部分1、3、4、6项省考委统一规定,编纲教师不用自行填写;2、其中第2项“不同能力层次的试题比例”需编纲教师结合大纲中各章知识点能力层次分配给定;3、第5项“试题类型”,也需编纲教师结合命题要求给出;应尽量全面的涵盖该课程考试中可能出现的试题类型,避免出现考试中出现的题型在大纲中没有举出的情况;六、题型示例样题一、 填空题:1、 已知在自由空间中传播的电磁波的电场强度为y ez t E ˆ)2106cos(7.378ππ+⨯= v/m ,可见此波的波长为 ,自由空间的波数为 ,它是沿 方向传播的;2、终端接任意负载L Z 时,距终端为2λ整数倍的各处,其输入阻抗为 ;距终端为4λ奇数倍的各处其输入阻抗为 ;二、简答题:1、空气填充的矩形波导其单模传输条件是什么若兼顾功率容量,该条件有什么变化3、何谓简并圆波导中有几类简并试举例说明;三、证明题:在无耗传输线某选定参考面上测得sc in Z 接短路负载时、oc in Z 接开路负载时、in Z 接实际负载时,试证明负载阻抗四、计算题:1、有一个二端口网络,如下图,图中jx = j2 为归一化电抗,jb = j1为归一化电纳, 试求: 1散射参量矩阵[]S ;2插入衰减a L 用分贝表示及插入相移θ;4、已知某天线在E 平面上的方向函数为1画出其E 面方向图2计算其半功率波瓣宽度;。
《微波技术与天线》第6章
比较电基本振子的远区场 Eθ与磁基本振子的远区场 Eφ , 可 以发现它们具有相同的方向函数 |sinθ|, 而且在空间相互正交 , 相位相差90°。所以将电基本振子与磁基本振子组合后 , 可构
成一个椭圆(或圆)极化波天线, 具体将在第8章中介绍。
磁基本阵子的应用
电磁测井
6.3 天线的电参数
1. 天线方向图及其有关参数 天线方向图,是指在离天线一定距离处, 辐射场的 相对场强(归一化模值)随方向变化的曲线图, 通常采 用通过天线最大辐射方向上的两个相互垂直的平面方向 图来表示。
例:画出沿z轴放置的电基本振子的E平面和H平面方向图。
解: ① E平面方向图:
② H平面方向图:
给定r处, 对于θ=π/2, Eθ的归一化场强值为|sinθ|=1,与φ无关, 因 而 H平面方向图为一个圆, 其圆心位于沿z方向的振子轴上, 且半径为1
图 6 -5 (a) 电基本振子E平面方向图
6.2 基本振子的辐射 预备知识:时变场的达朗贝尔方程,滞后位及其解
磁矢位和电标位 线性、均匀各向同性的无耗媒质中, 时谐形式的麦克斯韦方程
天线辐射场的求解思路:
点 点 源 的 磁 矢 位 转 换 点 源 的 辐 射 场 计算 连续 分布 结构 的辐 射场
源
突破点源后利用 结果推导新结构 的结果
pm k2 k 1 H j sin ( j 2 j 3 )e jkr 2 r r r
与电基本振子做相同的近似得磁基本振子的远区场为:
2 rλ 1 ω μ 0 pm Hθ sin θ e jkr η 2 rλ
E j
μ 0 pm
sin θe jkr
(6-2-8)
1. 电基本振子
微波技术与天线第6章复习
第6章1、简述天线的功能(概念+4个功能)在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或将无线电波转变为导波能量,原来辐射和接收无线电波的装装置称为天线。
①天线应能将导波能量尽可能多地转变为电磁波能量.这首先要求天线是一个良好的电磁开放系统, 其次要求天线与发射机或接收机匹配.②天线应使电磁波尽可能集中于确定的方向上, 或对确定方向的来波最大限度的接受, 即天线具有方向性.③天线应能发射或接收规定极化的电磁波, 即天线有适当的极化.④天线应有足够的工作频带.2、名词解释:什么是天线?①作用:在发射部分,将高频导行波转换为空间电波,在接收端,空间电波转换为导行波。
②性能:是能量转换器件、具有定向辐射能力、频率选择特性、极化特性。
③结构:开放。
3、把天线和发射机或接收机连接起来的系统为馈线系统,天线和馈线系统统称天线馈线系统,简称天馈系统。
4、点电基本振子近区场又为准静态场;离天线较远时,近似为0;电场磁场相位差90°,为感应场。
远区场中电基本振子的的远区场是沿着径向外传的横电磁波,远区场又称辐射场。
E/H=120pi,远区场具有与平面波相同的特性。
随着距离增加,辐射场减小。
4、电,磁基本振子具有相同的方向函数,空间相互正交,相位差90°5、天线的电参数有哪些?①主瓣宽度:主瓣宽度是衡量天线的最大辐射区域的尖锐程度的物理量。
在场强方向图中,等于最大场强两点间的宽度,称为半功率波瓣宽度;或将头两个零点之间的角度作为主瓣宽度,即零功率波瓣宽度。
②旁瓣电平: 旁瓣电平是指离主瓣最近且电平最高的第一旁瓣电平, 一般以分贝表示。
③前后比: 前后比是指最大辐射方向(前向)电平与其相反方向(后向)电平之比, 通常以分贝为单位。
④方向系数:方向系数定义为: 在离天线某一距离处, 天线在最大辐射方向上的辐射功率流密度Smax与相同辐射功率的理想无方向性天线在同一距离处的辐射功率流密度S0之比,记为D, 即天线方向系数的一般表达式为6、要使天线方向系数大,不仅要求主瓣窄,还要全空间的旁瓣电平小。
微波技术和天线(第四版)刘学观 第6章
将B = ∇ × ( A A为磁矢位)代入上述第二式得 定义电标位φ ,因而有
E = −∇φ − ∂A ∂t
∂A ⎤ ⎡ ∇ × ⎢E + =0 ⎥ ∂t ⎦ ⎣
一旦求得位函数 旦求得位函数——磁矢位和电标位,即可求得时变电场和时变磁场。 磁矢位和电标位 即可求得时变电场和时变磁场 《微波技术与天线》
《微波技术与天线》
第六章 天线辐射与接收的基本理论之°概论
3. 天线的分类
如果按用途的不同,可将天线分为通信天线、广播 电视天线、雷达天线等; 如果按工作波长的不同 可将天线分为长波天线 如果按工作波长的不同,可将天线分为长波天线、 中波天线、短波天线、超短波天线和微波天线等。 如果按辐射元的类型则天线大致可以分为两大类 如果按辐射元的类型则天线大致可以分为两大类: 线天线和面天线。
天线 波前
球面波
《微波技术与天线》
第六章 辐射与接收的基本理论之°基本振子的辐射
1.电基本振子的磁矢位
电基本振子:它是一段长度远小于波长(dl<<λ),电流 I振幅均匀分布、相位相同的直线电流元。 设电基本振子沿z轴放置其电流元为 a z Idl ′ = a z 式中 S为电流元的横截面积。 式中, 为电流元的横截面积 电基本振子的长度远小于波长,因此可取 r′=0 即 R≈r , 所以 其磁矢位的表达式为 所以,其磁矢位的表达式为
第六章 天线辐射与接收的基本理论之°概论
第六章 天线辐射与接收的基本理论
随时间变化的电荷或电流激发出的电磁场,可以脱 离场源以电磁波的形式向远处传播出去而不再返回场 源,我们把这种现象称为电磁辐射。
本章内容
6.1 概论 6.2 基本振子的辐射 6.3 天线的电参数 6.4 接收天线理论
微波技术与天线复习知识要点
《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
共轭匹配的目的就是使负载得到最大功率。
传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。
微波技术与天线-天线(六)
★卡塞格伦天线
M
N
1、从双曲线的任一点P到两
焦点的距离差等于常数。即
F1
P
F2
z
2a
PF1 PF2 2a
2c
2、双曲线的任一点P的法线PN,平分由P点向两焦点的连线
F1P和F2P所构成的角 F1 PF2的补角 F1 PM ,即 。若
称为入射角,则 相当于反射角。因此,如果将馈源放到实
旋转抛物面天线两个重要性
质:
(1)点F 发出的光线经抛物面
反射后,所有的反射线都与抛
物面轴线平行;
(2)由F 点发出的球面波经抛
物面反射后成为平面波。等相
位面是垂直OF 的任一平面。
抛物面的几何关系
常用面天线介绍
★旋转抛物面天线
抛物面天线的结构参数有:
f:抛物面焦距;
2ψ0:抛物面口径张角;
R0:抛物面反射面的口径半径;
Jms
o
dy
φ
x
y
惠更斯—菲涅尔原理
★惠更斯元的辐射场
1、惠更斯面元在两个主平面上各只
有一个分量。
x (或 y)
2、在惠更斯面元的法向( 0),
辐射场与面元上的场同方向。
E 0 // E s
H
0
// H s
3、惠更斯面元辐射场具有方向性。
1 cos
FH , FE ,
形成
a)
b)
a) E面扇形喇叭;
c)
喇叭天线的基本形式
b) H面扇形喇叭; c) 角锥喇叭;
d)
d)圆锥喇叭
图a是将矩形波导的窄壁尺寸扩展形成的E面扇形喇叭。
电磁场、微波技术与天线图文 (6)
第6章 微波网络基础
2. 微波网络参数是在微波传输线中只存在单一传输模式下 确定的。例如,对矩形波导,是指TE10模;对微带线,是指 准TEM模;对同轴线与带状线,是指TEM模。当微波传输 线中存在多模传输时,一般按其模式等效为一个多端口网络, 如一个有n个传输模的单端口元件将等效成一个n端口网络, 一个有n个传输模的二端口元件应等效为2n端口网络,其网 络参数仍按各个传输模式分别确定。
如图6-4-1所示为双端口网络,端口参考面T1、T2上的 电压和电流的方向如图中所示。由网络理论有
U1 Z11I1 Z12 I2 U2 Z21I1 Z22 I2
(6-4-1)
第6章 微波网络基础
图6-4-1 [Z]和[Y]参量网络
第6章 微波网络基础
或简写成
U1 U 2
Z11
Z21
件还不足以将U、I唯一确定。因为,U′=kU,I′=I/k,即e′(x, y)=e(x,y)/k,h′(x,y)=kh(x,y)将同样满足式(6-2-1)的定义 和式(6-2-4)的归一化条件。因此,按上述定义的电压、电流 都只能确定到相差一个常数因子,这种不确定性实际上是反 映了传输线中阻抗的不确定性。为了消除这种不确定性,需 进一步确定基准矢量e(x,y)和h(x,y),也就是确定等效特 性阻抗的选用条件。由式(6-2-1)写出(以入射场为例)
Ui
I
* i
1 2
Ui
(6-2-11a) (6-2-11b)
由式(6-2-11)解得
Ui
ab 2 Em ,
Ii
ab Em
2
(6-2-12)
第6章 微波网络基础
将其代入式(6-2-10)解出
e ey
2 ab
微波技术与天线
微波技术与天线微波技术和天线是现代通信和广播技术中两个非常重要的领域。
这两个领域旨在提高通信效率和性能,并满足不断增长的业务需求。
微波技术和天线在各种应用中都有重要作用,包括无线通信、卫星通信、雷达、无线电传输、导航、航空航天和防御等方面。
在本文中,将介绍微波技术和天线的基础知识和应用领域。
微波技术是电磁波科学的重要方面,其主要研究微波频段的各种应用。
微波频段的频率范围是300MHz~300GHz,与射频和毫米波频段之间。
这个范围的频率被广泛用于通信、雷达、导航和遥感等应用。
微波技术应用广泛,最常见的应用之一是通信。
微波技术被用于构建各种类型的通信系统,如卫星、移动电话和电视广播。
此外,微波技术还用于雷达系统,用于军事和民用航空。
微波技术还被用于无线电传输和导航,如GPS定位系统就使用了微波的频率范围。
微波技术的一个重要组成部分是天线。
天线是将电磁能转换为无线信号的器件。
在微波频段,天线的设计变得复杂和精确。
微波天线设计涉及到一系列重要的参数,如频率响应、辐射图案、天线增益、电子孔径等。
天线的性能直接影响着通信系统的效率和效果,因此天线的选择和设计是非常重要的。
天线通常是由一个或多个射频元件组成的。
射频元件是用于执行射频能量转换的传输线、高频开关、滤波器和其他组件的成品。
通过控制射频元件的状态,可以实现通信系统的调制、分路、复用和解调。
当在微波频段进行通信时,由于信号在传输过程中的损耗,需要使用射频功率放大器和信号增强放大器来保证信号能够达到足够的强度,以克服高噪声环境和可能遇到的障碍物。
在设计天线的过程中,一个重要的考虑因素是电子孔径。
电子孔径是天线的有效长度,定义为天线的物理尺寸除以在接收和发射时电磁场存在的波长。
通过选择天线的长度,可以调整天线接收电磁波的频率和波长,以满足系统的特定需求。
另一个重要的参数是天线的增益。
天线增益是比较天线输出功率和输入功率之间的关系。
为了提高信号强度,可以通过增加天线增益来放大信号。
现代微波与天线测量技术 10微波天线测量技术第六章
测 近场测试 试 距 离
远场测试
缩距法(紧缩场) 平面
近场扫描法 柱面 球面
利用地面场
不利用地面场
测 室内场测试 试 场 地 室外场测试
近场 远场 紧缩场
辐射天线场分布
26
一、天线测试概述
(四)天线测试的应用
• 天线研发设计
• 检验理论分析正 确性
• 对比仿真结果 • 优化设计参数
• 天线生产制造
络散射参数、反射系数、驻波比 三、天线特性参数的测量
主要有阻抗特性和方向特性,包括输入阻抗、频率 特性、效率和匹配等;后者有方向图、主瓣宽度、付 瓣电平、增益系数、方向性系数、极化和相位特性以 及有效高度。
6
天线测量的主要任务
一、检验理论 求解天线场问题时,几乎总是对理 想条件作数学分析,再进行计算,因此理论的正 确性必须由试验检验。 二、独立研究 对天线技术中许多理论上还不够成 熟的课题要靠实验来解决,再逐步上升到理论, 是研制天线的一种方法。 三、工厂制造检验 天线在出厂前必须测量他的电 参数和机械性能,看是否能达到设计要求。 四、安装和维修 天线良好的性能还取决于正确的 安装和使用维修 天线测量的结果精度取决于仪表精度、测试方法、 测试场地条件及测试者的技术水平有关。
7
二、测试场地―测试和鉴定天线的场所
天线测试场地可分为室内和室外,但均要求无外 界干扰
室内微波暗室 室外:现场和专门的天线测试场 由于卫星通信、雷达等用途中,天线都处在它的 远区,所以要正确测试它的辐射特性,必须具备一 个能提供均匀平面波的照射待测天线的理想测试场, 测试场地分为自由空间测试场地和地面反射测试场 地
• 抽检天线合格率 • 指导改进生产工
艺
• 天线应用阶段
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应有足够的工作频带。
2019/9/6
3
主要内容
天线概述 天线基本理论(重点)
基本振子的辐射 天线的电参数
2019/9/6
4
概述
作用
辐射或接收无线电波的部件 能量转换器件
应用
无线通信 广播电视 遥感遥测 导航 电子对抗 射电天文
振荡能量
高频电流 (导波)
2019/9/6
辐射能量 辐射的电 磁波
由于场强与1/r的高次方成正比,所以近区场随距离 的增大而迅速减小(离天线较远时-以10λ作为参考, 可认为近区场近似为零)。
电场与磁场相位相差90°,说明玻印廷矢量为虚数, 即电磁能量在场源和场之间来回振荡,没有能量向外 辐射, 所以近区场又称为感应场。
2019/9/6
15
电基本振子的辐射
远区场的特点
2019/9/6
8
概述
天线工程最关心的问题
馈线的阻抗匹配
方向性
极化
天线频宽
求解方法
求解满足边界条件的Maxwell方程 近似解法
内场
天线上的电流分布
包围场源体积表面上的场分布
外场
2019/9/6 利用线性叠加原理
9
概述
天馈系统
由于馈线系统和天线的联系十分紧密, 有时把天线和馈 线系统看成是一个部件,统称为天线馈线系统(简称天 馈系统)。
电基本振子
电基本振子是一段长度l远小于波长( l<<λ ), 电流I
振幅均匀分布、 相位相同的直线电流元。
是线天线的基本组成部分。任意线天线均可看成是由 一系列电基本振子构成的。
2019/9/6
12
电基本振子的辐射
电基本振子的场
设元电辐射体上电流为Iejωt,则P点的场强:
Hr H 0
H
18
磁基本振子的辐射
磁基本振子是一个半径为b的细线小环, 且小环的周长满 足条件:2πb<<λ。
假设其上有电流i(t)=Icosωt。
由电磁场理论,其磁偶极矩矢量为:
Pm
ez
Ib
2
ez
pm
2019/9/6
19
磁基本振子的辐射
电与磁的对偶性原理
电基本振子的辐射场
磁基本振子的辐射场
方向性 在不同的方向上辐射强度是不相等的。 这说明电基本 振子的辐射是有方向性的。
辐射体向空间不同方向上的辐射能力。 方向函数 F ( ,) sin 方向图 θ=90度或270度,辐射最强,轴线方向无辐射。 方向函数与φ无关,其方向图是以天线轴为中心的
回旋体。
2019/9/6
5
概述
天线是个开放的系统
2019/9/6
6
概述
天线的种类
按用途
通信天线
电视天线
雷达天线等
按工作波长
超长波、长波、中波天线
短波、超短波和微波天线
按方向划分
全向天线
定向天线
2019/9/6
7
概述
天线的种类
按辐射元的类型 线天线 线天线是由半径远小于波长的金属导线构成。 主要用于长波、中波和短波波段。 面天线 面天线是由尺寸大于波长的金属或介质面构成的。 主要用于微波波段。 超短波波段则两者兼用。
馈线系统 把天线和发射机或接收机连接起来的系统。 随频率的不同,馈线的形式: 双导线传输线馈线 同轴线馈线 波导馈线 微带馈线
2019/9/6
Hale Waihona Puke 10基本元的辐射电流元:电基本振子 磁流元:磁基本振子 面元: 惠更斯- 菲涅尔原理
电磁场对偶原理
2019/9/6
11
电基本振子的辐射
能量转变为无线电波;将无线电波转换为导波能量。
2019/9/6
2
引言
天线的功能
馈线的阻抗匹配问题 应能将导波能量尽可能多地转变为电磁波能量。 要求天线是一个良好的电磁开放系统。 要求天线与发射机或接收机匹配。
具有方向性 应使电磁波尽可能集中于确定的方向上。 对确定方向的来波最大限度的接受。
j k2Il
4π ε0r
sin θe jkr
E 0
Er 0
Hr H 0
H
E
0
j kIl 4πr
sine jkr
2019/9/6
近区场
远区场
14
电基本振子的辐射
近区场的特点
电场Eθ和Er与静电场问题中的电偶极子的电场相似, 磁场Hφ和恒定电流场问题中的电流元的磁场相似, 所 以近区场称为准静态场。
2019/9/6
16
电基本振子的辐射
远场区的特点
辐射强度
辐射功率
P
sSs
ds
40
2
I
2
(
l
)2
与天线的结构、电尺寸、激励电流有关。
辐射电阻
R
2P I2
80 2 ( l )2
与激励电流无关,表示电磁波的辐射能力。
2019/9/6
17
电基本振子的辐射
远场区的特点
远区(kr>>1 → r>> λ/2π ):辐射场
当λ/r<<1时, r-1起主要作用,r-2 、r-3 可忽略不计。
P j Idl
Er
2P
4 0r3
cos
E
P
4 0r 3
s in
H
Idl
4r 2
s in
E
j
Il
2r
0
(sin
)e jkr
Il
4
sin ( j
k r
1 r2
)e jkr
Er
Il
4
2
c
os
(
k r2
j
1 r3
)e
jkr
E
Il
4
sin ( j
k2 r
k r2
j
1 r3
)e
jkr
E 0
2019/9/6
13
电基本振子的辐射
近区(kr<<1→r<<λ/2π):准静态场/感应场由
于r很小, 只需保留1/r的高次项, e-jkr≈1。
第六章 天线
2019/9/6
1
引言
通信系统
通信的目的是传递信息。根据传递信息的途径不同: 有线通信 在相互联系的网络中用各种传输线来传递信息,如电话、计算 机局域网等有线通信系统。 无线通信 依靠电磁辐射通过无线电波来传递信息,如电视、 广播、 雷 达、 导航、卫星等无线通信系统。
天线:用来辐射和接收无线电波的装置。将来自发射机的导波
电场只有Eθ和Hφ两个分量,它们在空间上相互垂直、 在时间上同相位,所以其玻印廷矢量是实数且指向 r 方向。 这说明电基本振子的远区场是一个沿着径向 向外传播的横电磁波, 所以远区场又称辐射场。
波阻抗是一常数(等于媒质的本征阻抗),因而远区 场具有与均匀平面波(TEM波)相同的特性。
辐射场的强度与距离成反比(随着距离的增大辐射场 减小)。 这是因为辐射场是以球面波的形式向外扩 散的:当距离增大时, 辐射能量分布到更大的球面 面积上。