岩体的力学性质及分类doc

合集下载

《岩体力学》第六章岩体的力学性质

《岩体力学》第六章岩体的力学性质

图6.1 岩体的压力--变形曲线第六章 岩体的力学性质岩体的力学性质包括岩体的变形性质、强度性质、动力学性质和水力学性质等方面。

岩体在外力作用下的力学属性表现出非均质性、非连续、各向异性和非弹性。

岩体的力学性质取决于两个方面: 1)受力条件;2)岩体的地质特征及其赋存环境条件。

其中地质特征包括岩石材料性质、结构面的发育情况及性质(影响岩体的力学性质不同于岩块的本质原因);赋存环境条件包括天然应力和地下水。

第一节 岩体的变形性质一、 岩体变形试验及其变形参数确定变形参数包括变形模量和弹性模量。

按静力法得到静E ,动力法得到动E 。

⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧法波地震声波法动力法轴压缩试验法双单水压洞室法钻孔变形法扁千斤顶法狭缝法承压板法静力法按原理和方法分原位岩体变形试验)()()( )(1.承压板法刚性承压板法和柔性承压板法 各级压力P -W (岩体变形值)曲线 按布西涅斯克公式计算岩体的变形模量E m (Mpa )和弹性模量E me (Mpa )。

⎪⎪⎩⎪⎪⎨⎧-=-=e m mem m W W PD E W W PD E )1()1(22μμ式中:P —承压板单位面积上的压力(Mpa ); D —承压板的直径或边长(cm );W,W e—为相应P下的总变形和弹性变形;ω—与承压板形状、刚度有关系数,圆形板ω=0.785,方形板ω=0.886。

μm—岩体的泊松比。

★定义:岩体变形模量(E m):岩体在无侧限受压条件下的应力与总应变之比值。

岩体弹性模量(E me):岩体在无侧限受压条件下的应力与弹性应变之比值。

图6.2 钻孔变形试验装置示意图②可以在地下水位以下笔图6.3 狭缝法试验装置如图6.3所示。

二、岩体变形参数估算现场原位试验费用昂贵,周期长,一般只在重要的或大型工程中进行,因此,岩体变形参数的很多情况下必须进行估算。

两种方法:① 现场地质调查→建立适当的岩体地质力学模型→室内小试件试验资料→进行估算; ② 岩体质量评价和大量试验资料→建立岩体分类指标与变形参数间的经验关系→进行估算。

岩体的力学性质

岩体的力学性质

结构面:指地质过程中在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。

又称不连续面.结构面包括物质分异面和不连续面。

软弱结构面:结构面中规模较大,强度低,易变性的结构面。

结构体:被结构面切割成的岩石块体。

裂隙度K:是指沿取样线方向单位长度上的节理数量。

切割度Xe:指岩体被节理割裂分离的程度。

剪胀现象:规则齿状结构面在正应力很小的时将沿着齿面滑动,结构面张开,发生剪胀现象岩体的强度:指岩体抵抗外力破坏的能力,包括抗压强度和抗剪强度。

抗剪断强度:指正应力作用下岩体发生剪断破坏时的最大切应力。

摩擦强度:着正应力下岩体沿着既有破裂面发生剪切破坏时的最大切应力。

抗切强度:指剪切破坏面上的法向应力为零时的最大切应力。

岩体完整性系数:岩体与岩石中纵波传播速度的比值的平方。

岩体的动力学性质:指动荷载下岩体表现出的性质。

张节理:是岩体在张应力作用下形成的一系列裂隙的组合,一般粗糙,宽窄不一且延展性较差剪节理:指岩体在切应力作用下形成的一系列裂隙的组合,一般平直光滑,延展性相对比较好张性断层:由张应力或与张断层平行的压应力形成的断层。

压性断层:主要是指压性逆断层,逆掩断层,断层面上常有与走向大致垂直的逆冲擦痕,大致平行集中出现的一系列压性断层构成挤压断层带。

剪性断层:主要指平移断层以及部分正断层,剪裂面产状稳定,断面平整光滑。

劈理:指在地应力作用下,岩石沿着一定方向产生大致平行的破裂面。

泥化夹层:是由于水的作用时夹层内的松软物质泥化而成,其产状与岩层基本一致。

影响结构面力学性质的因素:答:1.结构面两侧结构体的力学性质2.结构面的几何特征3.结构面的尺寸效应4.填充物的力学性质5.水对泥夹层的软化作用6.后期加载过程7.泥化夹层的时效性8. 前期变形历史●影响岩体中结构体特征的因素:答:1.切割岩体的结构面组数2.岩石的类型3.区域构造运动的强度4.工程岩体的破坏方式●影响岩体变形性质与试验结果的因素:答:1.岩体性质2.岩体中结构面发育特征3.岩体试验加载速率,加载过快,岩石变形不充分,导致变形模量较大4.温度,一般来说,温度增高,岩体延性加大,屈服点随之降低。

岩体力学性质

岩体力学性质

强度性质
强度性质
岩体在各种压力状态下所能承受的最大应力,称为岩体的强度。它可分为单轴抗压强度、单轴抗拉强度、三 轴抗压强度以及剪切强度等。单轴抗压强度是岩体在单向压缩时所能承受的最大压应力。岩体的单轴抗压强度总 是低于岩块的单轴抗压强度。二者的比值变化较大,通常为0.05~0.65。单轴抗拉强度是岩体或接近于零。岩体在三向受压状态下所能承 受的最大压应力,称为岩体三轴抗压强度。原位岩体三轴压缩试验的开展,有益于更好地评价岩体的各向异性。 岩体内任一方向切面在任一法向压应力下所能抵抗的最大剪应力,称为岩体该方向切面在该法向应力下的剪切强 度。它可分为剪断强度、重剪强度和抗切强度。剪断强度是岩体中先前没有破坏的面在任一法向应力下能抵抗的 最大剪应力。剪切面上法向应力等于零时的剪断强度,称为抗切强度。岩体中先前存在的破坏面在任一法向压应 力下能抵抗的最大剪应力,称为重剪强度。岩体剪切强度的大小,通常用库仑强度参数,即内聚力和内摩擦角的 大小来说明。岩体的剪切强度远小于岩块的剪切强度。岩体重剪强度的内聚力值一般在0~0.3兆帕,内摩擦角多 为10°~48°。岩体剪断强度的内聚力值一般在0.05~4兆帕,内摩擦角多为20°~55°。岩体剪切强度具有各向 异性。沉积岩体的各向异性最为显著,火成岩体的各向异性表现不明显,变质岩体的各向异性则介于沉积岩体和 火成岩体之间。
岩体力学性质
岩体在受力状态下抵抗变形和破坏的能力
01 变形表征
03 力学性质
目录
02 强度性质
基本信息
岩体力学性质是指岩体在受力状态下抵抗变形和破坏的能力。它包括变形性质和强度性质两个方面。岩体的 力学性质,是设计一切大型岩体工程的重要依据。
变形表征
变形表征
岩体变形性质的物理量主要是变形模量、弹性模量和泊松比等。具有弹性和非弹性性能的岩体在加荷时应力 与应变的比值,称为变形模量。岩体在弹性变形阶段内,应力与应变的比值,称为弹性模量或杨氏模量。轴向加 荷的岩体试件的侧向应变与轴向应变的比的负值,称为泊松比。岩体的变形模量值普遍低于岩块的变形模量值, 两者的比值一般为0.2~0.6。岩体变形模量与其弹性模量的比值,也多为0.2~0.6。岩体的变形性质普遍具有各 向异性,不同方向的模量值不相同,在有些情况下,高达1∶10,通常为1∶2。此外,岩体变形模量与弹性模量的 比值,也常常随着方向不同而变化。

岩石的基本物理力学性质

岩石的基本物理力学性质

岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。

岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。

第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。

岩石是构成岩体的基本组成单元。

相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。

岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。

回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。

●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。

●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。

●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。

回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。

其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。

回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。

结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。

这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。

2-1岩体力学性质-岩体结构及结构面物理性质

2-1岩体力学性质-岩体结构及结构面物理性质

2)构造结构面
成因类型 地质类型
主要特征
劈理
为短小、密集的剪切破裂面,影响局部地段岩体的完整性及强度
构造结构 面
节理
1.在走向延展及纵深发展上其范围是有限的; 2.一般分为张节理和剪节理,张节理延续性弱,剪节理延伸较长; 3.张节理一般具陡立或陡倾产状,常垂直岩层走向。剪节理斜交岩层走向,其倾角随岩层倾角变陡而变缓; 4.张节理面粗糙,参差不齐,宽窄不一。剪节理平直光滑,有的面见擦痕镜面,常有各种泥质薄膜,如高岭石、 绿泥石、滑石、石墨等,尽管接触面紧闭,但易于滑动。
块状碎 裂结构
碎裂介质
散体结 构
散体 结构
散体 结构
粗碎屑 散体结

2.2 岩体结构基本类型
4)岩体结构的相对性及工程 岩体结构的唯一性
①岩体结构的相对性 ②工程岩体结构的唯一性 ③工程岩体结构不同 岩体力
学机制不同 稳定性分析方 法也不同
2.3 岩体结构面及其充填特征
2.3.1 岩体结构面类型及特征 1) 原生结构面
1.产状与岩层一致,或受其控制; 2.片理面延展性较差,一般分布密集 3.片理结构面光滑,但形态是波浪起伏的。在新鲜岩体中片理面多呈闭合状,但一般能剥开,片理面常呈凹凸 不平状,面粗糙; 4.软弱夹层中主要是片状矿物,如黑云母、绿泥石、滑石等富集带,抗剪强度低,是岩体中的薄弱部位。
2.3 岩体结构面及其充填特征(类型及特征)
⑥散体结构岩体 a.散体结构 碎屑状散体结构岩体 构造型
风化型 糜棱化散体结构岩体 糜棱岩风化
泥质沉积岩构造错动 b.碎屑状:软硬结构面无序分布、结构体以角砾为主,夹杂有泥质成份 c.糜棱化:断层泥 压力愈合为糜棱岩 卸压 糜棱岩粉 风化 断层泥

整理[物理]岩石、碎石土分类及其力学性质指标

整理[物理]岩石、碎石土分类及其力学性质指标

(一) 岩土工程地质分类按照GB 50007—2002《建筑地基基础设计规范》,作为建筑地基的岩土, 可分为岩石、碎石、砂土、粉土、黏性土和人工填土等。

1.岩石的分类岩石应为颗粒间牢固联结, 呈整体或具有节理裂隙的岩体。

岩石的分类有地质分类和工程分类。

地质分类主要根据岩石的成因, 矿物成分、结构构造和风化程度, 可用地质名称加风化程度表达, 如强风化花岗岩、微风化砂岩等。

岩石按成因的类型, 可分为岩浆岩(火成岩)、沉积岩(水成岩) 和变质岩三大类。

工程分类主要根据岩体的工程性状加以分类。

地质分类是一种基本分类, 工程分类是在岩石分类的基础上进行的。

(1)根据岩石的成因, 岩石可分为岩浆岩(火成岩)、沉积岩 (水成岩) 和变质岩三大类。

岩浆在向地表上升过程中, 由于热量散失逐渐经过分异等作用冷凝而成岩浆岩。

岩浆岩的分类见表Ⅰ-1。

表Ⅰ -1 岩浆岩的分类沉积岩是由岩石、矿物在内外力的作用下破碎成碎屑物质后,再经水流、风吹和冰川等的搬运、堆积在大陆低洼地带或海洋,再经胶结、压密等成岩作用而成的岩石。

沉积岩的分类见表Ⅰ-2。

表Ⅰ -2 沉积岩的分类变质岩是岩浆岩或沉积岩在高温、高压或其他因素作用下,经变质所形成的岩石。

变质岩的分类见表Ⅰ-3。

表Ⅰ -3 变质岩的分类(2)根据岩石的坚硬程度,岩石的分类见表Ⅰ-4。

表Ⅰ-4 岩石坚硬程度的划分(3)根据岩体完整程度的分类见表Ⅰ-5。

表Ⅰ -5 岩体完整程度划分注完整性指数为岩体纵波波速与岩块纵波波速之比的平方。

(4)根据岩体基本质量等级的分类见表Ⅰ-6。

表Ⅰ-6 岩体基本质量等级分类(5)根据风化程度,岩石的分类见表Ⅰ-7和表Ⅰ-8。

表Ⅰ -7 岩体风化带表Ⅰ-8 岩石按风化程度分类注 1.波速比Kv为风化岩石与新鲜岩石压缩波速度之比。

2.风化系数Kf为风化岩石与新鲜岩石饱和单轴抗压强度之比。

3.花岗岩类岩石,可采用标准贯入试验划分,N≥50为强风化;50>N≥30为全风化; N<30为残积土。

岩体力学02-岩石的基本物理力学性质.资料

岩体力学02-岩石的基本物理力学性质.资料
波速比(Kv):风化岩石弹性波纵波波 速(cp)与新鲜岩块弹性波纵波波速 (rp)之比的平方。
风化系数(Kf):风化岩石的饱和单轴
抗压强度(cw’)与新鲜岩石饱和单轴 抗压强度(cw)之比。
Iw
mw mrd
Kv
vcp vrp
2
Kf
' c
w
cw
硬质岩石风化风化程度分类表
风化程度 全风化 强风化
中等风化 微风化 未风化
代表性岩石
硬质 岩石
极硬岩石 次硬岩石
>60 30~60
花岗岩、花岗片麻岩、闪长岩、玄 武岩、石灰岩、石英砂岩、石英岩、
大理岩、硅质砾岩等
软质 岩石
次软岩石 极软岩石
5~30 <5
粘土岩、页岩、千枚岩、绿泥石片 岩、云母片岩等
§2.2 岩石的基本物理性质
岩石是由固体、液体和气体三相组成的。岩石 的力学性质常与岩石中三相的比例关系及固相 与水相互作用有密切的关系。
m g/cm 3
V—岩石试件的总体积;
V
m—岩石试件的总质量
岩石天然密度越大, 其工程性质越好。影 响因素是矿物成分、 孔隙与微裂隙发育程 度以及含水量。
测定方法有量积法、水中称重法、蜡封法等,试件数量不少于5个
2、饱和密度( sat)
岩石中空隙全部被水充填时单位体积的质量,即
sa tm s V V vw g/c3 m
•岩石的粒间连结分结晶连结与胶结连结 •结晶连结:矿物颗粒通过结晶相互嵌合在一起, 它是通过共用原子或离子使不同晶粒紧密接触。 •胶结连结:矿物颗粒通过胶结物连结在一起。 胶结连结的岩块强度:硅质胶结>铁质、 钙质>泥质胶结
三、岩块的风化
岩石经过风化,矿物组成和结构改变,岩块的物 理力学性质改变:强度降低、抗变形性能减弱、 空隙率增大、渗透性加大。

4岩体的力学性质及工程分类

4岩体的力学性质及工程分类
1、岩体的抗剪强度包络线介于结构面强度包络线和岩石 强度包络线之间。
2、岩体强度的各向异性
岩体强度受加载方向与结构面夹角θ的控制,因此,表现出岩
体强度的各向异性。
1
3 0
3
4.3.2 岩体强度的测定(现场测试)
1、岩体单向抗压强度 (1)单向抗压强度σc 试件:边长(0.5~1.5)m,高 度不小于边长的立方块。
岩体的变形主要它由结构体变形与结构面变形两部分 构成。
块状结构岩体变形主要沿贯通性结构面滑移形成;碎裂 状结构岩体变形则由Ⅲ、Ⅳ级结构面滑移及部分岩块变形 构成;只有完整岩体的变形才受控于组成岩体的岩石变形 特征。
岩体变形机制受岩体结构控制
岩体结构
整体状结构
碎裂状结构
块状结构
变形 成分
主要 的
次要 的
按规模结构体可分为: I级结构体:由I级结构面切割成的结构体(地质体)。
II级结构体:由I级结构体经II级结构面切割而成的结 构体(山体)。
III级结构体:II级结构体再经III级结构面切割而成的 结构体。
IV级结构体:III级结构体再经IV级结构面切割而成的 结构体(完整岩石或岩块)。
二、结构体的块度
式中:P—试件破坏时的作用力,N; A—试件横截面面积,m2。
2、岩体抗剪强度现场测定
(1)双千斤顶法
N Q sin
FF
Q cos
F
式中: σ、τ—试件剪切面上的正应力和剪应力; F—试件剪切面面积; N—法向力; Q—斜向力; α—横向推力与剪切面的夹角,通常为150。
(2) 单千斤顶法
级结构面
主要为软弱结构面
岩体的破坏机制也受控于岩体结构: 结构控制有:岩体破坏难易程度、岩体破坏的规模、岩 体破坏的过程及岩体破坏的主要方式等。

第四章岩体的基本力学性质

第四章岩体的基本力学性质

结构面的状态对岩体的工程性质的影响是指结构面的产状、形 态、延展尺度、发育程度、密集程度。 结构面的产状:结构面的产状对岩体是否沿某一结构面滑动起控 制作用。 结构面的形态:结构面的形态决定结构面抗滑力的大小,当结构 面的起伏程度较大,粗糙度高时,其抗滑力就大。 结构面的延展尺度:在工程岩体范围内,延展尺度大的结构面, 完全控制岩体的强度。 结构面的密集程度:以岩体的裂隙度和切割度表征岩体结构面的 密集程度。
又A=h2,节理面的法向弹性变形量δ0=2δ,代入Boussnisq解,得 接触面为方形时,m=0.95,μ≅0.25,则上式变为
(二)节理的闭合变形 含啮合变形(配称实验)和压碎变形(非配称实验)。 下面介绍Goodman方法:
(1)结构面闭合试验(VmC的确定) 步骤: 1)备制试件; 2)作ζ-ε曲线(a); 3)将试件切开,并配 称接触再作曲线(b); 4)非配称接触,作曲线(c); 5)两种节理的可压缩性法向 Nhomakorabea切向
(1)有n个点接触,每个接触 面边长为h
(2)每个接触面受力相同
(3)每个接触面力学特性 相同
2、计算公式 半无限体上作用一个集中力的布辛涅斯克(Boussnisq)解
δ-变形量;Q-荷载;A-荷载作用面积;E、μ-弹性模量、泊 松比;m-与荷载面积形状因素有关的系数,方形面积m=0.95 设节理面的边长为d,作用于节理面上的应力为ζ,则作用 在每一个接触面上的荷载
统计结构面 实测结构面
V 级结构面--细小的结构面
• Ⅰ级 指大断层或区域性断层。控制工程建设地区的地壳稳 定性,直接影响工程岩体稳定性;
• Ⅱ级 指延伸长而宽度不大的区域性地质界面。 • Ⅲ级 指长度数十米至数百米的断层、区域性节理、延伸较 好的层面及层间错动等。 Ⅱ、Ⅲ级结构面控制着工程岩体力学作用的边界条件 和破坏方式,它们的组合往往构成可能滑移岩体的边界面 ,直接威胁工程安全稳定性

第二章岩石的基本物理力学性质

第二章岩石的基本物理力学性质

ms——岩石固体的质量。
试验方法:105~110℃烘24h。
1.岩石的密度
(4)重力密度:单位体积中岩石的重量,简称重度。 由密度乘上重力加速度而得,单位kN/m3。
♪工程中应用最广泛的参数之一,不仅反映了岩石的致 密程度,还可计算岩体的自重应力。
2.岩石的颗粒密度
岩石固体物质的质量与固体的体积之比。(比重瓶)
二、岩石的孔隙性 反映裂隙发育程度的指标
1.孔隙比 e VV / Vs VV——孔隙体积(水银充填法求出)
2.孔隙率
n VV 100% V
V=Vs+VV
e~n关系
e VV Vs
VV / V Vs / V
VV V
V VV V
n 1 n
n 1 d s
三、岩石的水理性质
1.岩石的含水性质
(1)含水率:岩石孔隙中含水量mW与固体质量之比的百分数
具有侧向约束的试件浸入水中,使岩石试件仅产生轴向 膨胀变形而求得的膨胀率。
VHP
H HP H
100%
3、膨胀压力:岩石试件浸水后,使试件保持原有体积所 施加的最大压力。
五、岩石的抗冻性
Kf
Rf Rs
Kf—抗冻性系数; Rf—岩石冻融后的饱和单轴抗压强度; Rs—岩石冻融前的饱和单轴抗压强度。
冻融条件下强度损失原因: 1.各种矿物的膨胀系数有差异; 2.空隙中的水结冰,体积增大。
(3)岩石的膨胀性(含有粘土矿物的岩石)
——评价膨胀性岩体工程的稳定。
1、自由膨胀率 —无约束条件下,浸水后膨胀变形与原尺寸之比。
轴向自由膨胀
VH
H H
100%
(%)H——试件高度
径向自由膨胀
VD

岩体的工程地质性质及岩体工程分类

岩体的工程地质性质及岩体工程分类
岩体的工程地质性质及岩体工程分类
▪第一节 岩体的结构特征 ▪第二节 岩体的力学性质 ▪第三节 岩体的工程分类
第一节 岩体的结构特征
一、结构面的成因类型
(一)地质成因类型 ❖ 原生结构面 ❖ 构造结构面 ❖ 次生结构面 (二)力学成因类型 ❖ 张性结构面 ❖ 剪性结构面
结 构 面
岩体结构面的类型及其特征
结构面组合关系的分析可用赤平投影、立体投影 和三角几何计算法等进行。
四、结构体特征
• 结构体(structural element)指岩体中被结构面切 割围限的岩石块体。它不同于岩块的概念。
• 结构体的规模取决于结构面的密度,密度愈小,结 构体的规模愈大,与结构面对应,划分为五级。
• 常用块度模数(单位体积内的Ⅳ级结构体数) 或结 构体体积来表示结构体规模。
13(12(tC gjj ct3gt)gsij)n2
(二)结构面的连续性
• 结构面的连续性反映结构面的贯通程度。 • 1、线连续性系数:指沿结构面延伸方向,结构面各
段长度之和(Σa)与测线长度的比值。
a K1
a b
K1变化在0~1之间,K1值愈大说明结构面的连续性愈
好,当K1=1时,结构面完全贯通。 2、面连续性系数:指沿结构面延伸方向,结构面面
程度有关 • 结构面的剪切刚度,
随法向应力的增大 而增大,随结构面 的规模增大而降低。
二、岩体变形参数的测定及变形曲线类型
原位岩体 变形试验
静力法 动力法
承压板法 钻孔变形法 狭缝法 水压洞室法 单(双)轴压缩试验法 声波法 地震波法
• 静力法的基本原理:在选定的岩体表面、 槽壁或钻孔壁面上施加法向荷载,并测 定其岩体的变形值;然后绘制出压力-变 形关系曲线,计算出岩体的变形参数。

岩石力学与工程岩体力学性质

岩石力学与工程岩体力学性质

岩石力学与工程岩体力学性质
2021/3/6
8
四、结构面对岩体强度的影响
结构面是通过结构面的产状、形态、延展尺度 等几何特征参数和密集度与充填物等状态,来 描述对岩体强度和工程稳定性影响的。
1.结构面的产状对岩体是否沿某一结构面滑动 起控制作用。
2.结构面形态决定结构面抗滑力的大小,当结 构面的粗糙度越高,其抗滑力就越大。
3.结构面的延展尺度在工程岩体范围内,延展 尺度大的结构面程岩体力学性质
2021/3/6
9
三、岩体破碎程度的指标(补充)
1.裂隙度
(1)定义 裂隙度K是指沿着取样线方向,单位长度上节理 的数量。
(2)计算
1)设某节理取样线长度为L,沿L内出现节理的数 量为n,则 Kn L
2021/3/6
岩石力学与工程岩体力学性质
划分依据 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构特征已消失 原生岩体结构特征已消失
7
2)沿取样方向节理的平均间距d为
d 1 L Kn
岩石力学与工程岩体力学性质
2021/3/6
10
2.切割度
(1)切割度
是指岩体被节理割裂、分离的程度。
(2)计算
1)仅含一个节理面的平直断面,节理面面积 a,平
直断面面积A,其切割度 X e 为
Xe
a A
2)当岩体被完全切割时,Xe 1 ;未被切割时,
级 序 结构类型
划分依据
Ⅰ Ⅰ1 块裂结构 多数软弱结构面切割,块 状结构体
Ⅰ2 板裂结构 一组软弱结构面切割,板 状结构体

8 岩体的力学性质

8 岩体的力学性质
V
式中:d — 钻孔孔径 ,р— 计算压力,等于实验压力与初 始压力之差,Mpa;V — 径向位移,cm。
(3) 岩体变形曲线类型 由于岩体中结构面的发育情况及岩石坚硬程度等的差异, 岩体变形试验求得的压力P — 变形W曲线是复杂多变的。总括 起来,可归纳为如图所示的三类。 1.直线型:如图P—W曲线呈近似直线关系,反映岩体坚硬、致 密,裂隙不发育,或只有分布均匀的细小裂隙,岩体变形模量 较大,塑性变形小。 2.上凹型:P—W曲线在载荷低时斜率小,塑性变形大,随着载 荷的加大,曲线斜率逐渐增大,塑性变形趋于稳定;反映岩体 的岩性坚硬,裂隙发育,且多呈张开而无充填;在载荷作用下, 裂隙逐渐闭合或发生镶嵌作用而被挤紧。 3.下凹型:P—W曲线在低载荷下近似直线,表现为弹性变形; 当载荷增大时呈曲线,表现为塑性变形;反映岩体的岩性较软 弱,或岩体的较深部位埋藏有软弱夹层,或岩体裂隙发育,且 有泥质充填。
(2)构造结构面
各类岩体在构造运动作用下形成的各种结构面,如劈理、节理、 断层、层间错动面等。 节理面在走向延展及纵深发展上,其范围都是有限的,大者 一般不过上百米,小者仅有几厘米.张节理面一般粗糙,参差 不齐,宽窄不一,延展性较差,剪节理面一般平直光滑,延展 性相对较好,节理面上常见有擦痕和各种泥质薄膜,如高岭石、 绿泥石、滑石等,因此,剪节理面尽管接触紧密,但却易于滑 动。 断层面的规模相差比较悬殊,有的深切岩石圈几十公里,有 的仅限于地壳表层或只在地表数十米.但是,相对工程而言, 断层面一般是延展性较好的结构面.断层面(或帘)的物质成分 主要是构造岩,如断层泥、糜棱岩、角砾岩、压碎岩等.层间 错动带是在层状岩体中常见的一种构造结构面,其产状一般与 岩层一致。 延展性较好,结构面中的物质,因受构造错动的影响,多呈 破碎状、鳞片状,且含泥质物。

第十一章 岩体的力学性质

第十一章 岩体的力学性质

• 式中,结构面的基本摩擦角φu,一般认为是结构面壁岩平 直表面的摩擦角,可用倾斜试验求得。其方法是取结构面 壁岩试块,将其锯成两半,除去岩粉,风干后合在一起。 试验时,缓缓地抬起试块一端,直到上盘岩块开始下滑为 止,此时的试块倾角即为φu。对每种岩石.进行试验的试 块数需10块以上。在没有试验资料时,常取φu=30°,或 用结构面的残余摩擦角代替。JRC的确定方法是,测出所 研究结构面的表现粗糙度轮廓线,与图11—10所示的标准 剖面对照确定。JCS为结构面壁岩强度,常用回弹试验求 得。 • 式(11—13)是巴顿不规则组糙起伏结构面的抗剪强度公式。 利用该式确定结构面抗剪强度时,只需知道JRC、JCS和 φu三个参数即可,无须进行大型现场抗剪强度试验。部分 粗糙结构面的抗剪强度,见表11—l。
• 三、岩体变形曲线类型

由于岩体中结构面的发育情况及岩石坚硬程度 等的差异,岩体变形试验求得的压力p-变形w曲线 是复杂多变的。总括起来,可归纳为如图11—5所 示的三类,即:
(1)直线型:如图11—5a,p-w曲 (1) 11—5a p-w 线呈近似直线关系,反映岩体坚 硬、致密,裂隙不发育,或只有 分布均匀的细小裂隙,岩体变形 模量较大,塑性变形小。
• 利用∆vj可得到结构面的σn—∆vj关系曲线可知,结构面的法向变形具有如下特征: • 首先,在法向应力作用下,结构面闭合变形开始较快,变 形量也较大,随后逐渐变慢,变形量趋于常量∆vm; • 其次,σn—∆vj曲线为一以∆v=∆vm (结构面最大闭合量)为 渐近线的双曲线,说明结构面的变形大部分在低应力下就 趋于完成; • 再次,含结构面岩块的变形∆vt。开始随σn增加呈非线性 增加,当σn达到某一定值后,σn—∆vr曲线变陡,且近似 与σn—∆vt曲线平行; • 最后,由非线性变形转变为线性变形的法向应力大约在岩 石抗压强度的1/3处,σn高于q/3后的∆vt主要是岩块变 形贡献的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

―――岩体力学作业之二
一、名词释义
l.结构面:①指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。

②又称弱面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合、不整合、褶皱、断层、层面、节理和片理等。

2.原生结构面:在成岩阶段形成的结构面,根据岩石成因的不同,可分为沉积结构面、岩浆(火成)结构面和变质结构面三类。

3.构造结构面:指在构造运动作用下形成的各种结构面,如劈理、节理、断层面等。

4.次生结构面:指在地表条件下,由于外力(如风力、地下水、卸荷、爆破等)的作用而形成的各种界面,如卸荷裂隙、爆破裂隙、风化裂隙、风化夹层及泥化夹层等。

5.结构面频率:即裂隙度,是指岩体中单位长度直线所穿过的结构面数目。

6.结构体:结构面依其本身的产状,彼此组合将岩体切割成形态不一、大小不等以及成分各异的岩石块体,被各种结构面切割而成的岩石块体称为结构体。

7.结构效应:是指岩体中结构面的方向、性质、密度和组合方式对岩体变形的影响。

8.剪胀角(angle of dilatancy):岩体结构面在剪切变形过程中所发生的法向位移与切向位移之比的反正切值。

9.节理化岩体:是指被各种节理、裂隙切割呈碎裂结构的岩体。

10.结构面产状的强度效应:指结构面与作用力之间的方位关系对岩体强度所产生的影响。

11.结构面密度的强度效应:指结构面发育程度(数量)对岩体强度所产生的影响。

12.岩体完整性指标:是指岩体弹性纵波与岩石弹性纵波之比的平方。

13.岩体基本质量:岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩体完整程度决定。

14.自稳能力:在不支护条件下,地下工程岩体不产生任何形式破坏的能力。

15.体积节理数:是指单位岩体体积内的节理(结构面)数目。

16.岩石质量指标(RQD):长度在10cm(含10 cm)以上的岩芯累计长度占钻孔总长的百分比,称为岩石质量指标RQD(Rock Quality Designation)。

二、填空题
1.岩体是指经历过多次反复地质作用,经受过变形,遭受过破坏,形成了一定的岩石成分和结构,赋存于一定地质环境中的地质体。

因此,岩体力学性质与岩体中的、以及 2 密切相关。

2.岩体由结构面和结构体组成,结构面根据形成原因通常可分为三种类型:、
和。

3.在工程岩体范围内,结构面按贯通情况可分为、以及三种类型。

4.在岩体中被各种结构面切割而成的岩石块体称为结构体。

结构体的形状主要有、、1 以及菱形和锥形等,如果风化强烈或挤压严重,也可形成、、 1 等。

5.岩体抵抗外力作用的能力称为岩体的力学性质。

它包括岩体的特征、特征和1 特征等。

6.岩体结构面的剪切变形与、和有关。

7.岩体结构面的几何特性是反映节理的外貌,它的组成要素包括:、、、
以及和。

8.岩体的力学性质不仅取决于岩石本身及结构面的力学性质,也与密切相关。

9.岩体的强度不仅与组成岩体的的性质有关,而且与岩体内的有关,此外还与岩体有关。

10.岩体中存在各种结构面,结构面的变形大小主要由和控制的。

11.大量的岩体试验表明,岩体的压力—变形曲线可以划分为四种类型,即:、
型和下凹型、复合型。

12.岩体变形的结构效应是指岩体结构对其变形性质的影响与控制作用,包括、
以及两者的关系三个方面,其对岩体变形的作用效应尤为突出。

13.粗糙起伏无充填的规则锯齿状结构面的剪切机制一方面是;另一方面是。

14.岩体基本质量应由受和两个因素确定。

15.国标《工程岩体分级标准》规定,对岩石坚硬程度和岩体完整程度应采用和
两种方法确定。

三、选择题
1.影响岩体力学性质的基本因素有。

(1)结构体(岩石)力学性质;(2)结构面力学性质;(3)岩体结构力学效应;(4)环境因素。

2.岩体的赋存环境对岩体的力学性质有重要的影响,其赋存环境主要包括。

(1)地应力;(2)地下水;(3)地温;(4)附加应力。

3.以下结构面中属于原生结构面的有。

(1)节理;(2)断层;(3)沉积结构面;(4)岩浆(火成)结构面;(5)变质结构面。

4.以下结构面中属于构造结构面的有。

(1)节理;(2)断层;(3)层间破碎带;(4)泥化夹层;(5)层间错动面;(6)劈理。

5.以下结构面中属于次生构造结构面的有。

(1)卸荷裂隙;(2)爆破裂隙;(3)风化裂隙;(4)风化夹层;(5)泥化夹层。

6.岩体结构面的力学性质主要包括。

(1)法向变形性质;(2)剪切变形性质;(3)抗剪强度性质;(4)尺寸效应性质。

7.岩体法向变形刚度表示结构面产生单位法向变形时法向应力的增量,它不仅取决于岩体本身的力学性质,更主要取决于。

(1)法向压力;(2)结构面接触点数;(3)结构面接触面积;(4)结构面的吻合程度。

8.结构面在长期地质环境中,由于风化或分解,被水带人的泥沙,以及构造运动时产生的碎屑和岩溶产物充填。

当结构面充填物的厚度小于主力凸台高度时,结构面的抗剪强度。

(1)与非充填时相似;
(2)受充填物厚度的影响;
(3)受充填物矿物组分和含水程度的影响。

(4)取决于充填材料;
(5)受充填物颗粒大小和继配的影响;
9.结构面在长期地质环境中,由于风化或分解,被水带人的泥沙,以及构造运动时产生的碎屑和岩溶产物充填。

当结构面充填物的厚度大于主力凸台高度时,结构面的抗剪强度。

(1)与非充填时相识;
(2)受充填物厚度的影响:
(3)受充填物矿物组分和含水程度的影响。

(4)取决于充填材料;
(5)受充填物颗粒大小和级配的影响;
10.节理岩体各方向上的力学性质差别较大,这主要是结构面的决定的。

(1)厚度;(2)充填物;
(3)物质成分和物质结构的方向性;(4)节理、层面的方向性。

11.对于粗糙起伏无充填的不规则锯齿状结构面而言,结构面粗糙程度越大,其剪胀角。

(1)等于零;(2)越大;(3)越小;(4)不变。

12.对于极为平直而光滑的结构面而言,其剪胀角。

(1)大于零;(2)等于零;
(3)等于岩石材料的摩擦角;(4)小于零。

13.岩体的力学性质受环境围压力影响显著,随着围压力的不断增大,岩体结构面的力学效应将。

(1)减小;(2)增加;(3)不改变;(4)不一定改变。

14.对于粗糙起伏无充填的不规则锯齿状结构面而言,当结构面粗糙程度相同时,作用于结构面法向应力越大,则其剪胀角。

(1)等于零;(2)越大;(3)越小;(4)不变。

四、简答题
1. 岩体力学研究的对象是什么?它有什么特点?
2. 简述岩体的工程分类的目的和意义。

3. 简述岩体质量指标分级。

4. 简述岩体质量评分(RMR法)—岩体地质力学分类(CSIR分类)。

5. 简述巴顿岩体质量分类(Q法)。

相关文档
最新文档