煤矿高矿化度矿井水处理技术
煤矿矿井水处理
![煤矿矿井水处理](https://img.taocdn.com/s3/m/72ceb4f5aa00b52acfc7ca36.png)
煤矿矿井水处理技术煤矿矿井水是指在采煤过程中,所有渗入井下采掘空间的水,矿井水的排放是煤炭工业具有行业特点的污染源之一,量大面广,我国煤炭开发每年矿井的涌水量为20多亿立方米⑴,其特性取决于成煤的地质环境和煤系地层的矿物化学成分。
矿井水流经采煤工作面和巷道时,因受人为活动影响,煤岩粉和一些有机物进入水中,我国矿井水中普遍含有以煤岩粉为主的悬浮物,以及可溶的无机盐类,有机污染物较少,一般不含有毒物质。
因此,对矿井水进行净化处理利用,将产生巨大大经济效益和社会效益。
针对不同的水质矿井水的处理技术主要有:含悬浮物矿井水处理技术、高矿化度矿井水处理技术、酸性矿井水处理技术、含重金属矿井水处理技术、含放射性污染物矿井水处理技术、碱性矿井水处理技术、含氟矿井水处理技术等。
1、含悬浮物矿井水处理技术主要有混凝、沉淀和澄清、过滤和消毒。
矿井水混凝阶段所处理的对象主要是煤粉、岩粉等悬浮物及胶体杂质,它是矿井水处理工艺中一个十分重要的环节。
实践证明,混凝过程的程度对矿井水后续处理如沉淀、过滤影响很大。
所以,在矿井水的处理中,应给予足够的重视。
沉淀和澄清:在煤矿矿井水处理中所采用的主要有平流式沉淀池、竖流式沉淀池和斜板(管式)沉淀池。
澄清池主要有机械搅拌、水力循环和脉冲等。
在煤矿矿井水处理过程中,过滤一般是指以石英砂等粒状滤料层截留水中悬浮物。
去除化学澄清和生物过程未能去除的细微颗粒和胶体物质,提高出水水质。
矿井水处理可以采用过滤池。
过滤池有普通快滤池、双层滤料滤池、无阀滤池和虹吸滤池等。
常采用滤料有石英砂、无烟煤、石榴石粒、磁铁矿粒、白云石粒、花岗岩粒等。
水净化处理后,细菌、病毒、有机物及臭味等并不能得到较好的去除。
所以,必须进行消毒处理。
消毒的目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。
在以煤矿矿井水为生活水源水处理中,目前主要采用的是氯消毒法。
消毒剂主要有:液氯、漂白粉、氯胺、次氯酸钠等。
高矿化度矿井水处理与回用技术导则
![高矿化度矿井水处理与回用技术导则](https://img.taocdn.com/s3/m/1bb529080a4c2e3f5727a5e9856a561252d321b8.png)
高矿化度矿井水处理与回用技术导则一、引言高矿化度矿井水处理与回用是矿业领域中的重要课题。
随着矿业开采的不断深入,矿井水中的矿化度越来越高,给环境和生态造成了严重的影响。
因此,开发和应用高效的矿井水处理与回用技术,对于保护环境、节约水资源具有重要意义。
二、矿井水的高矿化度特点矿井水的高矿化度主要表现在以下几个方面: 1. 盐度高:矿井水中含有大量的溶解性盐类,如氯化物、硫酸盐等,导致水体盐度高。
2. 高浊度:矿井水中常常携带有大量的悬浮物和胶体颗粒,导致水体浑浊。
3. 酸碱度极端:矿井水中的酸碱度通常偏酸或偏碱,具有一定的腐蚀性。
三、矿井水处理技术为了有效处理高矿化度矿井水,以下是几种常用的矿井水处理技术:1. 混凝沉淀法混凝沉淀法是将矿井水中的悬浮物和胶体颗粒通过加入混凝剂使其凝聚成较大的颗粒,然后通过沉淀的方式将其从水中分离出来。
常用的混凝剂有聚合氯化铝、聚合硫酸铝等。
2. 离子交换法离子交换法是利用离子交换树脂对矿井水中的溶解性盐类进行吸附和交换,从而降低水体的盐度。
离子交换树脂具有特定的选择性,可以选择性地去除矿井水中的某些离子。
3. 膜分离技术膜分离技术是利用半透膜对矿井水进行过滤和分离的方法。
常用的膜分离技术包括超滤、纳滤和反渗透等。
这些技术可以有效去除矿井水中的悬浮物、胶体颗粒和溶解性盐类。
4. 气浮法气浮法是利用气泡的浮力将矿井水中的悬浮物和胶体颗粒浮起,然后通过表面沉降将其分离出来。
气浮法对于处理高浊度的矿井水具有良好的效果。
四、矿井水回用技术矿井水回用是将经过处理的矿井水重新利用于矿山生产或其他用途的过程。
以下是几种常用的矿井水回用技术:1. 循环冷却系统循环冷却系统是将处理后的矿井水用于冷却设备的循环冷却中。
通过循环利用矿井水,可以节约大量的淡水资源,并减少对环境的影响。
2. 灌溉用水经过适当处理的矿井水可以用于农田灌溉。
矿井水中的一些微量元素对于作物的生长有一定的促进作用,因此可以利用矿井水进行农田灌溉,提高农作物的产量和质量。
高矿化度矿井水处理与回用技术导则
![高矿化度矿井水处理与回用技术导则](https://img.taocdn.com/s3/m/0f83f1df162ded630b1c59eef8c75fbfc77d9428.png)
高矿化度矿井水处理与回用技术导则高矿化度矿井水处理与回用技术导则随着矿业的发展,矿井水的处理和回用成为了一个重要的问题。
对于高矿化度的矿井水,如何进行有效的处理和回用是一个挑战。
本文将从以下几个方面介绍高矿化度矿井水处理与回用技术导则。
一、高矿化度矿井水的特点高矿化度的矿井水通常具有以下特点:1. 高含盐量:由于地下水经过长期地与岩层接触,吸收了大量的溶解性盐类,导致含盐量较高。
2. 高硬度:硬度是指水中钙、镁离子含量的总和。
由于地下水中钙、镁离子含量较高,因此硬度也相应较高。
3. 高酸碱值:地下水中常常含有大量溶解性气体,如二氧化碳等,这些气体会与水反应形成酸性物质或碱性物质。
4. 富含金属离子:地下水经过长期地与岩层接触,吸收了大量金属离子,如铁、锰、铝等。
二、高矿化度矿井水处理技术1. 电渗析技术电渗析技术是利用电场作用使带电离子在膜中迁移的一种分离技术。
该技术主要用于去除高矿化度矿井水中的盐类,如氯化物、硫酸盐等。
2. 反渗透技术反渗透技术是利用半透膜将水中的溶解性物质分离出来的一种方法。
该技术可以去除高矿化度矿井水中的盐类、硬度和金属离子等。
3. 离子交换技术离子交换技术是利用固体离子交换树脂将水中的离子与树脂上的离子进行置换,从而达到去除目标物质的目的。
该技术可以去除高矿化度矿井水中的钙、镁等硬度物质和铁、锰等金属离子。
4. 活性炭吸附法活性炭吸附法是利用活性炭对水中有机物和重金属进行吸附,从而达到净化水质的目的。
该技术可以去除高矿化度矿井水中的有机物和重金属等。
三、高矿化度矿井水回用技术1. 混合处理法混合处理法是将高矿化度矿井水与低盐度水混合,从而达到降低盐度、硬度和酸碱值等效果。
该技术可以使高矿化度矿井水得到有效利用,减少对环境的污染。
2. 直接回用法直接回用法是将经过处理后的高矿化度矿井水直接回用于生产过程中,如冶金、造纸等行业。
该技术可以节约水资源,减少对环境的影响。
3. 循环冷却系统循环冷却系统是将经过处理后的高矿化度矿井水用于工业生产过程中的循环冷却系统中,从而达到节约水资源、减少对环境污染等效果。
灵新煤矿高矿化度矿井水井下分级处理技术研究
![灵新煤矿高矿化度矿井水井下分级处理技术研究](https://img.taocdn.com/s3/m/2fbb5a68f78a6529647d53a6.png)
地下水资源保 护与利用是煤炭开发长期面临的重大难题 6 J。 余 服务年限为 33.8a。
矿井水的资源化利 用研究 ,具有 重要 的社会 、环境 和经 济
灵新煤 矿井 田整体 为一 简单 的向斜 构造 ,是 一个 蓄水
意义 .充分合理 的利用矿井水 .既减少 环境污 染 ,又节 约 构造 ,生产采区属 于单斜 构造 ,东 陡西缓 ,地形 总 的趋势
收 稿 日期 :2017—10—31 作者简介 :蒋斌斌 (1984一 ),男 ,河南焦作人 ,硕士 ,工程师 ,主要研究方 向为煤炭开采水资源保护与利用 ,E-mail:
矿井水是伴 随着煤炭开 采 ,不得不 排 出的一类 多元相 宝贵 的水资源 ,同时也为企业节约大量 的排水费用 。
水混合物 …。在煤矿开采过程 中,地下水与煤 、岩层接 触 ,
1 矿 井水 文地质情 况及 涌水 量
发生一系列物理 、化学 和生化反应 而形成矿井水 。据统 计 ,
我国每开采 It煤 炭约产 生 2t矿 井水 ,但 矿井 水 利用 率仅 1.1 矿 井 水文地 质情 况
第 50卷 第 8期
煤 炭 工 程
COAL ENGINEERING
Vo1.50, No.8
doi: 10.1 1799/ee201808022
灵新 煤矿 高矿 化度 矿 井 水 井 下 分 级 处 理技 术研 究 蒋斌斌 ,虎晓龙 ,郭 强 Nhomakorabea刘新杰
(1.煤炭开采水资源保护与利用 国家重点实验室 ,北京 10001 1; 2.神华宁夏煤业集团灵新煤矿 ,宁夏 灵武 751410)
Abstract: According to the hydrogeological conditions, water inf low and water quality data of Lingxin Coa l Mine, the underground grading treatment technology and concentrated br ine storage technolog y for the high salinity mine water of Lingxin Mine are proposed, and the traditional mines on the g round have been changed. The water treatment mode effectively achieves the double zero goal of“no clean surface water intaking and no underg round mine water up—going”, which saves ground living water, protects groundwater resources, effectively ensures the sustainable development of mining areas, and opens up new technological approaches for processing a n d utilizing mine water. Keywords:highly mineralized mine water; underground classif ication treatment of mine water; storage technology f or concentrated brine: water inrush amount
煤矿高矿化度矿井水处理技术标准版本
![煤矿高矿化度矿井水处理技术标准版本](https://img.taocdn.com/s3/m/7eb71d835022aaea998f0f63.png)
文件编号:RHD-QB-K8419 (解决方案范本系列)编辑:XXXXXX查核:XXXXXX时间:XXXXXX煤矿高矿化度矿井水处理技术标准版本煤矿高矿化度矿井水处理技术标准版本操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。
,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。
我国属于贫水国家,全国水资源总量为28255亿m3(水利部20xx年中国水资源公报),人均占有量仅有2170 m3,约为世界人均占有量的1/4,名列世界第88位。
煤矿矿井水是重要的水资源,据报道目前我国煤炭生产过程中,每年排出约20~30亿m3矿井水,其中北方地区约占60%,并且随着煤炭开采深度的增加而逐年增加。
现在我国煤矿矿井水资源的利用率不到20%,我国西部高原、黄淮平原及华东沿海地区的多数煤矿矿井水的矿化度较高,这类矿井水的直接排放不仅浪费了宝贵的水资源,而且还会对环境造成污染。
如何选用更为经济合理且简单高效的方法来处理高矿化度矿井水,引起了环保工作者与社会的广泛关注。
1 高矿化度矿井水的形成与危害高矿化度矿井水一般是指含盐量大于1000ng/L 的矿井水。
据不完全统计,我国煤矿高矿化度矿井水的含盐量一般在1000~3000mg/L,少量矿井的矿井水含盐量达4000mg/L以上。
这类矿井水的水质多数呈中性或偏碱性,且带苦涩味,因此也称苦咸水。
因这类矿井水的含盐量主要来源于Ca2+ ,Mg2+,Na+,K+,SO₄2-,HCO₃-,Cl -等离子,所以硬度往往较高。
产生高矿化度矿井水的主要原因:由于我国部分地区降雨量少,蒸发量大,气候干旱,蒸发浓缩强烈,而地层中盐分增高,地下水补给、径流、排泄条件差,使地下水本身矿化度较高,所以矿井水的矿化度也高;当煤系地层中含有大量碳酸盐类岩层及硫酸盐薄层时,矿井水随煤层开采,与地下水广泛接触,加剧可溶性矿物溶解,使矿井水中的Ca2+,Mg2+,SO₄2-,HCO₃-,CO₃2-增加;当开采高硫煤层时因硫化物气化产生游离酸,游离酸再同碳酸盐矿物、碱性物质发生中和反应,使矿井水中Ca2+,Mg2+,SO₄2-等离子增加;有些地区是由于地下咸水侵入煤田,使矿井水呈高矿化度水。
煤矿矿井水的净化处理技术
![煤矿矿井水的净化处理技术](https://img.taocdn.com/s3/m/da2ae6f318e8b8f67c1cfad6195f312b3169eb94.png)
地面设置沉淀池,添加了絮凝剂的矿井水在沉淀池中经沉淀后可脱除悬浮物。
1.3 高矿化度矿井水处理高矿化度矿井水在我国北方地区分布较多,主要分布于西北高原或东北的部分矿区,主要特征为矿井水含盐量极高,超过1000mg/L ,这些区域也是我国煤矿缺水最为严重的地区。
因为高矿化度矿井水含盐量高,即便经过处理后也不宜用于饮用,所以目前对于此类水的净化和利用主要从工业应用的角度来开展。
在处理技术上,除了混凝和过滤等传统工艺以外,关键的工序在于脱盐处理。
脱盐技术包括电渗析技术和反渗透脱盐技术,前者由于不能去除矿井水中含有的细菌和有机物,加之设备能耗较高,在矿井水淡化工程中有很大的局限性,现已逐渐被反渗透装置所取代。
目前反渗透膜对盐的脱除率超过99.5%,随着膜和组件生产成本的不断减低,淡化水的成本也因此快速下降。
膜分离技术在实际运行过程中存在的主要问题是膜的污染和结垢,具体表现为膜的透水量随着运行时间而下降。
为了减小膜污染的影响,一方面需要根据矿井水的性质选择合适的膜材料并定期对膜进行清洗;另一方面可以在膜处理工序前增加前处理工艺,比如三级过滤、投加阻垢剂等方法,这样可有效降低矿井水中杂质对膜的直接冲击。
1.4 酸性矿井水净化处理酸性矿井水一般采用化学中和法来处理,例如在水中添加碱性药剂、石灰石、白云石等。
化学中和法的技术优势在于能够用非常简单的设备进行操作和管理,成本比较低,处理技术本身对石灰石颗粒和性能方面的要求也不高,操作过程易于控制,缺点是出水中存在着大量的碳酸,pH 值难以达标。
近年来,人工湿地处理酸性矿井水的方法得到了广泛的研究,在技术层面和客观上已经证实了可行性。
不过需要注意的是湿地生态对水的pH 值有一定的要求,需要保持在4.0以上,0 引言煤矿矿井水是在煤矿开采过程中产生的地下涌水,其形成主要来源于大气降水、地表水、断层水等,其中大气降水是矿井水的主要来源,并对其他水源进行补给。
煤炭开采过程会产生大量矿井水,大约每开产一吨煤会产生两吨矿井水。
煤矿高矿化度矿井水地下分质利用与封存技术研究及工程示范
![煤矿高矿化度矿井水地下分质利用与封存技术研究及工程示范](https://img.taocdn.com/s3/m/33d8e97ab6360b4c2e3f5727a5e9856a561226c3.png)
煤矿高矿化度矿井水地下分质利用与封存技术研究及工程示范你听说过煤矿水的“高矿化度”吗?这听起来就有点高大上对吧,其实它指的就是煤矿里面的地下水含有很多矿物质,基本上就是水里溶解了好多矿盐、铁、钙这些东西,反正喝一口估计嘴巴都能感觉到咸。
这种水通常看起来很脏,闻起来也有点怪,但是它的利用价值可不小。
人们说,矿井水就是煤矿里的“黄金水”,用得好,不仅能解决矿井里水源短缺的问题,还能给我们的生活带来不少好处。
所以,这个高矿化度的矿井水,要是能用得当,那可真是“变废为宝”的好机会。
你要知道,煤矿这个地方一挖一个坑,水就往里涌,结果一堆矿井水淤积在地下,坑里积水也是常事。
别看这水浑浑的,看起来没啥用,但实际上,它们可承载着不少有价值的东西。
科学家们经过一番研究,发现这些矿井水能通过一些技术处理,被分成好几种类型,分别利用,甚至还能封存起来,避免环境污染。
这就像我们把一堆杂乱无章的东西整理一下,分成有用的和没用的,剩下的丢掉,留下的拿去做别的事。
就拿分质利用来说,矿井水不是只能拿来灌溉或者浑浑噩噩地排放掉。
经过处理,它可以转变成各种用途,像是用来做工业冷却、生产一些化肥、或者拿来处理废水,甚至一些高矿化度水,经过特殊处理后,能变得适合人类的生活用水。
听起来是不是有点像魔法?就是一堆化学反应,技术手段让这些水变得“有用”。
这些技术,可不是科幻小说里的内容,而是现在我们已经在实践中的事情。
你想,原来那些让人头痛的矿井水,现在能转变成一项技术成果,真是让人拍手叫好。
再说到封存技术,这可更让人眼前一亮。
你可能会想,矿井水封存起来有啥用?这事儿就像是把废气封进瓶子里不让它再漏出来一样,目的就是减少对环境的污染。
你想,煤矿开采出来的水不经处理直接排放,环境就会受到很大影响。
而如果通过封存技术,把这些水处理掉,再进行封存,不但能避免污染,还能减少水资源的浪费。
就像是把它们“藏”在地下,给大地一个安心,给空气一个清新。
说实话,搞这个矿井水的地下分质利用和封存技术,不是轻松活儿。
反渗透技术在高矿化度矿井水处理中的应用
![反渗透技术在高矿化度矿井水处理中的应用](https://img.taocdn.com/s3/m/7a0f9d7bf6ec4afe04a1b0717fd5360cbb1a8d52.png)
反渗透技术在高矿化度矿井水处理
中的应用
随着矿井运营的深入,矿井废水难以处理成为了一个棘手难题。
特别是在高矿化度的矿井废水处理中,传统的物理化学方法并不能很好地解决问题,因此反渗透技术成为了当今最为有效、高效的矿井水处理技术之一。
反渗透技术是一种利用半透膜进行水处理的方法,将高矿化度的水通过超过其渗透压的压力推过半透膜,使水中的溶质得以过滤出来,实现水的纯化。
通过反渗透技术,可以将高矿化度的矿井废水处理成为可以直接使用的矿井补给水。
首先,反渗透技术具有高效的过滤效果。
在运用反渗透技术进行矿井水处理时,水经过反渗透膜的过滤,可将矿物质等杂质高效分离出来,从而达到水的净化目的。
而在传统水处理技术中,由于化学辅助剂等限制条件,其净化效率不够高,难以完全处理高矿化度废水。
其次,反渗透技术可以按需生产水量,在不同的环境下,可以调整反渗透装置运行时间和产水量,保证水源的稳定和供应。
而在传统的物理化学处理技术中,一旦液位下降或其他情况影响到设备的运营,就会影响到水的供应,给生产带来很大困难。
再次,反渗透技术的运行成本低,降低了生产成本。
反渗透技术通过分离矿物质的同时,减少了对化学药品的使用量,降低了运行成本。
因此,在高矿化度矿井废水处理中,反渗透技术呈现出了高效性、灵活性、低成本等一系列显著的优势。
在实践中,运用反渗透技术将高矿化度废水处理成为生产所需的矿井水已经成为了当今最为有效、可持续的矿井水处理方式之一。
因此,对于经营者来说,要保障矿山生产和环境保护的双方面,必须拥有先进的反渗透技术和设备,不断探索和应用新的水处理技术,努力谋求矿业的可持续发展。
高矿化度矿井水处理综述
![高矿化度矿井水处理综述](https://img.taocdn.com/s3/m/65952308551810a6f4248678.png)
Advances in Environmental Protection 环境保护前沿, 2021, 11(2), 299-303Published Online April 2021 in Hans. /journal/aephttps:///10.12677/aep.2021.112031高矿化度矿井水处理综述余欢安徽理工大学,安徽淮南收稿日期:2021年3月17日;录用日期:2021年4月20日;发布日期:2021年4月27日摘要本文对高矿化度矿井水的处理方法进行了综述,分析处理方法的利弊,以及对高效处理高矿化度矿井水方法进行展望。
关键词高矿化度矿井水,处理方法,脱盐机理Summary of Mine Water Treatment withHigh SalinityHuan YuAnhui University of Science and Technology, Huainan AnhuiReceived: Mar. 17th, 2021; accepted: Apr. 20th, 2021; published: Apr. 27th, 2021AbstractThis article reviews the treatment methods of mine water with high salinity, analyzes the advan-tages and disadvantages of the treatment methods, and the efficient treatment methods of high sa-linity mine drainage are prospected.KeywordsHigh Salinity Mine Water, Treatment Method, Desalination Mechanism余欢Copyright © 2021 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 高矿化度矿井水的特征高矿化度矿井水一般指含盐量高于1000 mg/L 的矿井水,我国矿井水含盐量基本上在1000~3000mg/L ,部分地区的矿井水含盐量达到4000 mg/L 以上,这类矿井水的主要含盐离子为:Ca 2+、Mg 2+、23CO −、24SO −、3HCO −、Na +、K +、Cl −,因而此类矿井水硬度较高。
高矿化度矿井水处理技术及应用
![高矿化度矿井水处理技术及应用](https://img.taocdn.com/s3/m/879970e3e009581b6bd9ebe2.png)
般 高矿 化 度 矿井 水 不仅 以煤 粉 为 主 的悬 浮 物
含 量 超标 , 而且 溶 解 性 总 固体 、 度 、 酸 盐 或 氯化 硬 硫
物 等 含量 也超 标 , 于水 质较 差 的矿井 水 。 属
和排 水规 律来 确定 。净 化 处理 的第 一 步是 预 沉 淀 和
水 量 调节 , 要设 置 预沉 调 节 池 , 矿 井 水 中大 悬 浮 需 使
从 高 矿化 度 矿 井 水 的所 含 悬 浮 物 的特 性 分 析 ,
其 具 有 3个特 点 : 浮 物 粒 径 差 异 大 、 度 小 、 降 悬 密 沉 速 度 慢 ; 浮 物含 量 较 不 稳 定 ; 井 水 中 的 C D 悬 矿 O 是 由于 煤 屑 中碳 分 子 的有 机 还 原 性 所 致 , 随着 悬 浮 将 物 的去 除而 消失 , 不需 要进 行 生化 处理 。部分 煤 矿排 出的矿 井水 属 于高 矿化 度 矿 井 水 。 由于煤 矿缺 水 , 往 需 要 将 此 类 矿 井 水 处 理 后 往 作 为 煤矿 生产 和生 活用 水 。根 据此 类 矿 井水 的水 质 特 点 , 择合 适 的矿 井水 处 理技 术 并 应用 于 实 际 , 选 显
度 矿 井水 含 盐量 一 般在 10 0~1 0 / 少 数 达 0 00 0mg L,
斜管( 斜板 ) 淀和 将混 凝反 应 与沉 淀过 程结 合 在一 沉
起 的澄清技 术 。过 滤设 施 常采 用 快 滤 池 、 吸滤 池 、 虹 重 力 式滤 池 、 型滤池 等 。 V
收稿 日期 :0 1 1 — 9 2 1 — 2 1 2 1— 0 1 ;0 1 1 — 4修订 作者 简介 : 中权( 9 3 ) 男 , 郭 17 一 , 安徽肥 西人 , 学士 , 所长 , 高级工程 师,9 6年 毕 业于 中国矿 业大 学环 境 工程 专 业, 19 现
西部地区高矿化度矿井水零排放技术进展
![西部地区高矿化度矿井水零排放技术进展](https://img.taocdn.com/s3/m/727d5e1fdc36a32d7375a417866fb84ae55cc350.png)
西部地区高矿化度矿井水零排放技术进展
目前,西部地区煤矿开采过程中产生的矿井水对环境造成了严重的污染,给当地生态
环境和水资源带来了巨大的压力。
为了解决这一问题,西部地区煤矿水零排放技术得到了
长足的进展。
1. 矿井水资源化利用技术。
通过矿井水的预处理和深度处理,提高水的再利用率,
减少对地下水资源的消耗。
常见的技术包括逆渗透膜技术、电渗析技术、离子交换技术等。
这些技术能够有效地去除矿井水中的各种杂质和污染物,使得矿井水能够满足生产和生活
用水的要求。
2. 矿井水中重金属的去除技术。
煤矿开采过程中,矿井水中常常含有大量的重金属,对环境和人体健康造成严重威胁。
重金属的去除成为实现矿井水零排放的关键技术之一。
目前,常见的重金属去除技术有吸附法、沉淀法、电化学法等。
这些技术能够有效地将矿
井水中的重金属去除,降低对环境的污染。
由于西部地区煤矿矿井水的高矿化度,矿井水处理技术的研发面临着一定的难度。
通
过多年的努力,矿井水零排放技术在西部地区取得了一定的进展。
一些煤矿企业已经成功
应用了矿井水零排放技术,实现了矿井水的零排放,减少了对环境的污染,促进了当地经
济的可持续发展。
西部地区矿井水零排放技术仍面临着一些挑战。
矿井水处理技术的设备投资和运维成
本较高,需要煤矿企业具备较高的经济实力。
矿井水处理技术在技术创新和应用推广方面
还存在一定的不足,需要加大科研力度。
加强相关法规和政策的制定和落实,促进矿井水
零排放技术的推广应用。
煤矿高矿化度矿井水反渗透处理工艺探讨
![煤矿高矿化度矿井水反渗透处理工艺探讨](https://img.taocdn.com/s3/m/65eb2827f111f18583d05a67.png)
t h e f u t u r e d e v e l o p me n t d i ec r t i o n o f i n m e wa t e r t r e a t me n t .
本 设 计 采 用 锰 砂 过 滤 器 、活 性炭 过 滤 器 作 为 系 统 预 处 理 装 置 , 去 除 系 统 进 水 中 的 悬 浮 物 、浊 度 、 铁 以 及 部 分 有 机 物 ;投 加 杀菌 剂 抑 制 原 水 中细 菌 和
o un t of mi n e wa t e r ,a nd c oa l mi ni ng a ea r o f no r t hwe s t Ch i na
匡
图 1 工 艺 流 程 图
2 ,流 量 6 5 m / h ,功率 1 5 k w ,扬 程 4 6 m ,过 流 材 清洗 保 安过 滤 器 1台 ,流 量 7 O m 。 / h ,精度 5u l n 。
北煤 炭矿 区水资源匮 乏,因此对矿井水进行深度 处理后回
用 是 解 决 矿 区 水 资 源 短 缺 的 主 要 途 径 。对 矿 井 水进 行 反 渗
数量 3 0 0支 ,压力容器 5 O支 。
3 . 反渗 透 化 学 清 洗 系 统 反渗 透 膜 组 件 在 长 期 运 行 后 ,会 形 成 某 些 难 以 冲 洗 掉 的 污 染 , 如 长 期 的微 量 盐 份结 垢 和 有 机 物 积
【 Ke y wo r d s 】c oa l mi n e ,h i g h s a l i n i t y ,r e v e r s e o s mo s i s t r e a t —
me n t
微生 物的繁殖;投加还原剂消 除原水中残余 的氧化
高矿化度矿井水处理技术概述
![高矿化度矿井水处理技术概述](https://img.taocdn.com/s3/m/8302804e0975f46526d3e13f.png)
《资源节约与环保》2019年第5期1水质特点含盐量大于于1000mg /L 的矿井水称为高矿化矿井水,我国煤矿高矿化度矿井水含盐量在1000~3000mg /L 。
有些甚至高达10000mg /L 以上。
矿化度主要来自于K +、Ca 2+、Na +、Mg 2+、Cl -、SO 42-等离子[1]。
2主流处理工艺降低矿化度的方法称为脱盐。
按照工作原理,分为膜法、离子交换法、热法、蒸发和冷冻法。
主流的浓盐水零排放处理工艺如下图1。
根据统计,以反渗透为代表的膜法,已占据全球盐水脱盐技术的59.85%[1]。
下文以膜法为主介绍浓盐水零排放的处理工艺。
图1主流浓盐水零排放处理工艺流程3脱盐系统脱盐系统包括预处理工艺及脱盐工艺。
3.1预处理系统预处理工艺目的是保障脱盐工艺长期稳定、高效运行。
去除可能造成膜结垢的钙镁离子,及可能堵塞膜孔的悬浮物,预处理工艺通常包括除硬、过滤工艺。
3.1.1化学除硬化学除硬,通过投加沉淀药剂,使之与溶解性盐类形成难容固体,然后通过固液分离去除的方法。
常用化学药剂石灰,有时辅以纯碱、石膏等,该方法稳定性较差,适用于进水矿化度较高,且对产水水质要求较低的情况。
3.1.2离子交换法离子交换法是指,用离子交换树脂上的溶解性离子(常用Na 和H 离子)将水中硬度成分(Ca 2+和Mg 2+)交换去除的方法。
但该方法在水量大,水质条件差的情况下不适用。
3.2脱盐系统目前常用的脱盐工艺为电渗析、反渗透。
3.2.1电渗析电渗析脱盐是将含盐水通过电渗析器,水中的阴阳带电离子在电场的作用下定向正负两级迁移,迁移过程中会通过具有选择透过性能离子交换膜,即阳膜只能透过阳离子,阴膜只能透过阴离子,结果形成交替的淡水室和浓水室,分别得到脱盐淡水和浓缩盐水。
电渗析技术主要应用于进水含盐量在500mg/L ~4000mg/L 的情况,脱盐效率高,缺点是不能去除水中的有机物和细菌且设备运行能耗较大,不适用于水量大的废水处理[2]。
煤矿高矿化度矿井水处理技术
![煤矿高矿化度矿井水处理技术](https://img.taocdn.com/s3/m/67d1ad63580102020740be1e650e52ea5518ce05.png)
煤矿高矿化度矿井水处理技术引言煤矿的开采会产生大量的废水,这些废水含有大量的矿物质和有机物,难以直接进行排放。
其中,高矿化度矿井水则是处理难度较大的一种类型。
高矿化度矿井水不仅会增加处理成本,还会对环境和人体健康带来危害。
因此如何有效地处理高矿化度矿井水成为了煤炭行业面对的一个重要问题。
高矿化度矿井水的特点高矿化度矿井水是指含有高浓度的氯化物、硫酸盐、钠离子、镁离子等矿物质的地下水。
这种水质的主要特点是含盐量高,水质酸性,水温较高,有较高的COD(化学需氧量)和BOD(生化需氧量)。
其pH值一般在6以下,也会出现碱性的情况。
这种类型的水一旦排入自然环境中,会严重影响土壤、植被生长和当地地下水的水质。
高矿化度矿井水的处理技术对于高矿化度矿井水的处理,常用的方法是化学处理法、物理处理法和生物处理法等。
其中,化学处理法是一种常用的处理方式。
化学处理法的原理是通过添加一些化学药剂,降低水中含有害物质的浓度。
现将一些常用的处理方法进行介绍:1. 沉淀法沉淀法是通过在水中加入一些化学药剂,使得含有害物质的物质在其中沉淀,达到净化的目的。
常用的药剂有氢氧化钙、氯化钙等。
通过这种方式,可以有效地将水中重金属、铁、铜、锌等离子去除。
但是,这种方法无法去除水中溶解性盐类,同时也增加了泥水处理难度,对设备损耗大。
2. 离子交换法离子交换法是将原水中的离子与吸附剂中的离子作置换。
广泛使用的吸附剂主要是阴、阳离子交换树脂。
离子交换法操作方法简单,适用于各种水质,可以达到很好的水质净化效果。
但是,对于盐度过高和有机物过多的水,其适用性有限。
3. 省水蒸发省水蒸发是一种简单有效的高矿化度矿井水处理方法,其基本原理为通过加热将水中的水分蒸发掉,从而达到去除水中盐类和矿物质的目的。
该方法具有设备简单、节水节能和操作简单等优点,但产生的盐渣会对环境和生态造成一定的影响。
4. 逆渗透法逆渗透法是一种高精度的物理处理技术,利用半透膜分离原理,将水中的有害物质、离子和混合物等从水中分离出去。
我国高矿化度矿井水水质特征及处理技术应用现状
![我国高矿化度矿井水水质特征及处理技术应用现状](https://img.taocdn.com/s3/m/e53f6ccbbb4cf7ec4afed019.png)
我国高矿化度矿井水水质特征及处理技术应用现状摘要:本文总结了我国高矿化度矿井水分布区域及水质特征情况,并对目前各种高矿化度矿井水处理技术进行了介绍,重点论述了反渗透技术处理高矿化矿井水在我国的应用情况,指出反渗透技术是今后高矿化度矿井水脱盐处理技术的发展方向。
关键词:矿井水高矿化度处理技术反渗透中途分类号:S969.38 文献标识码:A一、我国高矿化度矿井水分布区域及水质特征矿井水是煤矿生产中排放的主要污染源,煤矿产生的矿井水受到采煤作业、天气条件、煤系地层等冈素的影响,含有一定量的盐分,当盐的质量浓度大于1000mg/L时,即为高矿化度矿井水。
我国大多数煤矿排放的矿井水是以悬浮物为主的常规矿井水和含铁锰的酸性矿井水,但在我国较为缺水的西北及北方矿区往往排出高矿化度的矿井水,相关资料显示,在陕西、甘肃、宁夏、新疆、内蒙、山西以及两淮、徐州、新汶、抚顺、阜新等地区都有高矿化度矿井水分布,淮南矿区排放高矿化度矿井水的数量占到矿区煤矿的50%以上,这些地区煤矿矿井水的矿化度一般在1000~10000mg/L,个别煤矿的矿井水矿化度则高达10000mg/L 以上[1]。
高矿化度矿井水是地下水与煤系地层中碳酸盐类岩层及硫酸盐岩层接触,该类矿物溶解于水的结果,从而使矿井水中Ca2+、Mg2+、HCO3-、CO32-、SO42-增多,有的酸性矿井水与碳酸盐类岩层中和,导致矿化度增高;也有的矿区气候干旱,年蒸发量远大于降水量,地层中盐分较高,地下水矿化度相应增高;少数矿区处于海水与矿井水交混分布区,因而矿井水盐分增多。
表1为我国部分煤矿中含盐量较高的矿井水中的离子分布情况。
表1 我国部分煤矿含盐量较高的矿井水离子组成及总含盐量高矿化度矿井水不仅以煤粉为主的悬浮物含量超标,而且溶解性总固体、硬度、硫酸盐或氯化物等含量也超标,属于水质较差的矿井水。
根据产生高矿化度的离子超标类型不同,高矿化度矿井水分为高硬度型、高硫酸盐型、高氯化物型或这几种类型的混合型。
高矿化度矿井水处理技术综述
![高矿化度矿井水处理技术综述](https://img.taocdn.com/s3/m/5749152e87c24028915fc3e4.png)
取稳定的热源,就需要通过燃煤、用电的方式来解决, 就需要很高的经济代价 。由于这些现实的条件限制 ,基
本 未 见 有 将 蒸 馏 法 应 用 于 高 矿 化 度 矿 井 水 脱 盐 深 度 处 理 的 工程 实例 ,可 以预见 ,在 今后 的 高矿 化度 矿井 水 处
理工程,该方法的应用范围也将十分狭小,只有在该煤 矿可 以低价稳定地获得大量的热源,该方法才可能得到
应用。 2 . 3 电渗析 法
以避免矿井水外排造成的环境污染,还可解决矿区用水
紧 张 的 问题 。 同一般 的矿井 水 水质 相 比较 ,煤矿 排 放 的 高矿 化 度矿 井 水 除具 有 高含 盐 量特 征 外 ,也 含有 悬 浮物 等这 些 常 见 的污 染物 ,悬浮 物 等通 过 常规 的混凝 沉 淀和 过 滤 即可去 除 ,但 其 中的各 种 离子 则 必须 通 过其 他 途径 进 行 脱 除 ,脱 盐是 处 理 高矿 化度 矿 井水 的关键 工 序 ,也
2 0 1 5 年第2 3 期 ( 总第3 3 8 期 )
中阖高 新技术企l 业
l c ^ HI 4¨ t£‘H T£ f - { ‘ }
N0 . 2 3 . 2 01 5
( C u mu l a t i v e t y N O. 3 3 8 )
高矿化 度矿 井水处理 技术综述
用于处理含盐量超过3 0 0 0 m g / L 的高矿化度矿井水 ,且为 了降低成本,蒸馏法可考虑用煤矸石作为廉价燃料,来 淡化高矿化度矿井水。但从 目前实际现状来看 ,煤矸石
热 值低 、含 硫 量较 高 ,用 煤矸 石作 为 燃料 ,既不 符合 现 有越 发 严格 的大气 防 治控 制政 策要 求 , 能获取 的 热量 也 少 ,专 门采 用煤 矸 石作 为 燃料 的煤 矿基 本 没有 ,要 想 获
科技成果——高矿化度矿井水深度处理技术
![科技成果——高矿化度矿井水深度处理技术](https://img.taocdn.com/s3/m/c9d6a552284ac850ac024201.png)
科技成果——高矿化度矿井水深度处理技术
技术开发单位
中天合创能源有限责任公司
适用范围
高矿化度矿井水深度处理
成果简介
矿井水采用沉淀、过滤等工艺净化处理后作为化工生产用水,对过滤后产生的浓盐水进行二次浓缩后采用蒸发结晶分盐技术进行结晶分盐,实现矿井水的零排放和资源化利用。
工艺技术及装备
1、脱盐:原水调节池+高效沉淀池+V型滤池+超滤+反渗透;
2、二次浓缩:高密度沉淀池+多介质过滤器+弱酸阳离子交换器+高效反渗透;
3、蒸发结晶分盐:臭氧氧化+MVR蒸发浓缩+硫酸钠双效蒸发结晶+超滤纳滤+氯化钠双效蒸发结晶+杂盐干化。
市场前景
该技术可将矿井水处理后作为化工生产用水,节约了水资源,实现了矿井疏干水零排放,避免对水环境造成污染,提高生产和生活用水的安全性,经济环境效益明显,对矿井水综合利用及同类型企业实现矿井水全产业链闭路循环具有良好的示范作用。
高矿化度矿井水处理与再利用技术的指导原则
![高矿化度矿井水处理与再利用技术的指导原则](https://img.taocdn.com/s3/m/4bbdbdaa80c758f5f61fb7360b4c2e3f572725f8.png)
高矿化度矿井水处理与再利用技术的指导原则1. 引言高矿化度的矿井水是指含有高浓度矿物质或溶解固体的地下水。
这类地下水常常在矿业和工业领域中产生,并且其处理和再利用具有一定的挑战性。
矿井水处理与再利用技术的指导原则对于保护环境、节约资源以及可持续发展非常重要。
本文将深入探讨高矿化度矿井水处理与再利用技术的指导原则,并分享个人的观点和理解。
2. 高矿化度矿井水的特点高矿化度矿井水具有以下特点:- 高含盐量:矿井水中盐类的含量通常较高,如氯离子、钠离子等,超过普通地下水的浓度。
- 高溶解固体含量:除了盐类,高矿化度矿井水中还含有其他溶解固体,如硫酸根离子、硝酸根离子等。
- 低水质:由于矿井水中含有大量的矿物质和溶解固体,其水质往往较差,不适合直接应用于生活和工业用水领域。
3. 高矿化度矿井水处理的指导原则针对高矿化度矿井水的处理,我们可以依据以下原则进行指导:- 预处理:对矿井水进行预处理是处理过程的关键步骤。
预处理的目标是去除或降低水中的悬浮物、溶解有机物和重金属离子等杂质。
常见的预处理方法包括过滤、沉淀、离子交换和活性炭吸附等。
- 膜分离技术:膜分离技术是高矿化度矿井水处理中常用的方法之一。
通过借助半透膜的选择性通过性,将水中的溶解物质和悬浮物分离出来,得到高纯度的水。
常见的膜分离技术包括逆渗透、超滤和纳滤等。
- 蒸发结晶技术:蒸发结晶技术适用于处理高盐度矿井水。
通过控制水中的溶解物质超过其溶解度,进而通过蒸发结晶的方式将盐类沉淀和分离出来,从而得到清洁的水。
这种技术可以充分利用矿井水中的盐类资源。
- 再利用:处理过的高矿化度矿井水可以再利用于工业生产或农业灌溉等领域。
当再利用的目的是非饮用水领域时,水的处理要求相对较低。
合理的再利用可以节约水资源,降低排放,实现循环经济。
4. 高矿化度矿井水处理与再利用技术的局限性尽管高矿化度矿井水处理与再利用技术已经取得一定的进展,但仍然存在一些局限性:- 能耗较高:某些处理方法,如膜分离和蒸发结晶等,对能源的需求较高,处理成本相对较高。
高矿化度矿井水处理及资源化利用途径
![高矿化度矿井水处理及资源化利用途径](https://img.taocdn.com/s3/m/7de425ee0d22590102020740be1e650e53eacf43.png)
科技风2021年5月工程技术DOI:10.19392/ki.1671-7341.202114047高矿化度矿井水处理及资源化利用途径姚卿中煤西安设计工程有限责任公司陕西西安710054摘要:在目前形势下,高矿化度矿井水是煤炭废水污染的重要问题。
同时在工矿企业中,高矿化度矿井水成为关注的热点问题。
文章介绍了高矿化度矿井水处理技术,并指出了脱盐处理净水利用途径,最后提出了高浓盐水回用方式。
关键词:高矿化度矿井水;资源利用对于矿井水来讲,主要是以地下水为主。
具体而言,是煤炭在开采中,垮落带和水裂隙带导通含水层,导致含水层地下水融入到井下,最终成为矿井涌水。
在一定程度上讲,水文地质以及气候等对水质具有严重影响。
在矿井水当中的盐质量来讲,一般来说其浓度如果高于1000mg//,则是高矿化度矿井水。
在当前形势下,我国煤矿排放矿井水主要是以悬浮物为主,其中包含了常规矿井水以及含铁锰的酸性矿井水。
1高矿化度矿井水处理技术对于高矿化度矿井水来讲,主要是以水资源十分贫乏地区为主。
针对这部分地区,如果对高矿化度矿井水进行有效利用,能够防止矿井水排放,进而减少对环境造成污染,并且对矿区用水问题还能得到有效的解决。
以一般矿井水水质进行比较,煤矿排放高矿化度矿井水具有一定的含盐量特点,同时还包含悬浮物等相关污染物。
对于这些悬浮物来讲,利用常规混凝沉淀以及过滤等,能够有效去除。
其中的离子,应利用相关途径进行脱除。
在高矿化度矿井水工序中,脱盐是十分重要的工序,同时也被称之为深度处理。
1.1离子交换法对于离子交换法来讲,主要是将离子交换剂进行有效利用,确保交换剂以及水溶液交换离子中出现物质可逆性交换,造成水质改善而离子交换剂结构没有发生变化的一种水处理形式。
另外,在离子交换法当中,面临的最为主要的问题是,应对离子交换剂进行再生,而其再生过程控制是十分麻烦的。
在目前形势下,离子交换主要是以锅炉软水末端处理进行有效利用。
在高矿化度矿井水脱盐处理工程中,没有将这种方法大规模进行利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编订:__________________单位:__________________时间:__________________煤矿高矿化度矿井水处理技术Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-8349-53 煤矿高矿化度矿井水处理技术使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
我国属于贫水国家,全国水资源总量为28255亿m3(水利部20xx年中国水资源公报),人均占有量仅有2170 m3,约为世界人均占有量的1/4,名列世界第88位。
煤矿矿井水是重要的水资源,据报道目前我国煤炭生产过程中,每年排出约20~30亿m3矿井水,其中北方地区约占60%,并且随着煤炭开采深度的增加而逐年增加。
现在我国煤矿矿井水资源的利用率不到20%,我国西部高原、黄淮平原及华东沿海地区的多数煤矿矿井水的矿化度较高,这类矿井水的直接排放不仅浪费了宝贵的水资源,而且还会对环境造成污染。
如何选用更为经济合理且简单高效的方法来处理高矿化度矿井水,引起了环保工作者与社会的广泛关注。
1 高矿化度矿井水的形成与危害高矿化度矿井水一般是指含盐量大于1000ng/L 的矿井水。
据不完全统计,我国煤矿高矿化度矿井水的含盐量一般在1000~3000mg/L,少量矿井的矿井水含盐量达4000mg/L以上。
这类矿井水的水质多数呈中性或偏碱性,且带苦涩味,因此也称苦咸水。
因这类矿井水的含盐量主要来源于Ca2+,Mg2+,Na+,K+,SO₄2-,HCO₃-,Cl -等离子,所以硬度往往较高。
产生高矿化度矿井水的主要原因:由于我国部分地区降雨量少,蒸发量大,气候干旱,蒸发浓缩强烈,而地层中盐分增高,地下水补给、径流、排泄条件差,使地下水本身矿化度较高,所以矿井水的矿化度也高;当煤系地层中含有大量碳酸盐类岩层及硫酸盐薄层时,矿井水随煤层开采,与地下水广泛接触,加剧可溶性矿物溶解,使矿井水中的Ca2+,Mg2+,SO₄2-,HCO₃-,CO₃2-增加;当开采高硫煤层时因硫化物气化产生游离酸,游离酸再同碳酸盐矿物、碱性物质发生中和反应,使矿井水中Ca2+,Mg2+,SO₄2-等离子增加;有些地区是由于地下咸水侵入煤田,使矿井水呈高矿化度水。
高矿化度矿井水如果不经过处理就直接排放,会给生态环境带来一定的危害。
主要表现为河流水含盐量上升、浅层地下水位抬高、土壤滋生盐碱化、不耐盐碱类林木种势削弱,农作物减产等。
同时还影响地区的工业生产,因为许多工业生产不能用高含盐量的水,若用则必须先降低水中含盐量,这样就会增加成本。
若是不用而改用地下水,会造成地下水的大量开采,造成地下水资源的短缺,会严重影响本区的经济发展。
2 高矿化度矿井水的处理技术2.1 化学方法离子交换法是化学脱盐的主要方法,这是一种比较简单的方法,就是利用阴阳离子交换剂去除水中的离子,以降低水的含盐量。
此法用在进水含盐量小于500mg/L时比较经济,可用作高矿化度水经膜分离法处理的进一步除盐工序。
2.2 膜分离法膜分离方法是利用选择性透过膜分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差)时,使溶剂(通常是水)与溶质或微粒分离的方法。
膜分离法的主要特点:低耗、高效、不发生相变、常温进行、适用范围广、装置简单、易操作和易控制等。
而膜法水处理则具有适应性强、效率高、占地面积小、运行经济的特点。
反渗透和电渗析脱盐技术均属于膜分离技术,是我国目前苦咸水脱盐淡化处理的主要方法。
但是膜分离法的一个主要问题是膜易污染,为了防止膜污染,一般这两种技术对进水水质均有严格的要求。
因此进水必须经过一般的预处理,即经过沉淀、过滤、吸附和消毒等几个步骤方可。
2.2.1 反渗透法反渗透(简称RO)技术发源于国外20世纪五六十年代的宇航技术研究,80年代初在我国得到实际应用。
进入20世纪90年代后,随着反渗透膜性能的提高和膜制造成本的降低,进一步加快了反渗透的应用。
经过近40a的不懈努力,反渗透技术已经取得了令人瞩目的进展。
反渗透技术是利用压力差——各种离子、分子、有机物、胶体、细菌、病毒、热源等,是当今世界公认的高效、低耗、无污染水处理新技术,适用于含盐量大于4000mg/L的水的脱盐处理。
目前反渗透膜与组件的生产已经相当成熟,膜的脱盐率高于99.3%,透水通量增加,抗污染和抗氧化能力不断提高,销售价格稳中有降;反渗透的给水预处理工艺经过多年摸索,基本可保证膜组件的安全运行;高压泵和能量回收装置的效率也在不断提高。
以上措施使得反渗透淡化的投资费用不断降低,淡化水的成本明显降低。
与常规的水处理技术如离子交换、加药、电渗析相比,反渗透装置特点为单位体积内膜面积比大,脱盐离高达99%以上;在分离过程中无相变化及相变化引起的化学反应,能耗低;膜分离过程是清洁的生产过程,不使用化学试剂,不排放再生废液,不污染环境;工艺流程简单,有利于实现水处理的连续化、自动化;反渗透装置结构紧凑,占地面积小,适应大规模连续供水的水处理系统;水的回收率比电渗析高,一般为75%~80%。
但是,在反渗透运行过程中,除了对原水进行严格处理外,还要控制进水pH值,以防止膜的水解,同时要定期清洗膜组件,以避免膜表面污染和结垢阻塞。
2.2.2 电渗析法电渗析法(ED)是一种利用电能来进行膜分离的方法。
电渗析是在直流电场作用下,利用阴、阳离子交换膜对溶液中阴、阳离子的选择透过性,而使溶液中的溶质与水分离的一种物理化学过程。
电渗析法除盐以两个条件为基本:一是离子的带电性。
水中离子是带电的,在直流电场中,阴、阳离子作定向迁移,根据同性相斥、异性相吸的原则,阳离子移向阴极,阴离子移向阳极。
二是离子交换具有选择透过性。
离子交换膜是电渗析器的重要组成部分,离子交换膜是一种由高分子材料制成的具有离子交换基团的薄膜,分为阳膜和阴膜两类,阳膜只允许水中的阳离子透过,阻挡阴离子,而阴膜只允许水中的阴离子透过而阻挡阳离子。
良好的离子交换膜应具备下列各种条件:①具有较高的离子选择透过性;②具有低的渗水性;③具有较低的膜电阻;④化学稳定性良好,能耐高浓度的酸碱和一定的温度;⑤具有高的机械强度和适当的厚度;⑥膜的全部结构应均匀一致,表面光滑。
电渗析技术具有无需任何化学药品,且设备及其组装工艺简单、操作方便等优点。
我国有数十家煤矿相继采用了这一技术,均取得了较好的脱盐效果。
但这一技术也暴露一些缺点,如:①对原水的预处理要求较高;②电耗较大,易结垢和膜寿命短;③电渗析本体由塑料件组成,因此塑料老化成为增加电渗析维修费用的因素;④电渗析操作电流、电压直接受原水水质、水量的影响,过程稳定性差,容易出现恶性化。
2.3 蒸馏淡化法蒸馏法是对含盐水进行热力脱盐淡化处理的有效方法。
此法以消耗热能为代价,一般适用于含盐量超过3000mg/L矿井水的处理。
1957年英国学者R.S.SILVER发明了多级闪蒸(MSF)脱盐方法,当时,它在降低能耗及防垢问题方面有独到的优越性,因而自其诞生之日起,发展非常迅速,成为脱盐的一种重要方法。
多效蒸馏法(MED)历史比较悠久,变化较为剧烈,至今具有商业价值的脱盐技术有竖管蒸馏(VT-MED)和水平管蒸馏(HT-MED)。
随后在两种方法的基础上又发展到多效多级闪级蒸发(MEMS),它改善了MSF和MED的性能,具有重复利用二次蒸汽的潜热,即能使热量经济利用,又避免了严重的结垢现象,大幅度地提高造水比。
蒸馏法与其他处理方法不同,其最大的弱点是高能消耗,这也成为阻碍其推广的主要原因。
但其有独特的优点:①由于这种方法是依靠能源加热原水,经蒸发提取淡水,故不需任何化学药品或离子分离膜;②适应原水的含盐量的范围广,含盐数百~数万mg/L 的矿井水均可处理,这一点是其他方法不能比拟的;③对原水的预处理要求低,只需进行普通预处理悬浮物即可;④由于蒸馏法得到的是蒸馏水,故水质品质高;⑤淡化率较高。
虽然蒸馏法有高能消耗的弱点,但是其可以在煤矿广泛推广。
若是在煤矿区利用煤矸石和低热值煤作燃料,用蒸馏法处理高矿化度矿井水,有几个好处:一可以加速煤矸石的利用程度,减少占用土地和征地费用;二是可以消除矿区煤矸石污染源,有利于改善矿区大气环境质量、水环境质量和土壤环境质量;三是可以变废为宝,大大降低高矿化度矿井水的处理费用;四是燃烧后的煤矸石仍然可作建筑材料和水泥拌料。
3 结语高矿化度矿井水处理是一项较为复杂的系统工程,涉及范围广,影响因素多,投资大。
从以上各种处理工艺及运行结果来看,用蒸馏法淡化苦咸水,可以充分利用煤矿充裕的低值能源,处理同等规模的苦咸水水量时,投资大体与电渗析相当,但运行费用要低于电渗析,在煤矿处理高矿化度矿井水方面具有广泛的前景;反渗透技术优越的价格性能比在煤矿苦咸水淡化中将发挥其更大的作用,无论出水水质、电耗、脱盐效率、占地面积、自动化程度都是其它工艺所无法比的,但由于一次性投资较大,在目前的煤矿经济条件下,还不可能广泛推广应用。
电渗析技术是目前处理高矿化度矿井水较为成熟也较为经济的一种方法,虽然还存在一些问题,但还是使用最广泛的一种技术,我国目前处理高矿化度矿井水大多使用电渗析技术。
总之,高矿化度矿井水的处理方法已经相对成熟,但是各种方法都有一些缺点,且处理成本较高,因此,研究高矿化度矿井水处理技术的新方法,并降低处理成本,是矿井水处理技术今后研究的一个重要课题。
请在这里输入公司或组织的名字Enter The Name Of The Company Or Organization Here。