(完整版)初中常见定理证明
初中数学公式定理大全

初中数学公式定理大全1点的定理:过两点有且只有一条直线;两点之间线段最短角的定理:同角或等角的补角相等;同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短2平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等;有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上;角的平分线是到角的两边距离相等的所有点的集合6等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边;等腰三角形顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8定理:在直角三角形中,如果一个锐角等于30°那它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理 1.两组对角分别相等的四边形是平行四边形 2.两组对边分别相等的四边形是平行四边形 3.对角线互相平分的四边形是平行四边形 4.一组对边平行相等的四边形是平行四边形11矩形性质定理:矩形的四个角都是直角;矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形12菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14定理:关于中心对称的两个图形是全等的;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1. 在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1. 两角对应相等,两三角形相似(ASA)2. 两边对应成比例且夹角相等,两三角形相似(SAS)3. 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18定理1:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值定理2:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19定理:过不共线的三个点,可以作且只可以作一个圆;垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理3:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。
(完整版)初中几何几个著名定理及证明

① AC(BP+DP)=AD ・ BC+AB ・ DC ・ 即 AC ・ BD=AB ・ CD+AD ・ BC.2.托勒密定理的逆定理若一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这 个凸四边形內接于一圆。
己知:在凸四边形ABCD 中,AB • CD+AD • BC 二 BD • AC 。
求证:A 、B 、C 、D 四点共圆。
证明:分别以E 、A 为顶点,在 四边形ABCD初屮见何甩个著名炙龌及证明 识玻堵泗阳展療口屮曇蒐疋屮 一.托勒密定理 1.托勒密定理 圆內接四边形中,两条对角线的乘积等于两组对边乘积之和。
己知:圆內接四边形AECD,求证:AC ・BD 二AB • CD+AD ・BC 。
证明:如图所示,过C 作CP 交BD 于P, 使Z1=Z2,又Z3=Z4, AACD^ABCP. 冴 BP BC EP • AC 二 AD • BC 又 ZACB=ZDCP, Z5= Z6,,即 •:A ACB S A DCP . 得需=舘,即DP ・AC =AB ・DC内,作ZABF= ZDBC> ZBAF=ZBDC,—=—=> AB CD^BD-AF则厶ABF^ADBC 〜Ar CDAH _Bn亦—斎又•,• ZABD = Z ABF +ZEBF= ZEBF + ZDBC = ZFBC•'•△ABD S A FB C =x> —=—=>JD-/R-=Hzrc/--HC CF•••AB ・ CD+AD ・ BC=BD* (AF+CF)又VAB・CD+AD ・BC=BD・AC (己知〉,•••AC=AF + CF;「.A、F、C三点共线;ZBAC=ZBAF = ZBDC;:4、B、C、D 四点共圆。
3.托勒密不等式在任意凸四边形中,两组对边乘积的和不小于其两条对角线的乘积。
〈托勒密定理可视作托勒密不等式的特殊情况。
)即在任意凸四边形ABCD中,必有AC ・BDWAB • CD+AD * BC,当且仅当A、B、C、D四点共圆(托勒密定理)或共线(欧扌立几何定理)时取等号。
初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。
-分配率:a×(b+c)=a×b+a×c。
-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。
-幂的乘法:(a^m)×(a^n)=a^(m+n)。
2.平方根公式-设a≥0,则√a×√a=a。
-若a≥0,则√(a^2)=a。
3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。
- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。
4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。
-三角形内角和定理:一个三角形的内角之和等于180°。
-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。
5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。
-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。
-三角形内角和定理:一个三角形的内角之和等于180°。
-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。
6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。
-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。
-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。
-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。
-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。
7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。
-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。
-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。
初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。
在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。
以下是初中几何中常用的公理和定理。
一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。
2.同位角公理:同位角互等。
3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。
4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。
二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。
2.三角形内角和定理:三角形内角的和为180°。
3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。
4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。
5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。
6.等边三角形定理:等边三角形的三条边相等。
7.三角形外角定理:三角形外角等于其对应内角的和。
8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。
10.等周定理:等周的两角相等,反之亦成立。
11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。
12.周长定理:四边形周长等于各边长的和。
13.三角形周长定理:三角形的周长等于三边长的和。
14.三角形中线定理:三角形中线等分中位线,且平分第三边。
15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。
16.五边形内角和定理:五边形的内角和是540°。
17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。
18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。
19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。
20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。
初中数学定理及推论的证明

初中数学定理及推论的证明证明一:等腰三角形的定理定理:如果一个三角形的两条边等长,那么这个三角形是等腰三角形。
证明:假设三角形ABC的两条边AB和AC等长,即AB=AC。
由等量减法原理,我们可以得到:AB-AC=0。
再根据减法交换律,我们可以得到:AC-AB=0。
根据减法结合律,上述两式可以合并为:AC-AB+AB-AC=0。
通过合并同类项,我们可以得到:AC-AC+AB-AB=0。
根据零元素的性质,我们可以得到:0+0=0。
根据加法恒等性质,上述两式可以合并为:0=0。
根据等式传递律,我们可以得到:AC-AB=AB-AC。
根据相反数的性质,上式可以变为:AC+(-AB)=AB+(-AC)。
根据加法逆元的定义,我们可以将上式简化为:AC-AB=AB-AC=0。
由于AC-AB=0,所以AC=AB。
这就证明了三角形ABC是等腰三角形。
证明二:三角形内角和定理定理:三角形的内角和等于180度。
证明:假设三角形ABC的三个内角分别为∠A、∠B、∠C。
我们可以通过以下步骤来证明内角和定理:1.根据直角三角形的性质,直角三角形的内角和等于90度。
所以∠A+∠B+∠C=90度。
2.将三角形ABC划分为两个直角三角形,其中一个直角三角形的两个内角分别为∠A和∠B。
3.根据直角三角形内角和定理,我们可以得到∠A+∠B=90度。
4.将上述结果代入第一步的等式中,我们可以得到90度+∠C=90度。
5.根据加法逆元的定义,我们可以将上述结果简化为∠C=0度。
6.根据零元素的性质,0度+0度+0度=0度。
结合第一步的等式,我们可以得到∠A+∠B+∠C=0度。
因此,三角形ABC的内角和等于180度。
证明三:略以上是初中数学中的两个重要定理及其证明。
这些证明基于基本的数学概念和运算法则,通过逻辑推理和数学运算的方法,从已知条件推导出结论。
这些证明过程旨在培养学生的逻辑思维能力和数学推理能力,加深对数学定理的理解和应用。
同时,这些定理的证明也为后续数学知识的学习和应用奠定了基础。
初中数学所有定理与公式

初中数学所有定理与公式初中数学中的定理与公式有很多,以下是一些重要的定理和公式:一、整数与出列1.整数与负数相乘,结果为负数。
(定理)2.出列法则:同号相乘为正,异号相乘为负。
(公式)二、整式的加减与乘除1.加法交换律:a+b=b+a。
(定理)2.减法可加法运算:a-b=a+(-b)。
(公式)3.乘法交换律:a×b=b×a。
(定理)4.乘法分配律:a×(b+c)=a×b+a×c。
(定理)5.除法公式:a÷b=a×(1/b)。
(公式)6.乘幂公式:a^m×a^n=a^(m+n)。
(公式)三、因式分解与倍数与公约数1.因式分解:将一个多项式写成几个因式相乘的形式。
(规则)2.公约数:能同时整除两个或多个数的数。
(定义)3.最大公约数:一组数的公约数中最大的一个。
(定义)4.最小公倍数:一组数中能被所有数整除的最小整数。
(定义)四、平方根与勾股定理1.平方根的性质:如果a²=b,则√b=,a。
(定理)2.勾股定理:在直角三角形中,a²+b²=c²。
(定理)五、百分数及其应用1.百分比:以百为基数的计数单位。
(定义)2.百分数计算:a%=a/100。
(公式)3.利率计算:利息=本金×利率×时间。
(公式)4.百分数的增减:数据增加或减少的百分比计算。
(公式)六、方程与不等式1. 一元一次方程:ax + b = 0,x = -b/a。
(定理)2. 一元二次方程求解公式:x = (-b ± √(b² - 4ac))/(2a)。
(公式)3.不等式的性质:同意负号,异号取反,非负数平方不小于0。
(定理)七、平行线与相交线1.平行线的性质:同位角相等,内错角相等,外错角相等。
(定理)2.相交线的性质:同位角互补,内错角互补,外错角互补。
(定理)八、三角形与四边形1.三角形内角和为180°。
初中数学公式定理大全

初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。
2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。
3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。
4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。
5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。
2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。
3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。
4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。
三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。
2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。
3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。
4、三角形的中线定理:在直角三角形中。
初中数学定理大全完整版

初中数学定理大全完整版一、形状定理1、平行线定理:平行线之间的距离总是相等的;2、垂直线定理:任意两条垂直(直角)线的交点到两条线的距离是一样的;3、平面角定理:两个线段相交时,连接交点和两条线段两端点的角之和为180°;4、直线交角定理:两条直线交于一点,则它们的夹角等于二者的夹角之和。
1、三角形垂直定理:三角形的最长边总是位于与其最短边所成的夹角的对角线上;2、三角形最佳定理:三角形的任意边之和大于另外两边的和;3、勾股定理:三角形的任意一边的平方等于其他两边的平方和;4、海伦定理(三角形面积定理):三角形的面积等于其他两条边乘以两边之间的距离除以2;5、正三角形三边定理:正三角形的三条边相等;7、三角形平行线定理:在任意三角形内,任何一条对角线上的对应边都是平行的。
三、图论定理1、桥接定理:在一个有环的图中,如果删去一条边便使得图变成连通图,则这条边称为桥;2、塔定理:有向图中,任何两个节点都有一条路径相连;3、欧拉定理:一个有向图G中,如果所有顶点的度之和等于该图边数的两倍,则称G是欧拉图,而且图G必然是可以从一个顶点出发,遍历所有边,而只经过每条边一次,而能最终回到原点的图。
四、坐标定理1、点斜式定理:求点斜式的方法是先除以斜率(斜率为小数时,先乘以分子的倒数,然后在除以分母),得出的结果等于两个点之间的横坐标差和纵坐标差的比例;2、两点式定理:由两点确定一条直线,则把这两点坐标代入直线方程可解出直线方程;3、三角形独特性定理:平面上存在唯一一个拥有三个顶点的三角形,它将这三顶点分割为三条等长线段;4、极坐标定理:极坐标下,任意一点都可以用一对数值来表示,它表示该点,绕原点运行某一方向的角距离,以及该角所指的点到原点的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中常见定理的证明
一、三角形
1、运用你所学过的三角形全等的知识去证明定理:有两个角相等的三角形是等腰三角形.(用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据)
2、证明定理:等腰三角形的两个底角相等.(画出图形、写出已知、求证并证明)
3、叙述并证明三角形内角和定理.要求写出定理、已知、求证,画出图形,并写出证明过程
4、我们知道,证明三角形内角和定理的一种思路是力求将三角形的三个内角转化到同一个顶点的三个相邻的角,从而利用平角定义来得到结论,你能想出多少种不同的方法呢?同学之间可相互交流.
5、三角形中位线定理,是我们非常熟悉的定理.
①请你在下面的横线上,完整地叙述出这个定理:
②根据这个定理画出图形,写出已知和求证,并对该定理给出证明.
是 ,这 个命题正确吗?
若正确, 请你证 明这个命题,若不正确请说明
理由.
7、用所学定理、定义证明命题证明:直角三角形斜边上的中线等于斜边的一半.
8、同学们,这学期我们学过不少定理,你还记得“在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半”,请你写出它的逆命题,并证明它的真假.
解:原命题的逆命题为:
在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角是30°.
9、利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称
为,该定理的结论其数学表达式是.
10、利用图中图形的有关面积的等量关系都能证明数学中一个十分著名的定理,此证明方法就是美国第二十任总统伽菲尔德最先完成的,人们为了纪念他,把这一证法称为“总统”证法.这个定理称为,该定理的结论其数学表达式是.
11、[定理表述]
请你根据图1 中的直角三角形,写出勾股定理内容;
[尝试证明]
以图1 中的直角三角形为基础,可以构造出以a、b为底,以a+b 为高
定理表述:直角三角形中,两直角边的平方和等于斜边的平方.
证明 : ∵S 四 边 形 ABCD =S △ ABE +S △ AED +S △ CDE= 2
2
12 、如图, △ ABC 中, ① AB=AC , ② ∠ BAD=∠ CAD , 你选择其中的两个作为条件,另两个作为结 论 线合一”性质定理.
13、课本指出:公认的 真命题称为公理,除了公理外,其他的真命题(如 推论、定理等)的正确性都需要通过推理的方法证实.
(1)叙述三角形全等 的判定方法中的推论 AAS ;
( 2 ) 证 明 推 论 AAS .
③ BD=C ,D ④ AD ⊥
BC .请 证明等腰三角形 的
要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.14、在数学课外活动中,某学习小组在讨论“导学案”上的一个作业题:已知:如图,OA平分
∠BAC,∠1=∠2.
求证:AO⊥ BC.
同学甲说:要作辅助线;
同学乙说:要应用角平分线性质定理来解决:
同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.如果你是这个学习小组的成员,请你结合同学们的讨论写出证明过程.
15、证明:勾股定理逆定理
已知:在Δ ABC中,AB=c,AC=b,BC=a ,若c2 =a2 + b2 求证:∠ C = 90 度
证明:作RTΔDEF,使∠ E=RT∠,DE=b ,EF=a
在RTΔ DEF中,DF2 = ED2 + EF2 = a 2 +b2 因为c2=a2+ b 2 所以DF =c
所以DF=AB,DE=AC,EF=BC 所以RTΔDFE≌Δ ABC (SSS) 所以∠ C=∠E = RT∠
二、四边形 (一)梯形
1、定理证明:“等腰梯形的两条对角线相等”.
2、用两种方法证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形(要求:画出图形,写出已知、求证、证明).
证法一:如图,分别过点Ar作AE丄DC于点E,BF丄DC于点F,VAE丄DC,BF 丄DC J
Λ 2AED=ZBFC = 90φ > AE^ EF^
V AB DC,
•・•四边形ABFE是柜形,
-AE=EF.
∙∙∙ 2D=ZC,
Λ∆ADE^∆BCF.
-AD=BC.
•・•棉形AECD是等If梯形•
证法二过点B作BE∕<AD>
V AB^DC »BE” AD,
・•・四边形ABED是平行四边形.
-'∙ AD=BE •
VBEZ/AD >
∙i∙ ND=ZEEC •
-.∙ ZD=^C ‘
.β. ZBEC=ZC •
∙∙∙ BE=BC.
∙∙∙ BC=AD.
・•・梯形ABCD是等Q要梯形•
3、在梯形ABCD中,如图所示,AD∥BC,点
E、F 分别是AB、CD的中点,连接EF,EF
叫做梯形的中位线.观察EF 的位置,联想三角形
的中位线定理,请你猜想:EF与AD、BC有怎样的
位置和数量关系并证明你的猜想.
4、采用如图所示的方法,可以把梯形ABCD折叠成一个矩形EFNM(图中EF,FN,EM为折痕),使得点A与B、C与D分别重合于一点.请问,线段EF的位置如何确定;通过这种图形变化,你能看出哪些定理或公
式(至少三个)?证明 你的所有结论.
解: 可以 看出 梯形 的 中位 线定 理、 面积 公 式、 平行 线的 性质 定 理等 .
(二)平行四边形
1、定理证明:一组对
边平行且相等的四边形是平行四边形.
2、定理求证:对角线互相平分的四边形是平行四边形.
3、我们在几何的学习中能发现,很多图形的性质定理与判定定理之间有着一定的联系.例如:菱形的性质定理“菱形的对角线互相垂直”和菱形的判定定理“对角线互相垂直的平行四边形是菱形”就是这样.但是课本中对菱形的另外一个性质“菱形的对角线平分一组对角”却没有给出类似的判定定理,请你利用如图所示图形研究一下这个问题.要求:如果有类似的判定定理,请写出已知、求证并证明.如果没有,请举出反例.
(三)圆证明:一条弧所对圆周角等于它所对圆心角的一半。
这一定理叫做圆周角定理。
(圆周角与圆心角的关系)
已知在⊙O中,∠ BOC与圆周角∠ BAC同对弧BC,求证:∠ BOC=∠2 BAC.
证明:
情况1:
如图1,当圆心O在∠BAC的一边上时,即A、O、B 在同一直线上时:
图1∵OA、OC是半径
解:∴ OA=OC
∴∠BAC=∠ACO(等边对等角)∵∠BOC是△AOC的外角
∴∠ BOC∠= BAC+∠ACO=∠2 B AC
情况2:
如图2, ,当圆心O在∠ BAC的内部时:连接AO,并延长AO交⊙O于
D 图2∵OA、OB、OC是半径
解:∴ OA=OB=OC
∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)
∵∠BOD、∠COD分别是△ AOB、△AOC的外角
∴∠ BOD∠= BAD+∠ABO=∠2 BAD(三角形的外角等于两个不相邻两个内角的和)∠COD∠= CAD+∠ACO=∠2 CAD(三角形的外角等于两个不相邻两个内角的和)
∴∠ BOC∠= BOD∠+ COD=2∠( BAD+∠CAD)=2∠BAC
情况3:
如图3,当圆心O在∠ BAC的外部时:
图3 连接AO,并延长AO交⊙O于D 连接OA,OB。
解:∵ OA、
OB、OC、是半径
∴∠BAD=∠ABO(等边对等角) , ∠CAD=∠ACO(OA=O)C
∵∠DOB、∠DOC分别是△ AOB、△AOC的外角
∴∠ DOB∠= BAD+∠ABO=∠2 BAD(三角形的外角等于两个不相邻两个内角的和)∠DOC∠= CAD+∠ACO=∠2 CAD(三角形的外角等于两个不相邻两个内角的和)
∴∠BOC∠= DOC- ∠DOB=2∠( CAD- ∠BAD)=2∠BAC。