大学物理知识点总结资料整理
大学物理知识点汇总
大学物理知识点汇总一、质点运动学1、描述质点运动的物理量位置、速度、加速度、动量、动能、角速度、角动量2、直线运动与曲线运动的分类直线运动:加速度与速度在同一直线上;曲线运动:加速度与速度不在同一直线上。
3、速度与加速度的关系速度与加速度方向相同,物体做加速运动;速度与加速度方向相反,物体做减速运动。
二、牛顿运动定律1、牛顿第一定律:力是改变物体运动状态的原因。
2、牛顿第二定律:物体的加速度与所受合外力成正比,与物体的质量成反比。
3、牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在同一条直线上。
三、动量1、动量的定义:物体的质量和速度的乘积。
2、动量的计算公式:p = mv。
3、动量守恒定律:在不受外力作用的系统中,动量守恒。
四、能量1、动能:物体由于运动而具有的能量。
表达式:1/2mv²。
2、重力势能:物体由于被举高而具有的能量。
表达式:mgh。
3、动能定理:合外力对物体做的功等于物体动能的改变量。
表达式:W = 1/2mv² - 1/2mv0²。
4、机械能守恒定律:在只有重力或弹力对物体做功的系统中,物体的动能和势能相互转化,机械能总量保持不变。
表达式:mgh + 1/2mv ² = EK0 + EKt。
五、刚体与流体1、刚体的定义:不发生形变的物体。
2、刚体的转动惯量:转动惯量是表示刚体转动时惯性大小的物理量,它与刚体的质量、形状和转动轴的位置有关。
大学物理电磁学知识点汇总一、电荷和静电场1、电荷:电荷是带电的基本粒子,有正电荷和负电荷两种,电荷守恒。
2、静电场:由静止电荷在其周围空间产生的电场,称为静电场。
3、电场强度:描述静电场中某点电场强弱的物理量,称为电场强度。
4、高斯定理:在真空中,通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空介电常数。
5、静电场中的导体和电介质:导体是指电阻率为无穷大的物质,在静电场中会感应出电荷;电介质是指电阻率不为零的物质,在静电场中会发生极化现象。
大学物理学知识点总结
大学物理学知识点总结### 大学物理学知识点总结#### 一、力学基础1. 牛顿运动定律:- 第一定律(惯性定律):物体保持静止或匀速直线运动状态,除非外力作用。
- 第二定律(动力定律):物体的加速度与作用力成正比,与物体质量成反比。
- 第三定律(作用与反作用定律):作用力与反作用力大小相等、方向相反。
2. 功和能量:- 功:力在位移方向上的分量与位移的乘积。
- 动能:\[ E_k = \frac{1}{2}mv^2 \]- 势能:由物体位置决定的能量,如重力势能。
3. 动量和冲量:- 动量:\[ p = mv \]- 冲量:力与作用时间的乘积。
4. 角动量和角动量守恒:- 角动量:\[ L = r \times p \]- 角动量守恒:在没有外力矩作用下,系统的总角动量保持不变。
#### 二、热力学1. 热力学第一定律:能量守恒定律,热量可以转化为其他形式的能量。
2. 热力学第二定律:自发过程总是向着熵增的方向进行。
3. 理想气体定律:\[ PV = nRT \]- 其中 \( P \) 是压强,\( V \) 是体积,\( n \) 是摩尔数,\( R \) 是理想气体常数,\( T \) 是温度。
4. 熵:系统无序度的量度,与系统微观状态的多样性有关。
#### 三、电磁学1. 库仑定律:电荷间作用力与电荷量的乘积成正比,与距离的平方成反比。
2. 电场和电势:- 电场:电荷周围空间的力场。
- 电势:单位正电荷在电场中从无穷远处移动到某点所做的功。
3. 磁场和磁感应强度:- 磁场:由磁体或电流产生的力场。
- 磁感应强度:磁场对运动电荷的作用力。
4. 法拉第电磁感应定律:变化的磁场产生感应电动势。
#### 四、波动学1. 波的基本特性:- 波长、频率、速度。
2. 干涉和衍射:- 干涉:两个或多个波相遇时,波的振幅相加。
- 衍射:波绕过障碍物传播的现象。
3. 多普勒效应:波源和观察者相对运动时,观察者接收到的波频率发生变化。
大学物理核心知识点、公式整理
CP,m CV ,m R CP CV +R
3. 循环过程
热机效率 A 1 Q2
Q1
Q1
卡诺循环 在一循环中,系统只和高温热源(温度 T1 )与低温热源(温度T2 )两个热源交
换热量。 1 T2 T1
4. 热力学第二定律 第二定律的克劳修斯表述
“热量不能自动地从低温物体传向高温物体” 第二定律的开尔文表述 “其唯一效果是热全部转变为功的过程是不可能的” 第二类永动机是不可能制造成的
时间膨胀 0 1 2
长度收缩 l l0 1 2
4. 相对论动量和能量关系式
质量 m m0 1 2
静能 E0 m0c2
总能量 E=mc2 动能 Ek mc2 m0c2
E2 =m2c4 p2c2 m02c4
二、量子物理基础 1.普朗克能量子假说 (1)黑体—带点线性谐振子
暗纹
a sin
2k
1
2
亮纹
中央亮纹的宽度是其他亮纹宽度的 2 倍 4. 光栅衍射
光栅方程 d sin k
主极大半角宽 1 N d cosk
若
d sin a sin
k k
光栅的缺级
缺级条件 k d k a
第六部分 近代物理
符号规定: đQ 0 系统从外界吸收热量
đA 0 系统对外界作正功 dE 0 系统内能增加
理想气体的准静态过程
đA PdV E E T i RT
2
CV
E T
V
dE dT
i R 2
đQ CV dT PdV
CV
大一物理知识点总结分章节
大一物理知识点总结分章节大一物理知识点总结第一章:力学1.1 物体和力1.1.1 物体的质量和体积1.1.2 力的概念和特点1.2 运动学1.2.1 位移、速度和加速度1.2.2 直线运动和曲线运动1.2.3 牛顿第一定律和第二定律1.3 力学中的能量1.3.1 动能和势能1.3.2 动能定理和机械能守恒定律1.4 静力学1.4.1 平衡条件和力的合成1.4.2 浮力和密度的关系第二章:热学2.1 温度和热量2.1.1 温度的测量和单位2.1.2 热量的传递和能量守恒定律2.2 热力学定律2.2.1 理想气体定律2.2.2 热传导和传热方式2.2.3 热机和热效率第三章:电学3.1 静电学3.1.1 电荷和库仑定律3.1.2 电场和电势3.2 电流和电阻3.2.1 电流的概念和测量3.2.2 电阻的概念和欧姆定律 3.2.3 欧姆定律的应用3.3 电路和电源3.3.1 并联电路和串联电路3.3.2 电源的类型和特点第四章:光学4.1 光的传播和光的特性4.1.1 光的传播模型4.1.2 光的直线传播和光的反射4.2 光的折射和色散4.2.1 光的折射定律4.2.2 光的色散和光的全反射4.3 光的成像和光学仪器4.3.1 光的成像原理4.3.2 凸透镜和凹透镜的成像第五章:波动与声学5.1 机械波的传播性质5.1.1 机械波的分类和传播特性5.1.2 波的叠加和波的干涉5.2 声音的产生和传播5.2.1 声音的产生原理和声音的特性5.2.2 声音的传播和声音的衰减5.3 声学应用和超声波5.3.1 声音的应用领域5.3.2 超声波的产生和应用以上为大一物理知识点总结的基本章节内容,每个章节可以进一步展开相关知识点的详细解释和应用案例。
希望这份总结对你的学习有所帮助!。
大学物理学复习资料
大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。
大学物理知识点总结
大学物理知识点总结1.热力学的第一定律:能量守恒定律,即能量守恒,即系统的总能量在宏观上始终保持不变,但小观剖面可能有所变化。
2.热力学的第二定律:熵增定律,即熵只能增加,且系统的熵数越大,其不稳定性越强,熵可以视为一种混乱性的度量,它反映了系统无序性和水平。
3.热力学的第三定律:统计热力学原理,即根据统计学原理,当系统进入绝对零度时,系统出现分歧,且熵数趋近最小,此时,物质有一定的概率出现在这个特定状态。
二、力学1.动量定理:物体的动量变化等于施加在物体上的外力的矢量和,即动量是有守恒的。
2.牛顿第一定律:物体在没有外力作用时保持相对静止,即它的速度不发生变化;若外力作用于物体,物体的速度就会发生变化。
3.牛顿第二定律:物体受外力作用时,加速度的大小和方向与外力的大小和方向成正比,即受力越大,加速度越大,受力方向相同,加速度方向也相同。
4.牛顿第三定律:物体之间产生力学作用,而这种作用受两个物体间的距离、物质的性质及其他条件的影响,它的大小为物体的质量成正比,而方向则相反。
三、电磁学1.电荷守恒定律:电荷守恒定律,即电荷在任何情况下都是守恒的。
2.电场定律:电场定律指的是静电场中,电荷之间相互作用的定律。
它包括Coulomb定律,Gauss定律,Biot-Savart定律和Ampere 定律,广泛应用于电磁学问题的计算中。
3.电磁感应定律:该定律指出,磁场的强弱与电流的大小和方向有关,并且电流具有磁通性,即电流可以产生磁场影响物体的轨迹。
此外,磁通的大小与电流的大小成正比,而磁的方向和电流的方向相反。
4.磁通量定律:该定律指出,磁通的变化率与电流的变化率成正比,即电流的变化率越大,磁通的变化率就越大。
四、光学1.干涉:当两束平行或非平行光线通过相同的媒介时,一定距离上某点可以同时到达多个不同的光源,光波的干涉可以导致正弦峰值和谷值出现,即称干涉可以以此来观察小物体的特性,增加细节的可见度,研究物体的形状和结构。
大学物理知识点总结
大学物理知识点总结一、物体的内能1.分子的动能物体内所有分子的动能的平均值叫做分子的平均动能.温度升高,分子热运动的平均动能越大.温度越低,分子热运动的平均动能越小.温度是物体分子热运动的平均动能的标志.2.分子势能由分子间的相互作用和相对位置决定的能量叫分子势能.分子力做正功,分子势能减少,分子力做负功,分子势能增加。
在平衡位置时(r=r0),分子势能最小.分子势能的大小跟物体的体积有关系.3.物体的内能(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能.(2)分子平均动能与温度的关系由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。
(3)分子势能与体积的关系分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。
而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。
这就在分子势能与物体体积间建立起某种联系。
因此分子势能分子势能跟体积有关系,由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加;体积变化时,分子势能发生变化,因而物体的内能发生变化.此外, 物体的内能还跟物体的质量和物态有关。
二.改变物体内能的两种方式1.做功可以改变物体的内能.2.热传递也做功可以改变物体的内能.能够改变物体内能的物理过程有两种:做功和热传递.注意:做功和热传递对改变物体的内能是等效的.但是在本质上有区别:做功涉及到其它形式的能与内能相互转化的过程,而热传递则只涉及到内能在不同物体间的转移。
[P7.]南京市金陵中学06-07学年度第一次模拟1.下列有关热现象的叙述中正确的是(A)A.布朗运动反映了液体分子的无规则运动B.物体的内能增加,一定要吸收热量C.凡是不违背能量守恒定律的实验构想,都是能够实现的D.物体的温度为0℃时,物体分子的平均动能为零[P8.] 07届1月武汉市调研考试2.恒温的水池中,有一气泡缓慢上升,在此过程中,气泡的体积会逐渐增大,不考虑气泡内气体分子势能的变化,则下列说法中正确的是( A D )A.气泡内的气体对外界做功B.气泡内的气体内能增加C.气泡内的气体与外界没有热传递D.气泡内气体分子的平均动能保持不变[P9.] 2022年广东卷10、图7为焦耳实验装置图,用绝热性能良好的材料将容器包好,重物下落带动叶片搅拌容器里的水,引起水温升高。
大学物理知识点总结汇总
引言概述:大学物理作为一门重要的理工科学科,涵盖了广泛的知识领域。
在大学物理学习过程中,我们需要掌握各种物理定律、概念和实验技巧。
本文将对大学物理中的一些重要知识点进行总结汇总,旨在帮助读者系统地理解这些知识点,提高物理学习效果。
正文内容:一、电磁学知识点1.库伦定律:阐述了两个电荷之间的静电力与它们之间的距离和电量大小的关系。
2.电场与电势:解释了电荷周围空间存在电场的概念,电势则是描述电场能量状态的重要物理量。
3.电流和电阻:分析了电流的定义和流动规律,以及电阻对电流流动的影响。
4.电磁感应:研究了磁场对导体中的电荷运动产生的电动势,并解释了发电机和变压器的工作原理。
5.电磁波:介绍了电磁波的产生和传播规律,以及电磁波的波长、频率和速度之间的关系。
二、光学知识点1.光的直线传播:讲解了光的传播方式和光的速度。
2.光的干涉和衍射:阐述了光的干涉和衍射现象的原理,并解释了双缝干涉、单缝衍射和菲涅尔衍射等常见现象。
3.几何光学:介绍了光的折射、反射和成像的规律,以及利用透镜和镜片进行光学成像的方法。
4.光的偏振:解释了光的偏振现象和偏振光的特性。
5.光的散射和吸收:探讨了光在物质中的散射和吸收过程,以及光的能量衰减规律。
三、热学知识点1.热力学基本概念:介绍了温度、热量和热平衡的概念。
2.理想气体定律:讨论了理想气体状态方程和气体的压强、体积和温度之间的关系。
3.热传导:解释了热的传导方式、热传导定律和热导率的概念。
4.热力学循环:分析了热力学循环中的能量转化和效率计算,以及常见的卡诺循环和斯特林循环。
5.热力学第一和第二定律:阐述了热力学第一定律(能量守恒定律)和第二定律(熵增原理)的概念和应用。
四、相对论知识点1.狭义相对论:介绍了狭义相对论的基本原理,包括光速不变原理和等效质量增加原理。
2.斜坐标系和洛伦兹变换:解释了相对论中的平时距离、时间间隔和洛伦兹变换的概念。
3.相对论动能和动量:分析了相对论速度和质量增加对动能和动量的影响。
大学物理必考知识点大全
大学物理必考知识点大全1. 力学1.1. 牛顿三定律1.2. 力的合成与分解1.3. 动量定理1.4. 质点运动学1.5. 曲线运动2. 热学2.1. 熵与热力学第二定律2.2. 热力学循环2.3. 理想气体的等温、绝热过程2.4. 热传导、热辐射、热对流3. 电磁学3.1. 库仑定律3.2. 电场与电势3.3. 电荷守恒量子化3.4. 电磁感应与法拉第定律3.5. 麦克斯韦方程组4. 光学4.1. 光的干涉与衍射4.2. 库仑定律4.3. 像差与光学仪器4.4. 光的波粒二象性5. 原子物理5.1. 波尔模型与能级跃迁5.2. 薛定谔方程与波函数5.3. 玻尔兹曼分布5.4. 拉曼效应与斯特恩-格拉赫实验6. 相对论6.1. 狭义相对论基本概念6.2. 相对论动力学6.3. 黑洞与引力波7. 核物理7.1. 放射性衰变7.2. 核裂变与核聚变7.3. 质能方程7.4. 射线与粒子探测技术8. 粒子物理学8.1. 标准模型8.2. 强、弱、电磁相互作用8.3. 粒子加速器与探测器9. 波动光学9.1. 波动光学基本概念9.2. 干涉与衍射9.3. 偏振光与光的散射10. 统计物理学10.1. 玻尔兹曼分布与费米-狄拉克分布10.2. 统计力学与热力学关系10.3. 统计物理学中的等概率原理总结:大学物理的必考知识点包括力学、热学、电磁学、光学、原子物理、相对论、核物理、粒子物理学、波动光学和统计物理学等多个领域。
理解和掌握这些知识点,对于大学物理考试和物理学的学习都非常重要。
通过系统学习和实践运用,我们可以更好地理解物理世界的规律和现象,并能够应用物理原理解决实际问题。
希望本文的内容对您的学习和考试有所帮助!。
大学物理知识点的总结归纳
大学物理知识点的总结归纳一、理论基础力学1、运动学参照系。
质点运动的位移和路程,速度,加速度。
相对速度。
矢量和标量。
矢量的合成和分解。
匀速及匀速直线运动及其图象。
运动的合成。
抛体运动。
圆周运动。
刚体的平动和绕定轴的转动。
2、牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律。
惯性参照系的概念。
摩擦力。
弹性力。
胡克定律。
万有引力定律。
均匀球壳对壳内和壳外质点的引力公式(不要求导出)。
开普勒定律。
行星和人造卫星的运动。
3、物体的平衡共点力作用下物体的平衡。
力矩。
刚体的平衡。
重心。
物体平衡的种类。
4、动量冲量。
动量。
动量定理。
动量守恒定律。
反冲运动及火箭。
5、机械能功和功率。
动能和动能定理。
重力势能。
引力势能。
质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。
弹簧的弹性势能。
功能原理。
机械能守恒定律。
碰撞。
6、流体静力学静止流体中的压强。
浮力。
7、振动简揩振动。
振幅。
频率和周期。
位相。
振动的图象。
参考圆。
振动的速度和加速度。
由动力学方程确定简谐振动的频率。
阻尼振动。
受迫振动和共振(定性了解)。
8、波和声横波和纵波。
波长、频率和波速的关系。
波的图象。
波的干涉和衍射(定性)。
声波。
声音的响度、音调和音品。
声音的共鸣。
乐音和噪声。
热学1、分子动理论原子和分子的量级。
分子的热运动。
布朗运动。
温度的微观意义。
分子力。
分子的动能和分子间的势能。
物体的内能。
2、热力学第一定律热力学第一定律。
3、气体的性质热力学温标。
理想气体状态方程。
普适气体恒量。
理想气体状态方程的微观解释(定性)。
理想气体的内能。
理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)。
4、液体的性质流体分子运动的特点。
表面张力系数。
浸润现象和毛细现象(定性)。
5、固体的性质晶体和非晶体。
空间点阵。
固体分子运动的特点。
6、物态变化熔解和凝固。
熔点。
熔解热。
蒸发和凝结。
饱和汽压。
沸腾和沸点。
汽化热。
临界温度。
固体的升华。
空气的湿度和湿度计。
(完整版)大学物理知识点总结
Br ∆A rB ryr ∆第一章质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
大学物理(热学知识点总结)
7、bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两 过程中气体作功与吸收热量的情况是: A) b1a过程放热,作负功;b2a过程放热,作负功. B) b1a过程吸热,作负功;b2a过程放热,作负功. C)b1a过程吸热,作正功;b2a过程吸热,作负功. D) b1a过程放热,作正功;b2a过程吸热,作正功.
[1]、有一定量的理想气体,从初状态 a (P1 、V1 )开始, 经过一个等容过程达到压强为P1 / 4 的 b 态,再经过一个等 压过程达到状态C ,最后经过等温过程而完成一个循环, 求:该循环过程中系统对外作的功A 和所吸收的热量Q。 解:由已知可得: a( P 1 ,V1 )
循环过程
E 0 Q A V V1 1) a b A 0 2) b c A p1 (4V1 V1 ) / 4 3 p1V1 / 4 3) c a A p1V1 ln( V1 / 4V1 ) p1V1 ln4
p (105 Pa) 3 2 1 O A 1 2 C V (103 m3) B
解:(1) A→B:
A1
ΔE1= CV (TB-TA)=3(pBVB-pAVA) /2=750 J Q=A1+ΔE1=950 J. B→C: A2 =0 ΔE2 = CV (TC-TB)=3( PCVC-PBVB ) /2 =-600 J. Q2 =A2 +ΔE2 =-600 J. C→A: A3 = PA (VA-VC)=-100 J.
解( : 1) 等 容 过 程 , A 0, 外 界 对 气 体 作 功 A 0 M i Q E CV T RT M mol 2 0.02 3 8.31 ( 300 290 ) 623 ( J ). 0.004 2 (2)等压过程, E 与 ( 1) 同 。
大学物理知识点总结
大学物理知识点总结大学物理是一门重要的基础课程,涵盖了众多的知识点,下面就为大家总结一下其中的主要内容。
一、力学1、运动学位移、速度和加速度:位移是位置的变化,速度是位移对时间的变化率,加速度是速度对时间的变化率。
匀变速直线运动:速度与时间的关系、位移与时间的关系等公式要牢记。
曲线运动:平抛运动、圆周运动的特点和规律,如线速度、角速度、向心加速度等。
2、牛顿运动定律牛顿第一定律:惯性定律,物体不受力或所受合外力为零时,将保持静止或匀速直线运动状态。
牛顿第二定律:力与加速度的关系,F = ma。
牛顿第三定律:作用力与反作用力大小相等、方向相反、作用在同一直线上。
3、功和能功:力在位移方向上的积累,W =Fs cosθ。
动能定理:合外力对物体做功等于物体动能的变化。
重力势能、弹性势能:其表达式和特点要清楚。
机械能守恒定律:在只有重力或弹力做功的系统内,机械能守恒。
4、动量动量和冲量:动量 p = mv,冲量 I = Ft。
动量定理:合外力的冲量等于物体动量的变化。
动量守恒定律:系统不受外力或所受合外力为零时,动量守恒。
二、热学1、热力学第一定律内能的改变:包括做功和热传递两种方式。
热力学第一定律表达式:ΔU = Q + W 。
2、热力学第二定律两种表述方式:克劳修斯表述和开尔文表述。
揭示了热现象的方向性和不可逆性。
3、理想气体状态方程表达式:pV = nRT ,其中 p 为压强,V 为体积,n 为物质的量,R 为普适气体常量,T 为温度。
三、电磁学1、静电场库仑定律:描述真空中两个点电荷之间的静电力。
电场强度:定义为电场力与电荷量的比值。
电场线:形象地描述电场的分布。
电势和电势能:电势是电场的属性,电势能与电荷和电势有关。
电容:电容器容纳电荷的本领。
2、恒定电流电流:电荷的定向移动形成电流,I = q / t 。
电阻定律:R =ρL / S ,ρ 为电阻率。
欧姆定律:U = IR 。
焦耳定律:电流通过导体产生的热量 Q = I²Rt 。
大学物理学知识总结
第一篇 力学基础质点运动学一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。
(2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。
质点适用的范围:1.物体自身的线度l 远远小于物体运动的空间范围r2.物体作平动如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。
如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。
(3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。
在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。
二、描述质点运动和运动变化的物理量(1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。
在直角坐标系中zk yi xi r ++=在自然坐标系中)(s r r =在平面极坐标系中rr r =(2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即12r r r -=∆位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。
路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ∆表示。
路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下:sr ∆≠∆但是在0→∆t 时,有dsdr =(3)速度v 与速率v : 平均速度t r v ∆∆=平均速率t sv ∆∆=平均速度的大小(平均速率)t st r v ∆∆≠∆∆=质点在t 时刻的瞬时速度dt dr v =质点在t 时刻的速度dt dsv =则v dt ds dt dr v ===在直角坐标系中kv j v i v k dt dzj dt dy i dt dx v z y x ++=++=式中dtdzv dt dy v dt dx v z y x ===,, ,分别称为速度在x 轴,y 轴,z 轴的分量。
大学物理知识点的总结
大学物理知识点的总结一、理论基础力学1、运动学参照系。
质点运动的位移和路程,速度,加速度。
相对速度。
矢量和标量。
矢量的合成和分解。
匀速及匀速直线运动及其某象。
运动的合成。
抛体运动。
圆周运动。
刚体的平动和绕定轴的转动。
2、牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律。
惯性参照系的概念。
摩擦力。
弹性力。
胡克定律。
万有引力定律。
均匀球壳对壳内和壳外质点的引力公式(不要求导出)。
开普勒定律。
行星和人造卫星的运动。
3、物体的平衡共点力作用下物体的平衡。
力矩。
刚体的平衡。
重心。
物体平衡的种类。
4、动量冲量。
动量。
动量定理。
动量守恒定律。
反冲运动及火箭。
5、机械能功和功率。
动能和动能定理。
重力势能。
引力势能。
质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。
弹簧的弹性势能。
功能原理。
机械能守恒定律。
碰撞。
6、流体静力学静止流体中的压强。
浮力。
7、振动简揩振动。
振幅。
频率和周期。
位相。
振动的某象。
参考圆。
振动的速度和加速度。
由动力学方程确定简谐振动的频率。
阻尼振动。
受迫振动和共振(定性了解)。
8、波和声横波和纵波。
波长、频率和波速的关系。
波的某象。
波的干涉和衍射(定性)。
声波。
声音的响度、音调和音品。
声音的共鸣。
乐音和噪声。
热学1、分子动理论原子和分子的量级。
分子的热运动。
布朗运动。
温度的微观意义。
分子力。
分子的动能和分子间的势能。
物体的内能。
2、热力学第一定律热力学第一定律。
3、气体的性质热力学温标。
理想气体状态方程。
普适气体恒量。
理想气体状态方程的微观解释(定性)。
理想气体的内能。
理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)。
4、液体的性质流体分子运动的特点。
表面张力系数。
浸润现象和毛细现象(定性)。
5、固体的性质晶体和非晶体。
空间点阵。
固体分子运动的特点。
6、物态变化熔解和凝固。
熔点。
熔解热。
蒸发和凝结。
饱和汽压。
沸腾和沸点。
汽化热。
临界温度。
固体的升华。
空气的湿度和湿度计。
露点。
大学期末物理知识点总结
大学期末物理知识点总结第一章电磁学一、基本概念1. 电荷和电场2. 静电力和库仑定律3. 电场强度和电势4. 电场中的运动电荷5. 高斯定理二、电路分析1. 电流和电阻2. 欧姆定律3. 串联和并联电路4. 布尔定律和基尔霍夫定律5. 交流电路三、磁场和磁力1. 磁场的概念和性质2. 洛伦兹力定律3. 安培环路定理4. 磁场中的运动电荷5. 磁场中的导线和电流四、电磁感应1. 法拉第定律2. 楞次定律3. 感生电动势4. 自感和互感5. 变压器和发电机五、电磁波1. 电磁波的概念和性质2. 麦克斯韦方程组3. 光的电磁波性质4. 光的反射和折射5. 光的干涉和衍射第二章经典力学一、运动学1. 位移、速度和加速度2. 相对运动和相对原理3. 一维和二维的运动4. 圆周运动和向心力5. 万有引力定律二、力学定律1. 牛顿定律2. 动量和动量定理3. 动能和功4. 动力学定理5. 机械能守恒三、振动和波动1. 简谐振动和阻尼振动2. 波的传播和波的性质3. 声速和声强4. 立体声和多次反射5. 光的偏振和干涉四、静力学1. 重力和静力平衡2. 转动和力矩3. 刚体静力平衡4. 平衡力矩和力偶五、非惯性系1. 非惯性系和离心力2. 圆周运动和科里奥利力3. 相对论力学基础4. 相对论性动量和能量5. 经典和相对论的区别第三章热学一、热力学基本概念1. 温度和热平衡2. 理想气体和分子运动3. 热力学状态方程4. 等容和等压过程5. 熵和热力学第二定律二、热学过程和循环1. 绝热过程和绝热指数2. 等温和等熵过程3. 理想气体的循环4. 卡诺循环和热机效率5. 热传导和导热系数三、热力学第二定律1. 热力学第二定律的表述2. 逆熵过程和热力学温度3. 热力学第二定律的应用4. 热力学概率和微观解释5. 热力学第三定律四、热力学循环和工程应用1. 卡诺循环和热机效率2. 高温热机和汽车发动机3. 低温热机和制冷剂4. 能量守恒和热力学平衡5. 热力学的环境影响第四章光学一、光的本性和光学现象1. 光的波动性和粒子性2. 光的光谱和波长3. 光的传播和折射定律4. 光的散射和反射5. 光的颜色和彩色现象二、光的几何光学1. 光的针孔成像和光屏成像2. 薄透镜成像和光的成像方式3. 物镜和目镜的成像4. 显微镜和望远镜的原理5. 光的偏振和偏振片三、光的干涉1. 干涉的概念和条件2. 条纹的产生和干涉条纹3. 干涉的应用和干涉仪器4. 空气薄膜和牛顿环5. 光的干涉和量子力学四、光的衍射和偏振1. 衍射的概念和条件2. 衍射的几种类型和衍射公式3. 衍射的应用和衍射仪器4. 光的偏振和偏振片5. 光的衍射和量子力学五、光的波动和相对论光学1. 光的波动性和粒子性2. 光速和杨氏模量3. 光的相速度和组速度4. 相对论光学的基本原理5. 相对论光学的应用和研究以上是大学期末物理知识点的一个总结,涵盖了电磁学、经典力学、热学和光学等方面的基本概念和定律。
大学物理各章主要知识点总结
大学物理各章主要知识点总结一、力学力学是物理学的一个基础分支,研究物体的运动和力的作用。
主要内容包括牛顿运动定律、质点的运动学、力的合成与分解、动量守恒定律、机械能守恒定律等。
1. 牛顿运动定律- 第一定律:一个物体如果没有外力作用,将保持静止或匀速直线运动的状态。
- 第二定律:物体的加速度与作用在其上的力成正比,反比于物体的质量。
F=ma,其中F为力,m为质量,a为加速度。
- 第三定律:相互作用的两个物体之间的力大小相等、方向相反。
2. 运动学- 位移:物体在某段时间内从初始位置到终止位置的变化。
- 速度:物体单位时间内位移的变化。
- 加速度:速度变化的速率。
3. 力的合成与分解- 力的合成:若干个力作用在同一物体上,可以合成一个等效的单一力。
- 力的分解:一个力可以分解为两个互相垂直的分力。
4. 动量守恒定律- 若物体不受外力作用,则其动量守恒。
动量是质量乘以速度,p=mv。
5. 机械能守恒定律- 在没有外力进行功的情况下,一个物体的总机械能(动能+势能)保持不变。
二、热学与热力学热学与热力学研究物体的温度、热量传递和热能转换。
主要内容包括热量、温度、热传导、热膨胀、理想气体等。
1. 热量与温度- 热量:物体之间因温度差而交换的能量。
- 温度:反映物体热状态的物理量。
2. 热传导- 热传导是物体内部热能的传递。
如热传导方程:Q =k*A*(ΔT/Δx)。
3. 热膨胀- 物体受热膨胀时,长度、面积和体积都会发生变化。
- 线膨胀系数、面膨胀系数、体膨胀系数分别表示单位温度升高时长度、面积、体积的变化率。
4. 理想气体- 理想气体方程式:PV = nRT,其中P为压强,V为体积,n为物质的物质的量,R为气体常数,T为绝对温度。
三、电磁学电磁学研究电荷的分布和运动所产生的电场和磁场。
主要内容包括静电学、电流、磁场、电磁感应等。
1. 静电学- 库仑定律:描述两个电荷间的力与电荷的大小和距离的关系。
- 电场:由电荷所形成的物理场,使得带电粒子在其内产生受力。
大学物理知识点总结
大学物理知识点总结第一章声现象知识归纳1 . 声音的发生:由物体的振动而产生。
振动停止,发声也停止。
2.声音的传播:声音靠介质传播。
真空不能传声。
通常我们听到的声音是靠空气传来的。
3.声速:在空气中传播速度是:340米/秒。
声音在固体传播比液体快,而在液体传播又比空气体快。
4.利用回声可测距离:S=1/2vt5.乐音的三个特征:音调、响度、音色。
(1)音调:是指声音的高低,它与发声体的频率有关系。
(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。
6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。
7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz 的声波。
8.超声波特点:方向性好、穿透能力强、声能较集中。
具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。
9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。
一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。
它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。
第二章物态变化知识归纳1. 温度:是指物体的冷热程度。
测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。
2. 摄氏温度(℃):单位是摄氏度。
1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。
3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。
体温计:测量范围是35℃至42℃,每一小格是0.1℃。
4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。
(完整版)大学物理知识点(全)
Br ∆ A rB ryr ∆第一章 质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
第一章质点运动学主要内容
一
. 描述运动的物理量 1. 位矢、位移和路程
由坐标原点到质点所在位置的矢量r r
称为位矢
位矢r xi yj =+r v v ,大小 r r ==v 运动方程
()r r t =r r
运动方程的分量形式()
()x x t y y t =⎧⎪⎨=⎪⎩
位移是描述质点的位置变化的物理量
△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆r r
r r r
△,r =r
△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆r 、r ∆、s ∆的含义(∆≠∆≠∆r
r r s ) 2. 速度(描述物体运动快慢和方向的物理量)
平均速度 x y r x y i j i j t t t
u u u D D =
=+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt
∆→∆==
∆r r r
(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ϖϖϖϖϖϖ+=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==ϖϖ ds dr dt dt
=r 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)
平均加速度v
a t ∆=∆r
r 瞬时加速度(加速度) 220lim
t d d r a t dt dt υυ→∆===∆r r r r △ a r
方向指向曲线凹向j dt
y d i dt x d j dt dv i dt dv dt v d a y x ϖϖϖϖρ
ϖ2222+=+== 2
2222222
2
2⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫
⎝⎛=⎪
⎪⎭
⎫ ⎝
⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dt
dv dt dv a a a y x y x ϖ
二.抛体运动
运动方程矢量式为 2012
r v t gt =+
r r
r 分量式为 02
0cos ()1sin ()2
αα==-⎧⎪
⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度ds
v dt
= 切向加速度t dv
a dt
=
(速率随时间变化率) 法向加速度2
n v a R
=(速度方向随时间变化率)。
2.角量:角位移θ(单位rad )、角速度d dt
θω=
(单位1
rad s -⋅) 角速度22
d d dt dt
θωα==(单位2
rad s -⋅) 3.线量与角量关系:2
= t n s R v R a R a R θωαω===、
、、 4.匀变速率圆周运动:
(1) 线量关系020220122v v at s v t at v v as =+⎧⎪⎪=+⎨⎪⎪-=⎩ (2) 角量关系02022
0122t t t ωωαθωαωωαθ=+⎧⎪
⎪
=+⎨⎪⎪-=⎩
第二章牛顿运动定律主要内容
一、牛顿第二定律
物体动量随时间的变化率dp dt
r 等于作用于物体的合外力i F =F 骣÷ç÷ç÷ç÷桫år r
即: =dP dmv F dt dt
=r r r , m =常量时 dV
F =m
F =ma dt 或r r r r 说明:(1)只适用质点;(2) F ϖ为合力 ;(3) a F r r 与是瞬时关系和矢量关系;
(4) 解题时常用牛顿定律分量式
(平面直角坐标系中)x x
y
y F ma F ma F ma =⎧=⎨=⎩r r (一般物体作直线运动情况)
(自然坐标系中) ⎪⎩
⎪⎨⎧====⇒=(切向)(法向)
dt dv m ma F r v m ma F a m F t t n n 2
ϖϖ (物体作曲线运动)
运用牛顿定律解题的基本方法可归纳为四个步骤 运用牛顿解题的步骤:
1)弄清条件、明确问题(弄清已知条件、明确所求的问题及研究对象) 2)隔离物体、受力分析(对研究物体的单独画一简图,进行受力分析) 3)建立坐标,列运动方程(一般列分量式); 4) 文字运算、代入数据
举例:如图所示,把质量为10m kg =的小球挂 在倾角0
30θ=的光滑斜面上,求 (1) 当斜面以1
3
a g =
的加速度水平向右运动时, (2) 绳中张力和小球对斜面的正压力。
解:1) 研究对象小球 2)隔离小球、小球受力分析
3)建立坐标,列运动方程(一般列分量式); :cos30sin 30T x F N ma -=o
o
(1)
:sin 30cos300T y F N mg +-=o o (2)
4) 文字运算、代入数据
z
z t t z z y
y t t y y x
x t t x x m m t F I m m t F I m m t F I 1212122
1
2
1
2
1
d d d v v v v v v -==-==-==⎰⎰⎰
:2T x N ma -= (1
3
a g =
) (3)
: 2T y F mg = (4)
11(1)109.8 1.57777.3232
T F mg N =
⨯+=⨯⨯⨯= 109.83077.30.57768.5cos300.866
T mg N F tg N ⨯=
-=-⨯=o
o
g (2)由运动方程,N =0情况
: cos30T x F ma =o
: sin 30=T y F mg o
2
9.817o m
a =g ctg30s ==g
第三章动量守恒和能量守恒定律主要内容
一. 动量定理和动量守恒定理 1. 冲量和动量
21
t t I Fdt =⎰r v
称为在21t t -时间内,力F ϖ对质点的冲量。
质量m 与速度v r
乘积称动量P mv =r r
2. 质点的动量定理:21
21t t I F dt mv mv ==-⎰r r r r
g
质点的动量定理的分量式:
3. 质点系的动量定理:
2
1
t 000t =-=-∑∑∑⎰
r r r r r
n n n ex i i i i i
i
i
F dt m v m v P P 质点系的动量定理分量式x x ox y y oy z
z oz I P P I P P I P P
=-⎧⎪
=-⎨⎪=-⎩
动量定理微分形式,在dt 时间内: =dP
Fdt dP F dt
=r r r r 或
4. 动量守恒定理:
当系统所受合外力为零时,系统的总动量将保持不变,称为动量守恒定律。