涡旋压缩机的使用

合集下载

英华特 SF202008 半封闭涡旋压缩机 操作指导书说明书

英华特 SF202008 半封闭涡旋压缩机 操作指导书说明书

尊敬的客户:感谢您选用我公司生产的圣菲系列半封闭涡旋压缩机。

我公司是一家专注于涡旋式制冷压缩机研发,制造和销售的高科技企业。

公司提供热泵热水器,冷冻冷藏产品和空调,冷水机组等专用涡旋式压缩机产品及相关的技术咨询服务,我们愿与客户联合开发并为客户提供Turn-Key的整体解决方案!本操作指导书将提供英华特圣菲系列半封闭涡旋压缩机的结构特点,命名规则,外形尺寸,安装注意事项,故障检修等各方面内容,为了充分发挥英华特圣菲系列半封闭涡旋压缩机在整个系统的能效,在压缩机安装使用前,请您仔细阅读本使用说明书,并遵守本指导书的操作规程。

本操作指导书版权为苏州英华特涡旋技术股份有限公司所有,未经本公司许可,不得翻印。

本公司保留不预先通知便可自行改变产品的权利。

本操作指导书若有更新,恕不另行通知。

苏州英华特涡旋技术股份有限公司应用工程部前言01 01 03 05 15 16 18 18 18 18 19 20 23 24 25 25 26 27 28 29 3031 31 33 35 36 38 38 38 38 39 39 40 40 41 4244英华特涡旋压缩机按照中国相关标准要求设计和制造。

本安全须知适用于英华特圣菲系列半封闭涡旋压缩机。

建议存档本操作指导书,以便于维护、保养或维修的相关人员能够很容易获取到本操作指导书,进行相关作业时必须遵循本安全须知及当地相关的法律法规的要求。

安全申明1) 制冷压缩机只能用于正确的应用场合。

2) 安装,调试及维护人员必须持证上岗(空调、暖通或制冷相关)。

3) 电气连接必须由持电工证的人员进行。

4) 安装、服务、维护电气或制冷系统时,需严格遵循所有相关法律法规的要求。

电击危险1) 维修前必须断开并锁定电源。

2) 维修前请释放所有电容。

3) 电气系统必须接地。

4) 当地法规或规范有要求时必须用电气预绝缘端子。

5) 必须参考设备制造商的电气接线图。

6) 电气连接必须由持电工证的人员操作。

涡旋压缩机的使用

涡旋压缩机的使用

涡旋压缩机的使用涡旋压缩机的工作原理是通过转子的旋转运动将气体吸入机内,然后压缩气体,并将其排出。

涡旋压缩机通常由一个主转子和一个从转子组成。

主转子是一条螺旋线形状的曲线,通常被称为蜗杆,而从转子是一个外形与主转子相似的曲线。

主转子和从转子通过齿轮等机械装置连接并驱动,使得从转子沿着主转子旋转。

1.结构简单:涡旋压缩机的结构相对简单,由于没有需要冷却和润滑的活塞引擎,因此减少了一些机械故障和维护成本。

2.体积小:相对于其他类型的压缩机,涡旋压缩机的体积较小,因此占用的空间较小,适用于空间有限的场所。

3.低噪音:涡旋压缩机的工作过程相对较平稳,因此产生的噪音较低。

这对于需要安静工作环境的场所是一个优势。

4.运行稳定:涡旋压缩机由于没有冲击和振动,因此在运行过程中比较稳定,容易实现自动化控制。

除了以上的优势之外,涡旋压缩机还有一些需要注意的使用事项:1.需要润滑:涡旋压缩机的转子与内腔之间存在间隙,因此需要使用润滑油进行润滑。

在使用涡旋压缩机之前,需要检查润滑油的量和质量,并及时添加和更换。

2.温度控制:涡旋压缩机在工作过程中会产生一定的热量,因此需要采取适当的措施来控制温度。

可以使用风扇、散热片、冷却水等方法来降低温度。

3.定期维护:涡旋压缩机需要定期检查和维护,包括清洁滤芯、检查和更换密封件、检查电机和控制系统的正常运行等。

总之,涡旋压缩机作为一种常见的压缩机类型,具有广泛的应用和一些特点优势,但在使用过程中也需要注意一些事项。

在正确使用和维护的前提下,涡旋压缩机可以有效地提供压缩气体,满足各种使用要求。

艾默生涡旋变频压缩机和电控解决方案说明书

艾默生涡旋变频压缩机和电控解决方案说明书

艾默生全系列涡旋变频压缩机和电控解决方案全面的安全保护和可靠性谷轮涡旋TM 压缩机传承了CoreSense TM 保护技术,将产品可靠性提升到新的高度。

通过将主动保护算法集成于电机控制变频器中,确保压缩机和变频器在各种异常工况运行的安全性。

主要有以下保护特征:• 电机和涡旋温度保护• 电机堵转检测• 相序保护和更正• 最大运行电流检测• 排气温度保护• 频繁启停循环保护该系列变频压缩机产品建立在高度的可靠性和经过验证的高性能基础之上,融合了艾默生25年的涡旋压缩机技术及全世界超过1亿台的运行经验。

为了帮助客户应对变频化的市场趋势,艾默生开发了4~25HP 变频压缩机和变频器的整体解决方案,全系列产品搭载多项创新技术,以业界顶级能效水平助力系统进入能效升级新时代。

结合谷轮引以为豪的喷气增焓技术,超低温环境下也能保证系统强效制热安全可靠。

同时推出的艾默生EVD 系列变频器专门针对永磁电机设计,完美匹配变频压缩机,一站式解决方案帮助客户快速响应市场需求。

变频压缩机型谱图浮动密封圈变容积比涡旋喷气增焓技术(可选)导油管高效集中卷六极永磁电机3.4mm厚壳设计柔性液体刹车容积式油泵谷轮涡旋™变频压缩机优势:• 优异的性能和噪音表现• 卓越的可靠性• 搭载高效艾默生永磁电机有效提升节能效果• 中国研发中心为亚太市场应用量身打造,苏州生产• 广泛适用于变频多联机、柜式空调、地暖等应用• 900-7200rpm 宽广频率范围,让系统设计更加游刃有余• 可变容积比技术(VVR)显著改善涡旋低转速下的能效运行范围喷气增焓(EVI)技术特点:• 专利技术的喷气增焓结构设计• EVI 回路气体进入压缩机后,通过特殊设计的通道注入涡旋, 注入涡旋的气体经过压缩,和吸气口吸入的气体一起排出,进入制冷循环• 喷气增焓带来制热能力的上升和排气温度的降低• 喷气增焓可取代系统辅助电加热艾默生谷轮涡旋™变频压缩机给家用制冷和制热系统带来了变革。

涡旋压缩机的特性与应用技术

涡旋压缩机的特性与应用技术
二.涡旋压缩机的应用
11.适用范围:
一切所以R
22、R134a、R
404A、R
407C、R410的蒸发xx制冷系统
12.压缩机保护器件
压力控制器由于涡旋压缩机有时高低压会快速平衡,对于要求抽空停机的系统需要配合温度控制器或电气延时控制
建议配置相序和缺相保护器(除ZB92KC,ZB11MC和ZF24以上压缩机外)建议配置吸气过滤器防止杂质进入压缩机损坏压缩机涡盘
ZF压缩机的结构和ZB压缩机的异同
最佳蒸发温度范围:
+10℃--40℃(R22和R404A)
吸排气口全部是螺纹连接
全部带油视镜
ZF24以上压缩机都有保护模块
所有ZF压缩机都有喷液冷却口:
ZF18以下压缩机配喷液阀,ZF24以上压缩机配喷液组件(须另配”电磁阀)
其余和ZB型压缩机基本相同
ZF压缩机的低温性能特别好,超过半封闭碟阀压缩机
润滑油失效压缩机运行时视油镜中可见润滑油发黑,低压表压力正常,短时运行系统降温正常压缩机曾经发生过热导致润滑油碳化,系统太脏导致润滑油变性更换润滑油
19.液击
加入太过量的制冷剂压缩机剧烈震动,声音很大立即停机,释放制冷剂至0.3-
0.4MP表压,再次开机,缓慢加入制冷剂,重新调试通常压缩机不会坏
20.压缩机故障及损坏
17.电源跳闸
压缩机刚启动就跳闸电源问题,检查交流接触器或空气开关
压缩机不转,测量显示3相阻值不平衡,绝缘电阻很小压缩机线圈坏
18.压缩机过热原因
回汽量不足排气温度高、高压表压力不高
制冷剂充注太少视液镜中制冷剂不连续,有气泡;(可略多加,不可少加)膨胀阀太小低压表压力偏低,相应蒸发温度低于允许范围(膨胀阀选择留有余量)

涡旋式压缩机工作原理

涡旋式压缩机工作原理

涡旋式压缩机工作原理
涡旋式压缩机是一种常用的空气压缩设备,其工作原理主要基于旋转运动和离心力的作用。

涡旋式压缩机由一个旋转叶片和一个壳体组成。

壳体内部呈螺旋状,并且与旋转叶片形成一条连续的螺旋腔。

当压缩机工作时,压缩气体通过入口进入螺旋腔,随着旋转叶片的旋转运动,气体在螺旋腔内不断受到压缩,压力逐渐增大。

旋转叶片由一个或多个弧形叶片组成,固定在一个旋转轴上。

当旋转叶片开始旋转时,它们与壳体内壁之间形成一系列密封的工作腔,并且与螺旋状的壳体形成稳定的工作容积。

旋转叶片的旋转方向导致气体在螺旋腔中不断向前推进,同时受到旋转叶片的压缩作用。

涡旋式压缩机工作时,旋转叶片的旋转速度越高,气体在螺旋腔中的压缩程度就越大。

通过控制旋转叶片的转速,可以调节涡旋式压缩机的输出压力和排气量。

在涡旋式压缩机工作过程中,离心力也起着重要的作用。

由于旋转叶片的旋转运动,气体在螺旋腔中受到离心力的作用,使得气体的分子向外运动,并逐渐聚集在螺旋腔的外侧。

这样一方面减小了气体分子之间的空隙,提高了压缩效率;另一方面也使得气体的密度增大,进一步增加了气体的压缩程度。

涡旋式压缩机工作原理简单、结构紧凑、能效高、振动小,被广泛应用于空气压缩、气体增压和空调等领域。

转子、涡旋空调用压缩机基础知识及维修注意事项

转子、涡旋空调用压缩机基础知识及维修注意事项

转子、涡旋空调用压缩机基础知识及维修注意事项制冷压缩机是整个制冷系统的心脏,是制冷系统中最重要的,也是最复杂的一个部件。

压缩机在制冷系统里面的主要作用是把从蒸发器来的低温低压气体压缩成高温高压气体,为整个制冷循环提供源动力。

目前市场上生产的家用空调中主要使用的有活塞式、滚动转子式、涡旋式等三种压缩机。

一般情况下,3HP以下空调用的都是转子式压缩机。

压缩机工作原理与基本结构介绍转子式压缩机:偏心轴带动活塞环在泵体中旋转,压缩冷媒;涡旋式压缩机:偏心轴带动涡旋盘,使动盘在静盘中转动,压缩冷媒;活塞式压缩机:通过活塞与缸体的往复运动,压缩冷媒(略)。

空调器的工作原理压缩机引出线连接方法S:START(辅绕组 AUX WINDING)R:RUN(主绕组MAIN WINDING)C:COMMON(共通)RC:运转电容 RUNNING CAPACITOR转子式压缩机基本作用:压缩气体,产生高温高压的冷媒气体。

涡旋式压缩机涡旋压缩过程如何预防压缩机工程不良压缩机仓储运输注意事项室内防潮保管:还未装配到空调的压缩机,要放在室内保存,不要风吹日晒雨淋。

保管时温度在-10~65℃范围。

包装箱外罩防尘塑料袋,不能绝对阻止露天雨水侵入箱体。

★雨水侵入后果:----压缩机接线端子生锈,导电不良,或绝缘性能下降;----端子盖固定螺栓生锈,作业不便;----压缩机底座,接地螺钉等生锈。

两层放置时:压缩机整箱堆放不应超过两层,否则会压碎支撑木托,造成压缩机塌箱问题。

单台压缩机搬运方法拔胶塞顺序及异物防治拔胶塞顺序:排气管→吸气管原因:如果先拔吸气管胶塞,聚集在储液器滤网上的冷冻机油将随氮气喷出,所以先拔排气管胶塞;降低压缩机内氮气压力,缓解及消除喷油现象。

异物防止:1.异物来源:1)拔胶塞后从吸、排气管落入2)铜管烧焊过程中氧化皮、焊渣落入3)空调系统异物2.防治措施:1)加强生产现场管理2)铜管烧焊过程中操作手法及时间的控制3)保证空调系统清洁度几种品牌压缩机接线方式空气运行端子飞出绝缘耐压不良冰堵定转子间隙不良接错线压缩机脚垫的安装(主要针对旋转式压缩机)压缩机脚垫与压缩机地脚固定螺母之间必须保证一定的间隙,否则压缩机本身的振动容易通过地脚螺栓传递到底盘引起系统的振动大。

谷轮ZW系列(中间补气涡旋)压缩机应用指南

谷轮ZW系列(中间补气涡旋)压缩机应用指南

AE4-1381May 2011ZW21 to ZW61KAE and ZW30 to ZW61KSECopeland Scroll® Water Heating CompressorsTABLE OF CONTENTSSection Page Section PageIntroduction (2)ZW**KA Application (2)ZW**KS ApplicationVapour Injection - Theory of Operation (2)Heat Exchanger and Expansion Device Sizing (3)Flash Tank Application (3)Intermediate Pressure and Vapour Injection Superheat (3)Application ConsiderationsHigh Pressure Cut-Out (4)Low Pressure Cut-Out (4)Discharge Temperature Protection (4)Discharge Temperature Control (4)Discharge Mufflers (4)Oil Dilution and Compressor Cooling (4)Electrical Considerations (5)Brazing and Vapour Injection Line (5)Low Ambient Cut-Out (5)Internal Pressure Relief Valve (5)Internal Temperature Protection (5)Quiet Shutdown (5)Discharge Check Valve (5)Motor Protector (5)Accumulators (5)Screens (6)Crankcase Heat-Single Phase (6)Crankcase Heat-Three Phase (6)Pump Down Cycle (6)Minimum Run Time (6)Reversing Valves (6)Oil Type (7)System Noise & Vibration (7)Single Phase Starting Characteristics (7)PTC Start Components (7)Electrical Connections (7)Deep Vacuum Operation (7)Shell Temperature (7)Suction & Discharge Fittings (7)Three Phase Scroll Compressors (8)Brief Power Interruptions ..........................................8Assembly Line ProceduresInstalling the Compressor (8)Assembly Line Brazing Procedure (8)Pressure Testing (8)Assembly Line System Charging Procedure (8)High Potential (AC Hipot) Testing (9)Unbrazing System Components (9)Service ProceduresCopeland Scroll Functional Check (9)Compressor Replacement After Motor Burn (10)Start Up of a New or Replacement Compressor (10)FiguresBrief Product Overview (11)ZW21KAE Envelope (R-134a) (11)ZWKAE Envelope (R-407C, Dew Point) (12)ZWKA Envelope (R-22) (12)ZWKS Envelope (R-22) (13)ZWKSE Envelope (R-407C, Dew Point) (13)Heat Pump with Vapour Injection – EXV Control (14)Heat Exchanger Schematic (14)Heat Pump with Flash Tank (15)Possible Flash Tank Configuration (15)Oil Dilution Chart (16)Crankcase Heater (17)Compressor Electrical Connection (17)Scroll Tube Brazing (17)How a Scroll Works (18)IntroductionThe ZW**KA and ZW**KS Copeland Scroll®compressors are designed for use in vapour compression heat pump water heating applications. Typical model numbers include ZW30KA-PFS and ZW61KSE-TFP. This bulletin addresses the specifics of water heating in the early part and deals with the common characteristics and general application guidelines for Copeland Scroll compressors in the later sections. Operating principles of the scroll compressor are described in Figure 15 at the end of this bulletin.As the drive for energy efficiency intensifies, water heating by fossil-fueled boilers and electric elements is being displaced by vapour compression heat pumps. Emerson Climate Technologies has developed two lines of special water heater compressors to meet the requirements of this demanding application. ZW**KA compressors are designed for lighter duty applications where the ambient temperature does not fall below 0°C and where lower water temperatures can be accepted as the ambient temperature falls. ZW**KS compressors are equipped with a vapour injection cycle which allows reliable operation in cold climates with significantly enhanced heating capacity, higher efficiency, and minimal requirement to reduce water outlet temperatures. Figure 1gives a brief product overview.Water heating is characterized by long operating hours at both high load and high compression ratios. Demand for hot water is at its highest when ambients are low and when conventional heat pump capacity falls off. On the positive side, the system refrigerant charge is usually small, so the risk to the compressor from dilution and flooded starts will usually be lower than in split type air-to-air heat pumps.Water heaters must operate in a wide range of ambient temperatures, and many systems will require some method of defrost. Some systems such as Direct Heating, Top Down Heating or Single Pass Heating operate at a constant water outlet temperature with variable water flow. Others such as Recirculation Heating, Cyclic Heating or Multipass Heating use constant water flow with the water outlet and inlet temperatures both rising slowly as the storage tank heats up. Both system types need to cope with reheating a tank where the hot water has been partially used, and reheating to the setpoint temperature is required. More complex systems deliver water at relatively low temperatures for under-floor heating circuits and are switched over to sanitary water heating a few times per day to provide higher temperature water for sanitary use. In addition, some countries have specific water temperature requirements for legionella control.ZW**KA ApplicationThe application envelopes for ZW**KA compressors are shown in Figures 2 - 4.Appropriate system hardware and control logic must be employed to ensure that the compressor is always operating within the envelope. Small short-term excursions outside the envelope are acceptable at the time of defrost when the load on the compressor is low. Operation with suction superheat of 5 -10K is generally acceptable except at an evaporating tem-perature above 100C when a minimum superheat of 10K is required.ZW**KS ApplicationThe ZW**KS* vapour-injected scroll compressors differ from ZW**KA models in many important details:• Addition of vapour injection• Significantly different application envelopes• Some differences in locked rotor amps (LRA), maximum continuous current (MCC), andmaximum operating current (MOC) – seenameplatesThe application envelopes for ZW**KS compressors are shown in Figures 5 and 6.Vapour Injection – Theory of Operation Operation with vapour injection increases the capacity of the outdoor coil and in turn the capacity and efficiency of the system – especially in low ambient temperatures. A typical schematic is shown in Figure 7. A heat exchanger is added to the liquid line and is used to cool the liquid being delivered to the heating expansion device. Part of the liquid refrigerant flow is flashed through an expansion valve on the evaporator side of the heat exchanger at an intermediate pressure and used to subcool the main flow of liquid to the main expansion device. Vapour from the liquid evaporating at intermediate pressure is fed to the vapour injection port on the ZW**KS compressor. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. Heating capacity is increased, because low temperature liquid with lower specific enthalpy supplied to the outdoor coil increases the amount of heat that can be absorbed from the ambient air. Increased heat absorbed from the ambient increases the system condensing temperature and in turn the compressor power input. The increase in power inputalso contributes to the improvement in the overall heating capacity.Vapour Injection can be turned on and off by the addition of an optional solenoid valve on the vapour injection line on systems using a thermostatic expansion valve. Alternatively, an electronic expansion valve can be used to turn vapour injection on and off and to control the vapour injection superheat. A capillary tube is not suitable for controlling vapour injection.The major advantage of the electronic expansion valve is that it can be used to optimise the performance of the system and at the same time control the discharge temperature by injecting “wet vapour” at extreme operating conditions.The configurations and schematics shown are for reference only and are not applicable to every system. Please consult with your Emerson Application Engineer.Heat Exchanger and Expansion Device Sizing Various heat exchanger designs have been used successfully as subcoolers. In general they should be sized so that the liquid outlet temperature is less than 5K above the saturated injection temperature at the customer low temperature rating point. At very high ambient temperatures, it will normally be beneficial to turn vapour injection off to limit the load on the compressor motor. Application Engineering Bulletin AE4-1327 and Emerson Climate Technologies Product Selection Software can be used to help size the subcooling heat exchanger and thermal expansion valves, but selection and proper operation must be checked during development testing. Plate type subcoolers must be installed vertically with the injection expansion device connected at the bottom through a straight tube at least 150mm long to ensure good liquid distribution. See the schematic in Figure 8. Flash Tank ApplicationA possible flash tank configuration is shown in Figure9. This particular configuration is arranged to have flow through the flash tank and expansion devices in heating, and it bypasses the tank in defrost mode. The flash tank system works by taking liquid from the condenser and metering it into a vessel through a high-to-medium pressure expansion device. Part of the liquid boils off and is directed to the compressor vapour injection port. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. The remaining liquid is cooled, exits from the bottom of the tank at intermediate pressure, and flows to the medium-to-low pressure expansion device which feeds the outdoor coil. Low temperature liquid with lower specific enthalpy increases the capacity of the evaporator without increasing mass flow and system pressure drops.Recommended tank sizing for single compressor application in this size range is a minimum of 200 mm high by 75 mm in diameter with 3/8 in. (9.5mm) tubing connections, although it is possible to use a larger tank to combine the liquid/vapour separation and receiver functions in one vessel. A sight tube (liquid level gauge) should be added to the tank for observation of liquid levels during lab testing. See schematic diagram Figure 10 for clarification.It is important to maintain a visible liquid refrigerant level in the tank under all operating conditions. Ideally the liquid level should be maintained in the 1/3 to 2/3 full range.Under no circumstances should the level drop to empty or rise to a full tank. As the tank level rises, liquid droplets tend to be swept into the vapour line leading to “wet” vapour injection. Although this can be useful for cooling a hot compressor, the liquid quantity cannot be easily controlled. Compressor damage is possible if the tank overflows. If liquid injection is required for any reason, it can be arranged as shown in Figures 7 and 9.Since liquid leaves the tank in a saturated state, any pressure drop or temperature rise in the line to the medium-to-low pressure expansion device will lead to bubble formation. Design or selection of the medium-to-low pressure expansion device requires careful attention due to the possible presence of bubbles at the inlet and the low pressure difference available to drive the liquid into the evaporator. An electronic expansion valve is the preferred choice. Intermediate Pressure and Vapour Injection SuperheatPressure in the flash tank cannot be set and is a complex function of the compressor inlet condition and liquid condition at the inlet of the high-to-medium pressure expansion device. However, liquid level can be adjusted, which in turn will vary the amount of liquid subcooling in the condenser (water to refrigerant heat exchanger) and vary the injection pressure. Systems with low condenser subcooling will derive the biggest gains by the addition of vapour injection. Systems operating with high pressure ratios will show the largest gains when vapour injection is applied. Such systems will have higher vapour pressure and higher injectionmass flow. Intermediate pressures in flash tank and heat exchanger systems should be very similar unless the subcooling heat exchanger is undersized and there is a large temperature difference between the evaporator and the liquid sides. Vapour exiting a flash tank will be saturated and may pick up 1 - 2K superheat in the vapour line to the compressor. Vapour injection superheat cannot be adjusted on flash tank systems. Heat exchanger systems will be at their most efficient when the vapour injection superheat is maintained at approximately 5K.APPLICATION CONSIDERATIONSHigh Pressure Cut OutIf a high pressure control is used with these compressors, the recommended maximum cut out settings are listed in Figure 1. The high pressure control should have a manual reset feature for the highest level of system protection. It is not recommended to use the compressor to test the high pressure switch function during the assembly line test.Although R-407C runs with higher discharge pressure than R-22, a common setting can be used. The cutout settings for R-134a are much lower, and the switches must be selected or adjusted accordingly.Low Pressure Cut OutA low pressure cut out is an effective protection against loss of charge or partial blockage in the system. The cut out should not be set more than 3 - 5K equivalent suction pressure below the lowest operating point in the application envelope. Nuisance trips during defrost can be avoided by ignoring the switch until defrost is finished or by locating it in the line between the evaporator outlet and the reversing valve. This line will be at discharge pressure during defrost. Recommended settings are given in Figure 1. Discharge Temperature ProtectionAlthough ZW compressors have an internal bi-metal Therm-O-Disc®(TOD) on the muffler plate, external discharge temperature protection is recommended for a higher level of protection and to enable monitoring and control of vapour injection on ZW**KS* models. The protection system should shut down the compressor when the discharge line temperature reaches 125°C. In low ambient operation, the temperature difference between the scroll center and the discharge line is significantly increased, so protection at a lower discharge temperature, e.g. 120°C when the ambient is below 0°C, will enhance system safety. For the highest level of system protection, the discharge temperature control should have a manual reset feature. The discharge sensor needs to be well insulated to ensure that the line temperature is accurately read. The insulation material must not deteriorate over the expected life of the unit.Discharge Temperature ControlSome systems use an electronic expansion valve to control the vapour injection superheat and a thermistor to monitor the discharge temperature. This combination allows the system designer to inject a small quantity of liquid to keep the discharge temperature within safe limits and avoid an unnecessary trip. Liquid injection should begin at approximately 115°C and should be discontinued when the temperature falls to 105°C. Correct functioning of this system should be verified during system development. It is far preferable to use liquid injection into the vapour injection port to keep the compressor cool rather than inject liquid into the compressor suction which runs the risk of diluting the oil and washing the oil from the moving parts. If some operation mode requires liquid injection but without the added capacity associated with “wet” vapour injection, a liquid injection bypass circuit can be arranged as shown in Figures 7 and 9.Caution: Although the discharge and oil temperature are within acceptable limits, the suction and discharge pressures cannot be ignored and must also fall within the approved application envelope.Discharge MufflersDischarge mufflers are not normally required in water heaters since the refrigerant does not circulate within the occupied space.Oil Dilution and Compressor CoolingThe oil temperature diagram shown in Figure 11is commonly used to make a judgment about acceptable levels of floodback in heat pump operation. Systems operating with oil temperatures near the lower limit line are never at their most efficient. Low ambient heating capacity and efficiency will both be higher if floodback is eliminated and the system runs with 1 - 5K suction superheat. Discharge temperature can be controlled by vapour injection, “wet” vapour injection, or even liquid injection if necessary. In this situation, the oil temperature will rise well into the safe zone, and the compressor will not be at risk of failure from diluted oil. The oil circulation rate will also be reduced as crankcase foaming disappears. Special care needs to be taken at the end of defrost to ensure that the compressor oil is not unacceptably diluted. The system will resume heating very quickly and bearing loads willincrease accordingly, so proper lubrication must be ensured.Electrical ConsiderationsMotor configuration and protection are similar to those of standard Copeland Scroll compressors. In some cases, a larger motor is required in the ZW**KS* models to handle the load imposed by operating with vapour injection. Wiring and fuse sizes should be reviewed accordingly.Brazing the Vapour Injection LineThe vapour injection connection is made from copper coated steel, and the techniques used for brazing the suction and discharge fittings apply to this fitting also. Low Ambient Cut-OutA low ambient cut-out is not required to limit heat pump operation with ZW**KS compressors. Water heaters using ZW**KA compressors must not be allowed to run in low ambients since this configuration would run outside of the approved operating envelope causing overheating or excessive wear. A low ambient cut-out should be set at 0°C for ZW**KA modelsIn common with many Copeland Scroll compressors, ZW models include the features described below: Internal Pressure Relief (IPR) ValveAll ZW compressors contain an internal pressure relief valve that is located between the high side and the low side of the compressor. It is designed to open when the discharge-to-suction differential pressure exceeds 26 - 32 bar. When the valve opens, hot discharge gas is routed back into the area of the motor protector to cause a trip.Internal Temperature ProtectionThe Therm-O-Disc® or TOD is a temperature-sensitive snap disc device located on the muffler plate between the high and low pressure sides of the compressor. It is designed to open and route excessively hot discharge gas back to the motor protector. During a situation such as loss of charge, the compressor will be protected for some time while it trips the protector. However, as refrigerant leaks out, the mass flow and the amperage draw are reduced and the scrolls will start to overheat.A low pressure control is recommended for loss of charge protection in heat pumps for the highest level of system protection. A cut out setting no lower than 2.5 bar for ZW**KA* models and 0.5 bar for ZW**KS* models is recommended. The low pressure cut-out, if installed in the suction line to the compressor, can provide additional protection against an expansion device failed in the closed position, a closed liquid line or suction line service valve, or a blocked liquid line screen, filter, orifice, or TXV. All of these can starve the compressor for refrigerant and result in compressor failure. The low pressure cut-out should have a manual reset feature for the highest level of system protection. If a compressor is allowed to cycle after a fault is detected, there is a high probability that the compressor will be damaged and the system contaminated with debris from the failed compressor and decomposed oil.If current monitoring to the compressor is available, the system controller can take advantage of the compressor TOD and internal protector operation. The controller can lock out the compressor if current draw is not coincident with the contactor energizing, implying that the compressor has shut off on its internal protector. This will prevent unnecessary compressor cycling on a fault condition until corrective action can be taken.Quiet Shut downAll scrolls in this size range have a fast acting valve in the center of the fixed scroll which provides a very quiet shutdown solution. Pressure will equalize internally very rapidly and a time delay is not required for any of the ZW compressors to restart. Also refer to the section on “Brief Power Interruption”. Discharge Check ValveA low mass, disc-type check valve in the discharge fitting of the compressor prevents the high side, high pressure discharge gas from flowing rapidly back through the compressor. This check valve was not designed to be used with recycling pump down because it is not entirely leak-proof.Motor ProtectorConventional internal line break motor protection is provided. The protector opens the common connection of a single-phase motor and the center of the Y connection on three-phase motors. The three-phase protector provides primary single-phase protection. Both types of protectors react to current and motor winding temperature.AccumulatorsThe use of accumulators is very dependent on the application. The scroll’s inherent ability to handle liquid refrigerant during occasional operating flood back situations often makes the use of an accumulator unnecessary in many designs. If flood back is excessive, it can dilute the oil to such an extent thatbearings are inadequately lubricated, and wear will occur. In such a case, an accumulator must be used to reduce flood back to a safe level that the compressor can handle.In water heaters, floodback is likely to occur when the outdoor coil frosts. The defrost test must be done at an outdoor ambient temperature of around 0°C in a high humidity environment. Liquid floodback must be monitored during reversing valve operation, especially when coming out of defrost. Excessive floodback occurs when the sump temperature drops below the safe operation line shown in Figure 11 for more than 10 seconds.If an accumulator is required, the oil return orifice should be 1 - 1.5mm in diameter depending on compressor size and compressor flood back results. Final oil return hole size should be determined through testing. ScreensScreens with a mesh size finer than 30 x 30 (0.6mm openings) should not be used anywhere in the system with these compressors. Field experience has shown that finer mesh screens used to protect thermal expansion valves, capillary tubes, or accumulators can become temporarily or permanently plugged with normal system debris and block the flow of either oil or refrigerant to the compressor. Such blockage can result in compressor failure.Crankcase Heater - Single PhaseCrankcase heaters are not required on single phase compressors when the system charge is not over 120% of the limit shown in Figure 1. A crankcase heater is required for systems containing more than 120% of the compressor refrigerant charge limit listed in Figure 1. This includes long line length systems where the extra charge will increase the standard factory charge above the 120% limit.Experience has shown that compressors may fill with liquid refrigerant under certain circumstances and system configurations, notably after longer off cycles when the compressor has cooled. This may cause excessive start-up clearing noise, or the compressor may lock up and trip on the protector several times before starting. The addition of a crankcase heater will reduce customer noise and light dimming complaints since the compressor will no longer have to clear out liquid during startup. Figure 12lists the crankcase heaters recommended for the various models and voltages.Crankcase Heat – Three-PhaseA crankcase heater is required for three-phase compressors when the system charge exceeds the compressor charge limit listed in Figure 1and an accumulator cannot be piped to provide free liquid drainage during the off cycle.Pump Down CycleA pump down cycle for control of refrigerant migration is not recommended for scroll compressors of this size. If a pump down cycle is used, a separate external check valve must be added.The scroll discharge check valve is designed to stop extended reverse rotation and prevent high-pressure gas from leaking rapidly into the low side after shut off. The check valve will in some cases leak more than reciprocating compressor discharge reeds, normally used with pump down, causing the scroll compressor to cycle more frequently. Repeated short-cycling of this nature can result in a low oil situation and consequent damage to the compressor. The low-pressure control differential has to be reviewed since a relatively large volume of gas will re-expand from the high side of the compressor into the low side on shut down. Minimum Run TimeThere is no set answer to how often scroll compressors can be started and stopped in an hour, since it is highly dependent on system configuration. Other than the considerations in the section on Brief Power Interruptions, there is no minimum off time. This is because scroll compressors start unloaded, even if the system has unbalanced pressures. The most critical consideration is the minimum run time required to return oil to the compressor after startup.Since water heaters are generally of compact construction, oil return and short cycling issues are rare. Oil return should not be a problem unless the accumulator oil hole is blocked.Reversing ValvesSince Copeland Scroll compressors have very high volumetric efficiency, their displacements are lower than those of comparable capacity reciprocating compressors. As a result, Emerson recommends that the capacity rating on reversing valves be no more than 2 times the nominal capacity of the compressor with which it will be used in order to ensure proper operation of the reversing valve under all operating conditions.The reversing valve solenoid should be wired so that the valve does not reverse when the system isshut off by the operating thermostat in the heating or cooling mode. If the valve is allowed to reverse at system shutoff, suction and discharge pressures are reversed to the compressor. This results in pressures equalizing through the compressor which can cause the compressor to slowly rotate until the pressures equalize. This condition does not affect compressor durability but can cause unexpected sound after the compressor is turned off.Oil TypeThe ZW**K* compressors are originally charged with mineral oil. A standard 3GS oil may be used if the addition of oil in the field is required. See the compressor nameplate for original oil charge. A complete recharge should be ~100 ml less than the nameplate value.ZW**K*E are charged with POE oil. Copeland 3MAF or Ultra 22 CC should be used if additional oil is needed in the field. Mobil Arctic EAL22CC, Emkarate RL22, Emkarate 32CF and Emkarate 3MAF are acceptable alternatives. POE oil is highly hygroscopic, and the oil should not be exposed to the atmosphere except for the very short period required to make the brazing connections to the compressor.System Noise and VibrationCopeland Scroll compressors inherently have low sound and vibration characteristics, but the characteristics differ in some respects from those of reciprocating or rotary compressors. The scroll compressor makes both a rocking and a torsional motion, and enough flexibility must be provided to prevent vibration transmission into any lines attached to the unit. This is usually achieved by having tubing runs at least 30cm long parallel to the compressor crankshaft and close to the shell. ZW compressors are delivered with rubber grommets to reduce vibration transmission to the system baseplate.Single Phase Starting CharacteristicsStart assist devices are usually not required, even if a system utilizes non-bleed expansion valves. Due to the inherent design of the Copeland Scroll, the internal compression components always start unloaded even if system pressures are not balanced. In addition, since internal compressor pressures are always balanced at startup, low voltage starting characteristics are excellent for Copeland Scroll compressors. Starting current on any compressor may result in a significant “sag” in voltage where a poor power supply is encountered. The low starting voltage reduces the starting torque of the compressor and subsequently increases the start time. This could cause light dimming or a buzzing noise where wire is pulled through conduit. If required, a start capacitor and potential relay can be added to the electrical circuit. This will substantially reduce start time and consequently the magnitude and duration of both light dimming and conduit buzzing.PTC Start ComponentsFor less severe voltage drops or as a start boost, solid state Positive Temperature Coefficient devices rated from 10 to 25 ohms may be used to facilitate starting for any of these compressors.Electrical ConnectionThe orientation of the electrical connections on the Copeland Scroll compressors is shown in Figure 13 and is also shown on the wiring diagram on the top of the terminal box cover.Deep Vacuum OperationScrolls incorporate internal low vacuum protection and will stop pumping (unload) when the pressure ratio exceeds approximately 10:1. There is an audible increase in sound when the scrolls start unloading. This feature does not prevent overheating and destruction of the scrolls, but it does protect the power terminals from internal arcing.Copeland Scroll compressors(as with any refrigerant compressor) should never be used to evacuate a refrigeration or air conditioning system. The scroll compressor can be used to pump down refrigerant in a unit as long as the pressures remain within the operating envelope. Prolonged operation at low suction pressures will result in overheating of the scrolls and permanent damage to the scroll tips, drive bearings and internal seal. (See AE24-1105 for proper system evacuation procedures.)Shell TemperatureCertain types of system failures, such as condenser or evaporator blockage or loss of charge, may cause the top shell and discharge line to briefly but repeatedly reach temperatures above 175ºC as the compressor cycles on its internal protection devices. Care must be taken to ensure that wiring or other materials, which could be damaged by these temperatures, do not come in contact with these potentially hot areas. Suction and Discharge FittingsCopeland Scroll compressors have copper plated steel suction and discharge fittings. These fittings are far more rugged and less prone to leaks than。

涡旋压缩机设计说明书

涡旋压缩机设计说明书

毕业设计(论文)题目空调用涡旋式压缩机结构设计学院机电与汽车工程学院专业机械设计制造及其自动化(机械设计制造)学生向涛学号指导教师孙鹏飞摘要本设计为空调用涡旋式压缩机结构设计,主要零部件包括动涡盘、静涡盘、支架体、偏心轴、防自传机构及平衡机构,动静涡旋盘应用圆的渐开线及其修正曲线的线型。

首先,确定了涡旋压缩机的重要结构参数,其次确定了涡旋压缩机的各个重要零件的结构尺寸,然后确定了涡旋线圆的渐开线线型并且对涡旋线进行修正,而后选择涡旋压缩机的各种附件,最后利用对涡旋压缩机的主轴进行有限元分析,最终说明了涡旋压缩机结构设计中的有关问题。

在涡旋齿线型的设计中,不仅说明了渐开线的特征和涡旋线的成形过程,而且还对涡旋线线型进行了修正。

通过以上设计的设计过程,最终得到了涡旋压缩机。

关键词:涡旋压缩机,动涡盘,静涡盘,偏心轴ABSTRACTThe design is designing the structure of air conditioning scroll compressor , the main parts including moving vortex disc, static vortex disc, bracket dody, eccentric shaft ,anti rotation mechanism and balance mechanism,the application of static and moving vortex disc involve circle and linear correction curve.First of all, the important structural parameters of scroll compressor is determined, then determined the structure size of each important part of scroll compressor, and then determine the involute type vortex line round and the vortex line is modified, and then choose a variety of accessories of the scroll compressor, the spindle of scroll compressor for finite element analysis, the final show the problem in the design of structure of scroll compressor. In the design of scroll profile, not only describes the forming process of involute characteristics and vortex lines, but also to carry on the revision to the vortex line.Through the above design, we finally got the scroll compressor.KEY WORDS: scroll compressor, moving vortex disc, static vortex disc, eccentric shaft摘要0目录0前言1第一章空调用涡旋式压缩机及装置系统总体方案设计1涡旋压缩机动静涡盘及其工作原理 1涡旋压缩机的防自转机构2涡旋压缩机的轴向径向柔性机构3涡旋压缩机的结构特点3涡旋压缩机的研发方向3第二章主要部件设计5涡旋压缩机的整体结构的选择5设计的已知条件5性能及结构参数确定6确定涡旋压缩机各重要零件的结构尺寸7第三章涡旋齿线型的选择与绘制原理10涡旋型线构成原则10圆的渐开线的形成10渐开线的特征10涡旋线的成形10涡旋线型的修正11第四章压缩机附件及密封细节14防自转机构 14轴承及支承 16压缩机的性能16径向密封16轴向间隙17润滑17结果17第五章基于NX Nastran解算器的有限元分析19总结26参考文献26致谢27本设计以空调用涡旋式压缩机为题,主要为了学习涡旋式压缩机的设计过程,以及运用和巩固我们大学所学知识。

涡旋压缩机充油和无油涡旋压缩机

涡旋压缩机充油和无油涡旋压缩机

如果他们说“活塞式压缩机”——寻找活塞,你一定会找到的。

如果“螺杆式压缩机”——它意味着它有一个螺杆,而且很可能不止一个。

好吧,说到涡旋压缩机,很明显它们最重要的细节是一个涡旋,或者更确切地说,两个涡旋。

BITECH中的充油涡旋压缩机FINI大多数人无需进一步解释就明白了。

首先想到的是热电器的发热元件的炽热螺旋或儿童玩具和成人手表的螺旋形发条。

尽管在自然界中有更大螺旋的例子。

银河系是一个直径10万光年的棒旋星系,离它的外围更近的是太阳系和地球。

银河系不是唯一的螺旋星系。

它的卫星——大麦哲伦星云和小麦哲伦星云,以及仙女座星系、三角座星系等也是如此。

螺旋线是围绕一个点的曲线,取决于它是扭曲还是展开,接近还是远离该点。

涡旋压缩机的工作主体通常以阿基米德或渐开线螺旋的形式制成。

其他选项也是可能的,例如由圆弧形成的曲线。

阿基米德螺线可以比作一个点沿一条从中心O开始的射线均匀移动而留下的痕迹,该射线本身围绕它均匀旋转。

圆的渐开线,相对于经典的代数螺线,即阿基米德螺线,属于所谓的。

赝螺旋或螺旋曲线。

它可以表示为从位于直螺纹末端的点的轨迹,从圆柱形线圈盘绕或缠绕在它周围;在这种情况下,螺纹总是与圆相切——线圈圆柱的横截面。

甚至在直观的层面上也结合了螺杆和涡旋压缩机。

而不是偶然的。

他们的“血缘关系”甚至表现在词汇上。

的确,根据大百科辞典,螺旋线是“空间螺旋曲线”。

螺钉不过是“螺旋螺纹杆”。

螺杆式和涡旋式压缩机不仅通过词汇结合在一起,而且通过传记模式结合在一起。

包含这些机器操作原理的发明出现的时间远远早于它们不仅能够在工业规模上实施,甚至能够制造实验样品。

正如他们所说,两者都是开放的,“在笔尖”。

这些发现比他们的时代早了几十年,或者更确切地说,比当时现有的金属加工水平早了很多。

能够生产具有涡旋压缩机工作元件所需精度的零件的机床直到最近才出现。

开发涡旋压缩机装置的想法出现在19世纪。

他们在20世纪初的1905年找到了和谐的设计。

电动汽车压缩机涡旋原理

电动汽车压缩机涡旋原理

电动汽车压缩机涡旋原理
电动汽车压缩机是一种用于压缩冷媒的装置,用于使空调系统正常工作。

涡旋压缩机是一种被广泛使用的压缩机类型,因为它的结构简单,效率高。

涡旋压缩机的工作原理基于涡旋流动,具有很高的压缩比和低噪音特性。

以下将介绍电动汽车压缩机涡旋原理的详细解释。

涡旋压缩机是一种利用涡旋流动原理来压缩气体的机械装置。

它由一个涡旋器和一个定子组成,涡旋器是由两个交叉放置的螺旋线组成的叶片,定子则是由一个螺旋线形的管道组成。

在涡旋压缩机中,冷媒在涡旋器中被压缩,在压缩过程中,冷媒的体积不断减小,从而达到压缩的目的。

涡旋器的设计使得冷媒能够在不断旋转的螺旋线中流动。

涡旋器的两个叶片通过旋转,将冷媒从进气端抽入,并在转动的同时将冷媒向出气端排出。

当冷媒被进入涡旋器后,会因为涡旋器的旋转产生离心力,从而将冷媒压缩。

压缩后的冷媒会随着涡旋器的旋转,沿着螺旋线向出气端移动,并最终被压缩到所需的压力。

涡旋压缩机相对于其它类型的压缩机的优势在于其结构简单,噪音低,效率高。

由于涡旋压缩机采用涡旋流动原理进行压缩,因此可以达到很高的压缩比,同时还具有很低的噪音特性。

相比较于往复式压缩机,涡旋压缩机在空气动力学方面具有优势,因此效率更高。

总之,电动汽车压缩机涡旋原理是一种利用涡旋流动原理来压缩冷媒的机械装置,具有压缩比高,噪音低,效率高等特点。

理解这个原理可以帮助我们更好地了解电动汽车空调系统的工作原理,进而提高我们的技术水平。

电动涡旋压缩机的数学模型及试验研究

电动涡旋压缩机的数学模型及试验研究

电动涡旋压缩机的数学模型及试验研究电动涡旋压缩机的数学模型及试验研究引言:电动涡旋压缩机是一种新型的节能压缩机,其基本工作原理是利用涡旋的旋转运动将气体进行压缩。

与传统压缩机相比,电动涡旋压缩机具有结构简单、体积小、噪音低等优点。

为了进一步研究电动涡旋压缩机的性能特点及其工作原理,本文将建立数学模型并进行试验研究。

一、电动涡旋压缩机工作原理电动涡旋压缩机由电动机、涡旋室、上下两个盖板及进出口气管组成。

涡旋室内有一段螺线管,通过电动机的转动使涡旋室内的气体产生旋转运动,从而实现气体的压缩。

其工作原理可分为以下几个步骤:1. 气体进入涡旋室:气体从进口气管进入涡旋室,进入后开始受到涡旋室内气体的旋转影响。

2. 涡旋运动:电动机的转动产生旋转涡旋,在涡旋室内不断旋转,并使气体随之旋转。

3. 压缩:随着涡旋室内气体的旋转,气体的压缩效果逐渐增强。

4. 排气:压缩后的气体通过出口气管排出涡旋室。

二、建立电动涡旋压缩机数学模型为了更详细地研究电动涡旋压缩机的性能特点,我们需要建立相应的数学模型。

下面我们将针对涡旋室内气体的流动特性,分别建立质量守恒方程、动量守恒方程和能量守恒方程。

1. 质量守恒方程:根据连续性方程,对于涡旋室内的气体,质量守恒方程可以表示为:∂ρ/∂t + ∇(ρv) = 0其中,ρ为气体的密度,t为时间,v为速度。

2. 动量守恒方程:对于涡旋室内气体的动量,我们可以通过动量守恒方程来描述。

根据欧拉动量方程,可得:∂(ρv)/∂t + (∇ρ)·v + ρ(∇·v) = ∇p + ρg其中,p为气体的压力,g为重力加速度。

3. 能量守恒方程:对于涡旋室内气体的能量变化,我们可以通过能量守恒方程来描述。

根据热力学第一定律,可得:∂(ρE)/∂t + ∇(ρE + p)v = ∇·(κ(∇T))其中,E为气体的内能,T为气体的温度,κ为导热系数。

三、试验研究为验证所建立的数学模型的可行性,我们进行了一系列的实验研究。

涡旋压缩机工作原理

涡旋压缩机工作原理

涡旋压缩机工作原理
涡旋压缩机是一种常见的压缩机类型,它通过涡旋叶片的旋转
来实现气体的压缩。

涡旋压缩机通常用于空气压缩、制冷和空调系
统中。

它的工作原理相对简单,但却非常高效和可靠。

涡旋压缩机的工作原理基于动能转换和压缩过程。

当气体进入
涡旋压缩机时,它首先经过进气口进入压缩机的旋转部件。

这些旋
转部件通常由一对螺旋形叶片或涡轮组成,它们被安装在一个圆柱
形的壳体内。

当气体进入旋转部件后,它会被迫沿着螺旋形叶片或涡轮旋转。

这种旋转运动会使气体的动能增加,同时也会使气体的压力增加。

随着气体不断旋转和受到压缩,它的压力会不断增加,最终达到所
需的压缩比。

在涡旋压缩机中,压缩过程是连续进行的,因此可以实现高效
的气体压缩。

与传统的往复式压缩机相比,涡旋压缩机通常更节能、更稳定,并且可以实现更高的压缩比。

这使得涡旋压缩机成为许多
工业和商业应用中的首选压缩设备。

除了高效和可靠以外,涡旋压缩机还具有较低的振动和噪音水平。

这使得它在要求低噪音和振动的应用中得到广泛应用,如医疗设备、实验室设备和精密仪器等。

涡旋压缩机的工作原理还使得它具有较长的使用寿命和较少的维护需求。

由于涡旋压缩机的旋转部件相对简单且无摩擦部件,因此可以减少机械磨损和故障的可能性,从而延长设备的使用寿命并降低维护成本。

总的来说,涡旋压缩机的工作原理基于动能转换和连续压缩过程,使得它成为一种高效、可靠且广泛应用的压缩设备。

在未来,随着技术的不断进步,涡旋压缩机将继续发挥重要作用,并为各种应用领域提供更高效、更可靠的压缩解决方案。

涡旋式空气压缩机的特点与工作原理

涡旋式空气压缩机的特点与工作原理

涡旋式空气压缩机的特点与工作原理涡旋式空气压缩机是近年来开发出来的最新型的空气压缩机,它与传统空气压缩机相比,具有结构新颖、体积小、重量轻、噪音低,寿命长,输气平稳连续,操作简便,维护费用少等一系列优异的技术性能,被行业内誉为“无需维修空气压缩机”和“新革命空气压缩机”,是50HP以下空气压缩机理想机型。

涡旋空气压缩机是由两个双函数方程型线的动、静涡盘相互啮合而成。

在吸气、压缩、排气工作过程中,静盘固定在机架上,动盘由偏心轴驱动并由防自转机构制约,围绕静盘基圆中心,作很小半径的平面转动。

气体通过空气滤芯吸入静盘的外围,随着偏心轴旋转,气体在动静盘噬合所组合的若干个月牙形压缩腔内被逐步压缩,然后由静盘中心部件的轴向孔连续排出。

涡旋空气压缩机的特点:1、可靠性高。

2、噪音极低。

3、能耗最低。

4、维护费用最低。

1、可靠性高。

1)涡旋式割据压缩机的主机零件少,是活塞机数量的1/8,零件的大量减少是可靠性提高的关键要素。

2)回转半径小,线速度仅为2m/s,因而磨损小,机械效率高,振动小。

3)科学控制的整机系统更确保稳定性的提高2、噪音最低。

1)因无吸、排气阀和复杂的运动机构而消除了阀片的敲击声和气流的爆破声,使噪音急剧降低。

2)吸、排气连续稳定,每分钟6000次以上,使气流脉动极微小。

3)1台20HP(15KW)的涡旋式空气压缩机只有62dBA的噪音,使其能在任何地方安装使用,节省大量安装费用,更符合环保要求。

3、能耗最低。

1)因为吸气增压效应和没有余隙容积,故涡旋式空气压缩机的容积效率高达98%以上。

2)因为若干个工作腔逐渐压缩,故相邻工作腔的压差非常小,因此泄露自然极少。

一个压缩过程分几次压缩,热效率高。

3)无吸、排气阀,故进、排气的阻力损失几乎为零。

无运动机构的磨擦磨损,机械效率高,这是涡旋式压缩机比其它空气压缩机大大节能的主要原因。

例如:(1台20HP15KW)的涡旋式空压机一年工作6000小时,节省电费可达18000元。

盾安风冷涡旋式冷水(热泵)机组说明书

盾安风冷涡旋式冷水(热泵)机组说明书

警告与注意风冷式冷水(热泵)机组是比较复杂的设备。

在安装、操作、维护或检修过程中,人员可能要接触某些部件或环境,如:含有一定压力的制冷剂、油、高温部件、运动部件及高/低电压等等。

如果使用或处理不当,上面的每一项都有可能造成设备和财产严重受损,甚至人身伤亡。

操作人员有责任和义务意识到这些潜在的危险,做好自我保护,安全无误地完成任务。

本手册旨在向用户授权的安装、操作、维护人员提供指导。

上述人员应受过专业的培训,能够正确安全地执行所赋予的任务。

为了您的人身安全和保证正确操作,在对机组进行操作之前请您认真阅读本手册和相关参考资料的内容,特别要仔细阅读“警告”和“注意”的内容。

说明本手册中,在必要的时候会给出“警告”和“注意”的提示,请仔细阅读提示内容。

警告表示有潜在的危险存在,如果不按照提示内容执行相关操作将会造成人员伤亡事故。

注意表示有潜在的危险存在,如果不按照提示内容执行相关的操作,将会造成对人体轻度的或者中等程度的伤害。

它也可能用来警告不安全的作业或者用在可能出现财产意外损坏事故的地方。

注意仅表示会发生设备或财产损失的情形。

~1~目录1综述 (3)1.1手册适用范围 (3)1.2机组型号释义 (3)1.3水冷机组简介 (3)1.4适用场合 (4)1.5使用条件 (4)2工作原理与结构 (5)2.1机组制冷原理 (5)2.2机组主要部件介绍 (6)3运输、搬运和存放 (9)3.1交货和存放 (9)3.2收货检查 (9)3.3机组搬运 (9)4机组安装 (10)4.1整机放置 (10)4.2 水管路安装 (11)4.3电气安装 (13)4.4 文本显示器的安装 (14)5操作使用说明 (14)5.1使用前检查 (14)5.2 开机程序 (15)5.3 机组停机 (15)6日常维护与保养 (16)6.1机组维护 (16)6.2 易损品、易损件 (18)6.3 部件维护周期 (15)7常见故障及排除 (19)附录1.电气操作说明.................................................................................................................... F1-1 附录2.机组主要技术参数 ............................................................................................................ F2-1附录3.机组外形图........................................................................................................................ F3-1附录4.机组进出水管图示 ............................................................................................................ F4-1附录5.机组安装基础图 ................................................................................................................ F5-1附录6.电气原理图........................................................................................................................ F6-1附录7.电气接线图........................................................................................................................ F7-1附录8.机组运行记录表 ................................................................................................................ F8-1~2~~3~1 综述1.1 手册适用范围本手册包含风冷涡旋式冷水(热泵)机组产品的安装、操作和维护信息。

ZF低温涡旋压缩机应用指南CNZF-001-08

ZF低温涡旋压缩机应用指南CNZF-001-08

润滑油 矿物油 POE油
下列润滑油可以使用于该系列压缩机: R22: Suniso 3GS Capella WF32
R404A/R134a: Copeland Ultra 22CC Mobil EAL Arctic 22CC ICI Emkarate RL 32CF Thermzl Zone 22CC
DTC阀已经被认可用于该产品范围的所有制冷剂。
高压压力开关
冷凝器
储液罐
ห้องสมุดไป่ตู้干燥过滤器
排气温度 控制器
毛细管
开关电磁阀
S
干燥过滤器
压缩机
低压压力开关 蒸发器
谷轮低温涡旋K4系统液体喷射 图2
热力膨胀阀
3
阀的参数
设定点:89.4 ± 2.8℃ 液体管路接口:3/8" (9.5 mm)
ZF**K4系列低温涡旋压缩机 CNZF-001-08
application engineering bulletin
应用工程手册 CNZF-001-08
ZF**K4 系列 低温涡旋压缩机应用指南 (适用型号:ZF06 / ZF08 / ZF09 / ZF11 / ZF13 / ZF15 / ZF18)
application engineering bulletin
2
冷凝温度℃
application engineering bulletin
应用工程手册
液体喷射
低温涡旋压缩机开有一喷射孔,可以与液体制冷剂管道相连接。该孔通过设于压缩机内部的 特殊通道与涡旋盘的中间腔相通。因为该中间腔和吸气腔相隔离,因此液体喷射不会损失制 冷量或制冷剂流量。详见图2。
只允许使用ZF压缩机随机配套的DTC阀用于喷液冷却控制。

谷轮涡旋压缩机应用指南

谷轮涡旋压缩机应用指南
最小运行时间
关于涡旋压缩机在 1 小时内究竟能启动和停机多少次还没有肯定的答复,因为它很大程 度上取决于系统配置。因为涡旋压缩机是在卸载条件下启动的,即使在不平衡压力下,所以 没有最短停机时间的规定。最关键的考虑是在启动后需要让油返回压缩机的最小运行时间。 由于这些压缩机装有玻璃视镜,所以很容易进行测试。最短的运行时间就是当压缩机启动时 失油至油返回压缩机油池至恢复视镜中正常油位时所需要的时间。如果将压缩机在比该时间 短的时间间隔进行循环停开,例如为了保持非常精确的温度控制,会造成逐渐失去润滑油以 致损坏压缩机。进一步关于防止压缩机频繁循环停开的资料可查阅应用工程手册 17-1262.
4-1316
ZR90K3~ZR19M3 和 ZR250KC~ZR300KC 谷轮涡旋压缩机应用指南
筑龙网
前言 本手册叙述 7.5~25HP R22 和 R407C 谷轮涡旋压缩机的运行特性,设计特点和应用要求。
典型机型是 ZR90K3-TWC, ZR16M3-TW7 和 ZR300KC-TWD。如 需 得 到 更 多 详 情 , 请 上 网 页 查询产品资料。谷轮涡旋压缩机的工作原理已在谷轮工程应用 手册 4-1312 中叙述了。以下叙述的压缩机运行特性和设计特点有一些是与小型的谷轮涡 旋压缩机不同的。
在接近 0.05MPa(表)(7psig)(-32℃/-25°F 饱和吸气温度)压力下运行明显地超出图 2 表 示的允许运行范围了。但是,由于环境温度低,热泵在某些地理位置必须运行在这些范围。 只要冷凝温度不超过 32℃(90°F)且排气温度不超过 135℃(275°F),这是允许的。在这些工 况下有些液体返回压缩机有助于保持排气温度在控制范围内。某些情况下甚至 0.05MPa (表)(7psig)低压控制器还会造成噪扰性跳闸。这可能在换向阀动作时发生的短暂性吸气阻塞 或在热泵启动时节流元件前没有足够的液体压力。因此,可以将低压控制器移至液管,在那 里不会发生会引起噪扰性跳闸的短暂性吸气压力下降。但是,必需增加一排气温度控制器。 另一种方法是将低压控制器仍放在吸气管路而给低压控制器 60 秒钟(最大)的低压延时时间。 让机组在 60 秒钟内不理采低压控制器的讯号而让压缩机继续运行。

日立无油涡旋机SRL7.5,11取扱说明书全项

日立无油涡旋机SRL7.5,11取扱说明书全项

̨̎

安 全 注 意 事 项 ʢ续ʣ

本文记载了在安全方面的注意事项。
其他方面的注意事项请参照正文,并严格遵守。

‫ ࠂܯ‬
〇全无油涡旋式压缩机吸入压缩和加压的气体仅限于空气,请禁止使用于空气以外的其他气体。
〇请勿将全无油涡旋式压缩机使用于呼吸器用器械或维持生命相连的用途。 ʢ本机器如发生破损或事故时,有可能会造成重大事故。ʣ
̏ɽ 请确认附属品是否齐全。
安放用橡胶板 使用说明书
̐张
̍本
型号 标牌
●请确认型号、频率、 制造编号、规格。


注意
请勿在不同的电压、频率下使用。

̎ 移动时

搬运办法
̍ɽ使用叉车进行移动


在叉车与压缩机空隙间放置

些填充物,以防止机器受伤。

、触电、骨折、中毒等留下的后遗症。 以及需要入院、长期治疗的严重伤害。 伤 害ɿ 指无需入院治疗、长期治疗的伤害、烫伤以及触电等。 财务损害ɿ 指财产损失以及与机器相关的扩大性损害。
此符号为告知禁止行为。 图中有对具体禁止内容的描述。 这些安全注意事项是为确保安全使用全无油涡旋式压缩机而补充的重要提案, 请依照各种标准和基准确立安全措施,以确保机器及设备的安全运行和维护。 对无视这些安全注意事项而造成的后果,日立产机系统概不负责。
掌握机器的常理、安全信息、注意事项后再进行使用。
警告标记、注意标记为强调危险以及重要信息。

警告ɾ注意标记
此标记为促进警告、注意内容的符号。

‫ ࠂܯ‬若无视此标记,进行错误操作,有可能导致人身死亡或重伤。

涡旋压缩机的使用

涡旋压缩机的使用

涡旋压缩机的使用涡旋压缩机通过高速旋转的转子将进气口的空气捕捉并旋转加速,然后通过压缩腔使空气压缩,最后通过排气口排出。

涡旋压缩机的运行原理类似于离心压缩机,但它的结构和工作过程有所不同。

涡旋压缩机的转子是一个轴对称的螺旋形,通过转子的旋转产生离心力将空气压缩。

涡旋压缩机有许多优点,首先是结构简单,由于其转子只有一个旋转部件,因此维修简单、容易操作。

其次,涡旋压缩机的体积相比其他类型的空气压缩机要小,能够节省空间。

同时,涡旋压缩机的运转平稳,噪音低,振动小,对周围环境的干扰较小。

此外,涡旋压缩机的能耗也相对较低,高效节能,有效降低了生产成本。

涡旋压缩机的使用范围非常广泛。

在工业领域,它常用于气动输送、空气源、机械加工、气体液化等。

在能源领域,涡旋压缩机被应用于天然气输送、液化天然气工艺、石化工艺等。

在制冷技术领域,涡旋压缩机常用于冷库、制冷系统、冷却塔等设备中。

在通风系统中,涡旋压缩机被广泛用于空调、电梯通风、交流通风等领域。

此外,在石油化工、冶金、航空航天等行业中,涡旋压缩机的应用也非常广泛。

涡旋压缩机的使用过程中需要注意以下几点:首先,要正确认识涡旋压缩机的工作原理,掌握其结构和特点,以便在使用中遇到问题时能够快速解决。

其次,要定期进行涡旋压缩机的维护保养工作,包括油润滑、清洁过滤器、检查气体泄漏等。

同时,注意对压缩机进行故障检测,及时修理故障,以免影响正常工作。

此外,还要注意选取合适的工作环境,尽量避免高温、湿度过高、灰尘多等环境对涡旋压缩机的影响。

最后,涡旋压缩机的使用过程中还需要注意安全问题,遵守有关操作规程,佩戴必要的防护装备,确保操作人员的人身安全。

总之,涡旋压缩机是一种重要的空气压缩设备,广泛应用于各个领域。

了解其工作原理和结构特点,并正确使用和维护,可以提高生产效率,降低能耗成本,确保设备的正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021/4/12
4
Hitachi Compressor
压缩机运行中常见的故障分类与现象
• 缺油与润滑不足损坏 (故障现象为:噪音大、卡缸、
运行电流大、漏电等)
• 电机损坏(故障现象为:电流大、短路、漏电等) • 液击损坏(故障现象为:卡缸、无吸排气、噪音大
等)
• 高温损坏(故障现象为:卡缸、噪音大、短路等)
➢ 压缩机反转运转,内部压差无法建立,导致冷冻机油无法输送
到各摩擦表面。此种故障的表征现象压缩机的防自转滑环的键、 动盘键槽、机架键槽等有反转痕迹,压缩机各滑动部磨损严重, 甚至轴承抱轴。 (电控的相序保护只能够检测输入不能检测输 出电源的相序)
➢ 系统回油不良,导致压缩机无油运转。此种故障的表征现象压
➢ 同时回液和制冷剂迁移等也会稀释润滑油,不利于油膜的形成,
导致润滑不足。
缺油会引起严重的润滑不足,缺油的根本原因不在于压缩机奔 油多少和快慢,而是系统回油不好。安装油分离器可以快速回油, 延长压缩机无回油运转时间。蒸发器和回气管路的设计必须考虑 到回油。避免频繁启动、定时化霜、及时补充制冷剂等维护措施 也有助于回油。水分超标、回液和制冷剂迁移等会稀释润滑油, 不利于油膜的形成;油路堵塞、压缩机反转供油压差无法建立等 会影响供油量和油压,导致摩擦面缺油;摩擦面高温会促使润滑 油分解,使润滑油失去润滑能力。这三方面问题引起的润滑不足 也常常造成压缩机损坏。因此,只更换压缩机或某些配件不能从 根本上解决缺油问题。
✓ 确保排出压缩机的冷冻机油回到压缩机;
✓ 减少压缩机的上油率;
Hitachi Compressor
如何确保排出压缩机的冷冻机油回到压缩机
➢应确保吸气管冷媒的流速(约6m/sec),才能使油
回到压缩机,但最高流速应小于15m/sec来减小压降 与流动噪音,对水平管还应沿冷媒流动方向有向下的 坡度,约0.8cm/m.
2021/4/12
8
2、避免缺油与润滑不足损坏的要点
• 适当的压缩机注油量 • 适当的冷冻机油粘度 • 防止过度的过湿运行 • 防止过度的过热运转
Hitachi Compressor
如何保证适当的油量
Hitachi Compressor
压缩机在排出冷媒时,也会排出微量的冷冻机油。即 使只有0.5%的上油率,如果油不能通过系统循环回到压 缩机中,若以5HP为例,循环量在ARI工况下约为330kg/h, 则在50分钟就可以将压缩机内的油全部带出,大约在2~5 小时内压缩机将会烧坏。因此为了确保压缩机运行不缺油, 应该从以下二方面着手:
缩机内部出现高温,油池中油量非常少,压缩机缺油引起的磨 损一般比较均匀。各摩擦表面干燥,运行冷量低、噪音大,严 重时会由于轴承抱轴或者防自转滑环断裂导致卡缸。压缩机频 繁启动、制冷剂泄漏等都会导致回油不良。另外,安装时的长 配管、高落差以及回油弯的设置等也可能导致系统回油不良。
(1-5#、7#)
➢ 冷媒泄漏,一方面压差无法建立会出现供油不良,另外泄漏的
Hitachi Compressor
涡旋压缩机的使用
(如何提高使用的可靠性) 广州日立压缩机有限公司
日立涡旋压缩机结构及工作原理
2021/4/12
2
日立涡旋压缩机结构 吸气口 排气口
防自转滑环
内置式过流、 过热保护器
主轴承
2021/4/12
压差供油
定盘 动盘 机架 曲轴
电机(定、 转子)
壳体 3
2021/4/12
Hitachi Compressor
当配管长比容许值大时, 配管内的压力损失会变大, 使得蒸发器中的冷媒量减少, 导致能力下降。同时,配管 内有油滞留时,使得压缩机 缺油,导致压缩机故障的发 生。当压缩机内冷冻机油不 足时,应从高压侧追加与压 缩机出厂相同牌号的冷冻机 油。
冷媒还会带走冷冻机油,造成回油不良。同时还有空气进入系 统导致压缩机的零件出现生锈和镀铜的现象。 (4#、5#)
2021/4/12
7
Hitachi Compressor
1、导致压缩机缺油与润滑不足损坏的主要原因(Ⅱ)
➢ 润滑不足,其原因可能是空调系统或者冷媒中水分含量偏高,导
致冷冻机油中水分超标,油变质,润滑性能下降。此种故障的表 征现象通常是压缩机内部非运动部分生锈严重,运动部位则镀铜, 各摩擦副有严重磨损。另外由于磨损严重还可能导致了电机扫膛, 烧坏电机。(1-1#、1-3#、1#)
压缩机在工作时,大量制冷剂气体在被排出的同时也夹带 走一小部分润滑油(称为奔油或跑油)。
压缩机长时间缺油会使得机构部和各摩擦副过热,导致轴 承烧结、抱轴。
压缩机短时间缺油会使得机构部和各摩擦副异常磨损,导 致振动、噪音大。
2021/4/12
6
Hitachi Compressor
1、导致压缩机缺油与润滑不足损坏的主要原因(Ⅰ)
2021/4/12
5
一、缺油与润滑不足损坏
Hitachi Compressor
压缩机是高速运转的机器,保证压缩机曲轴、轴承、防自 转滑环、涡旋盘等运动件的充分润滑是维持机器正常运转的 基本要求。然而,在实际应用中,压缩机缺油、油焦化变质、 回液稀释、制冷剂冲刷、使用劣质润滑油等造成运动件润滑 不足的情况时有出现。润滑不足会引起轴承面磨损或划伤, 严重时会造成抱轴、防自转滑环断裂、涡旋盘咬合等故障。
➢防止冷冻机油滞留在蒸发器内 ➢确保适当的气液分离器的回油孔,过大会造成湿压缩,
过小则会回油不足,滞流油在气液分离器中
➢系统中不应存在使油滞留的部位 ➢确保在长配管高落差的情况下有足够的冷冻机油在压来自缩机里,通常用带油面镜的压缩机确认
➢压缩机频繁启动不利于回油。
2021/4/12
11
如何减少压缩机的上油率
07年退回各年度故障率汇总
故障现象
电流大 端子烧坏
短路 漏电 无吸排 卡缸 噪音大 无
04比例
13% 3% 19% 10% 8% 26% 22% 0%
05比例
15% 7% 9% 7% 13% 28% 20% 1%
06比例 07比例
13% 5% 13% 9% 12% 25% 22% 1%
8% 12% 16% 16% 8% 31% 10% 0%
Hitachi Compressor
➢ 在停机时应保证制冷剂不溶解到冷冻机油中(使用曲轴加
热器)
➢ 应避免过湿运转,因为会起泡而引起的上油过多 ➢ 压缩机内部的油起泡使油容易被带出压缩机.(油位过高或
者含有液体冷媒。)
➢ 压缩机内部设置油分离器装置,减少压缩机的排油率。
2021/4/12
12
长配管高落差
相关文档
最新文档