最新精选初中六年级下册数学[第七章 线段与角的画法第1节 线段的相等与和、差、倍]沪教版练习题[含答案解

合集下载

沪教版数学六年级下册第七章《线段与角的画法》教学设计

沪教版数学六年级下册第七章《线段与角的画法》教学设计

沪教版数学六年级下册第七章《线段与角的画法》教学设计一. 教材分析《线段与角的画法》是沪教版数学六年级下册第七章的内容,本章主要让学生掌握线段的画法、角的画法和测量方法。

教材通过丰富的图片和实例,引导学生了解线段和角的基本概念,学会使用直尺、圆规等工具画线段和角,并能够进行简单的测量。

教材还注重培养学生的空间想象能力和几何思维,为初中阶段的学习打下基础。

二. 学情分析六年级的学生已经掌握了基本的画图技能,对线段和角的概念有一定的了解。

但是,部分学生可能对线段和角的画法以及测量方法还不够熟练,需要老师在教学中进行针对性的指导。

此外,学生的空间想象能力和几何思维能力还有待提高,教学中应注重培养学生的这些能力。

三. 教学目标1.知识与技能:学生会画线段和角,并能进行简单的测量。

2.过程与方法:学生通过观察、实践、探究,提高空间想象能力和几何思维能力。

3.情感态度与价值观:学生培养对数学的兴趣,增强团队协作和自主学习能力。

四. 教学重难点1.重点:线段和角的画法,测量方法。

2.难点:线段和角的概念理解,空间想象能力的培养。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生了解线段和角的应用。

2.实践教学法:让学生动手操作,提高画图技能。

3.问题驱动法:教师提出问题,引导学生思考和探究。

4.小组合作法:学生分组讨论,培养团队协作能力。

六. 教学准备1.教具:直尺、圆规、三角板、多媒体设备等。

2.学具:学生用书、练习本、铅笔、橡皮等。

3.教学课件:线段与角的画法动画演示、实例图片等。

七. 教学过程1.导入(5分钟)教师通过生活中的实例,如测量房间长度、计算三角形内角和等,引出线段和角的概念,激发学生的学习兴趣。

2.呈现(10分钟)教师展示线段和角的画法动画演示,让学生直观地了解线段和角的画法。

同时,引导学生思考:如何用直尺和圆规画线段和角?3.操练(10分钟)学生分组讨论,尝试用直尺和圆规画线段和角。

2019-2020年六年级下册第七章《线段与角的画法》word教案

2019-2020年六年级下册第七章《线段与角的画法》word教案

2019-2020年六年级下册第七章《线段与角的画法》word教案学习目标:1、初步掌握线段大小比较的一般方法并会用数学符号表示;2、会用直尺、圆规等学习工具画一条线段等于已知线段,初步体验基本的作图语句;3、掌握两点间距离的概念,并理解“两点之间线段最短”的意义.学习过程:一、线段、射线、直线1、线段的表示方法:(1)我们可以用两个大写英文字母表示一条线段的两个端点.如图,记作:线段或线段BA (2)用一个小写英文字母表示.如图,记作:线段.2、线段的延长线:线段向一方延伸的部分叫做线段的延长线.延长线段AB或反向延长线段BA.延长线段BA或反向延长线段AB.3、射线的表示方法:线段向一方无限延伸所形成的图形叫做射线.如图,记作:射线AC.点A叫做射线AC的端点,一条射线只有一个端点.如果只显示端点A,不显示点C,依然用两个大写英文字母表示.如图,记作射线AC.4、直线的表示方法:线段向两方无限延伸所形成的图形叫做直线.如图,记作:直线或直线BA如果不显示点A、点B,依然用两个大写英文字母表示.如图,记作:直线或直线BA也可以用一个小写英文字母表示.如图,记作:直线l.试一试:1、填表:ba(1)CD(2)(3)2、根据要求画图:如图,已知线段AB ,延长线段AB 到点C ,使AC=5cm ,反向延长线段AB 到点D ,使AD=2cm.操作:画线段AB 和CD ,使端点...A .与端点...C .重合..,线段..AB ..与线段...CD ..叠合... 这时端点B 有几种可能的位置情况?例题1 如图,已知线段, 用圆规、直尺画出线段 , 使得=.例题2 先观察估计图中线段,的大小,然后用比较线段大小的方法验证你的估计,并用“”符号连结.例题3 如图,在教学楼到活动室之间有三条小路,如果把教学楼和活动室看作点,那么小路1是经过这两点的一条线段,请画出小路1, 活动室教学楼◆ _____确定一条____________________线段.◆ 联结两点的________的_________叫做两点之间的________. ◆ _______________________最短. 巩固练习:1、比较下列各图中两条线段AB 与CD 的大小.2、已知线段AB 、CD ,AB>CD,(1)如果将CD 移动到AB 的位置,使点C 与点A 重合,CD 与AB 叠合,那么点D 的位置状况是__________________(2)如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,那么点B的位置状况是__________________3、下列叙述正确的是()A、联结两点的直线叫做两点之间的距离.B、联结两点的线段叫做两点之间的距离.C、联结两点的直线的长度叫做两点之间的距离.D、联结两点的线段的长度叫做两点之间的距离.*7.2 画线段的和、差、倍学习目标:1、能用等式表示两条线段的和、差、倍关系并掌握用直尺、圆规作线段的和、差、倍;2、理解线段的中点的意义,能用数学符号语言表示线段的中点并能用直尺、圆规作线段中点;学习过程:一、新课探索1、观察:如图所示,A、B、C三点在一条直线上,1)图中有几条线段?2)这几条线段之间有怎样的等量关系?两条线段可以_____________,它们的和(或差)也是___________,其长度等于这两条线段_________的和(或差).练习1:(书第90页练习7.2第1题)例题1:如图,已知线段、,(1)画出一条线段 , 使它等于;(2)画出一条线段 , 使它等于.解:(1)①画___________;②在_________上顺次截取______________________;(2)①画_____________;②在___________上截取_______,在_________上截取___________;思考1:已知线段,类比乘法的意义,你能讲出2,3,……,(为正整数,且)的含义吗?例题2 如图,已知线段、,画出一条线段,使它等于.思考2:如图,已知线段AB,你能否在线段AB的上找一点C,使点C把线段AB分成相等的两条线段? 将一条线段分成两条相等线段的点叫做这条线段的中点.若已知点M是线段AB的中点,你能得到哪些等量关系?练习2:(书第90页练习7.2第2题)练习3(书第91页练习7.2第4题)*( )( )7.3 角的概念与表示学习目标:1、知道角的有关概念;2、掌握角的四种表示方法;3、在用含方向角的射线表示方向的过程中,感受实际问题与数学问题间的互相转化. 学习过程: 一、角的概念◆ 角是具有公共端点的两条射线组成的图形.角的形成过程:操作:把圆规的两只脚由并在一起到逐渐把一只脚旋转到另一个位置. ◆ 角是由___________绕着它的端点旋转到另一个位置所成的图形.初始位置的那条射线叫做角的________,终止位置的那条射线叫做角的_________.角的始边转动到角的终边所经过的平面部分,叫做角的内部,简称角内,余下部分是角的外部,简称角外.二、角的表示方法(1)分别说出∠ABC 、∠POQ 、∠XYZ 的顶点和边.B CF HG西东(2)特别地:我们书中所说的角,如不加以说明是指小于平角的角.(周角除外) 反馈练习:1、用一个大写字母或一个希腊字母表示图中的角.2、图中共有( )个角,并分别表示出来.三、方位角 读法:1、点A 在点O 的_____________方向2、点B 在点O 的_____________方向3、点C 在点O 的_____________方向4、画出表示南偏东50°的射线OP7.4角的大小的比较、画相等的角(1)学习目标:1、掌握角的大小的比较方法;2、会使用量角器画角.学习过程:一、学习新课:1、怎样比较两个角的大小?方法一:_______________2、使用量角器的操作方法:(1)将量角器的中心点与角的顶点重合;(对中)(2)将量角器的零度刻度线与角的一边重叠;(对边)(3)看角的另一边落在量角器的什么刻度线上。

线段与角的概念和计算

线段与角的概念和计算

线段与角的概念和计算一、线段的概念线段是几何学中的基本概念之一,它是指由两个端点确定的具有有限长度的直线部分。

在平面几何中,线段用两个大写字母表示,如AB、CD等。

线段的长度通常用小写字母表示,如|AB|表示线段AB的长度。

二、角的概念角是点和其两条射线组成的图形,通常用希腊字母表示,如∠ABC,其中B为角的顶点,而A、C分别为角的两个边。

角度可以用度数(°)或弧度(rad)表示,度数是人们最常用的度量单位。

三、线段的计算1. 线段的长度线段的长度可以通过两个端点的坐标计算得出。

设线段AB的两个端点坐标分别为A(x₁, y₁)和B(x₂, y₂),则线段AB的长度可以通过以下公式计算:|AB| = √((x₂ - x₁)² + (y₂ - y₁)²)2. 线段的中点线段的中点是指线段的中心位置,在平面几何中也是一个重要的概念。

设线段AB的两个端点坐标分别为A(x₁, y₁)和B(x₂, y₂),则线段AB的中点坐标可以通过以下公式计算:M((x₁ + x₂)/2, (y₁ + y₂)/2)四、角的计算1. 角度角度是人们常用的度量单位,一周等于360°。

当需要计算角度时,可以利用以下公式来进行计算:角度 = 弧长 / 半径2. 弧度弧度是另一种常用的角度单位,它是圆周上弧长等于半径的一部分。

当需要计算弧度时,可以利用以下公式来进行计算:弧度 = 弧长 / 半径3. 弧度与角度的转换弧度与角度之间可以通过以下公式进行转换:角度 = 弧度× 180° / π弧度 = 角度× π / 180°五、实例应用为了更好地理解线段与角的概念和计算方法,以下通过一个实例进行说明。

假设有一条线段AB,其中A(-2, 3)和B(4, -1)分别为线段的两个端点坐标。

我们首先可以计算线段AB的长度:|AB| = √((4 - (-2))² + ((-1) - 3)²)= √(6² + (-4)²)= √(36 + 16)= √52≈ 7.211然后我们可以计算线段AB的中点坐标:M(((-2) + 4)/2, (3 + (-1))/2)≈ M(1, 1)接下来我们可以计算角ADC的度数。

线段与角的画法

线段与角的画法

线段与角的画法第一节线段的相等于和、差、倍一、线段的大小比较1.线段的表示<AB a 、>2.线段的比较的方法: 测量法、叠合法3.距离:联接两点的线段的长度叫做两点之间的距离4.两点之间,线段最短.二、画线段的和、差、倍1.两条线段可以相加<或相减>,它们的和<或差>也是一条线段,其长度等于这两条线段的长度的和<或差> <截长补短>.2.中点:将一条线段分成两条相等线段的点叫做这条线段的中点.第二节角一、角的概念1.角是具有公共端点的两条射线组成的图形.2.角是由一条射线绕着它的端点旋转到另一个位置所成的图3.处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边.4.角的表示<AOB ∠,端点必须在中间;1α∠∠、>二、角的大小比较、画相等的角1.比较角大小的方法:测量法、叠合法2.画相等的角三、画角的和、差、倍1.两个角可以相加<或相减>,它们的和<或差>也是一个角,它的度数等于这两个角的度数的和<或差>.2.平分线:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.3.平分线的画法四、余角、补角1.余角:如果两个角的度数和是90︒,那么这两个角叫做互为余角,简称互余.其中一个角称为另一个角的余角.2.补角:如果两个角的度数和是180︒,那么这两个角叫做互为补角,简称互补.其中一个角称为另一个角的补角.1、如图,,,点B 、O 、D 在同一直线上,则的度数为〔 〕〔A 〕75︒〔B 〕〔C 〕〔D 〕 2、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则〔1〕∠AOC 的补角是;〔2〕是∠AOC 的余角;〔3〕∠DOC 的余角是;〔4〕∠COF 的补角是.3、如图,点A 、O 、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE,求∠COB 的度数.4、如图10,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠的度数.5、如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD =14°, 求∠DOE 、∠BOE 的度数.6、如图,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.7、把一X 正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG=______. F B '8、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .9、如图14,将一副三角尺的直角顶点重合在一起.〔1〕若∠DOB 与∠DOA 的比是2∶11,求∠BOC 的度数.〔2〕若叠合所成的∠BOC =n°<0<n<90>,则∠AOD 的补角的度数与∠BOC 的度数之比是多少?10、如图,点C 在线段AB 上,AC = 8厘米,CB = 6厘米,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC + CB = a 厘米,其它条件不变,你能猜想MN 的长度吗?并说明理由.〔3〕若C 在线段AB 的延长线上,且满足AC BC = b 厘米,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.11、如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm,求AD 的长度.12、如图,AD=12BD,E是BC的中点,BE=2cm,AC=10cm,求线段DE的长. 13、有一X 地图〔如图〕,有A 、B 、C 三地,但地图被墨迹污损,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30°,在B 地的南偏东45°,你能确定C•地的位置吗?14、如图8,东西方向的海岸线上有A 、B 两个观测站,在A 地发现它的北偏东30°方向上有一条渔船,同一时刻,在B 地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.15、如图,OA 的方向是北偏东15°,OB 的方向是西偏北50°.〔1〕若∠AOC=∠AOB,则OC 的方向是___________;〔2〕OD 是OB 的反向延长线,OD 的方向是_________;〔3〕∠BOD 可看作是OB 绕点O 逆时针方向至OD,作∠BOD 的平分线OE,并用方位角表示OE 的方向是_____________.〔4〕在<1>、〔2〕、〔3〕的条件下,求∠COE.16、如下图,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角,求画n 条射线所得的角的个数.17、如图,三角形ABC 中,AB=AC,延长CA,用量角器量∠B 、∠C 、∠BAD.<1>你能得出什么结论,猜想∠BAD 、∠B 、∠C 的关系<可多画几个类似图形尝试><2>用你得出的结论和猜想的关系解决下列问题:一暗礁边缘有一标志C 在灯塔B 北偏西80°的方向上,与灯塔B 的距离为30海里, 轮船从灯塔正南方30海里的A 处出发,若航行方向是北偏西45°, 轮船能避开暗礁吗?说明理由.18、如图,分别从正面、左面、上面观察这个图形,请画出你看到的平面图形.19、〔1〕棱长为a 的正方体,摆成如图所示的上下三层.请求出该物体的表面积.〔2〕若依图中摆放方法类推,如果该物体摆放了上下10层,你能求出该物体的表面积吗?A D CB E20、任意画一个三角形ABC,取三边中点依次为D、E、F〔如图16〕,连结DE、EF、FD得到三角形DEF.〔1〕分别量出三角形ABC的周长与三角形DE F的周长,你会发现什么?〔2〕用量角器量一下三角形ABC中∠A、∠B、∠C的度数之和;再量一下三角形DEF中的∠1、∠2、∠3的度数之和,你会发现什么?〔3〕多画几个试一试,你会得到哪些猜想?21、已知:如图,∠ABC=30°,∠CBD=70°BE是∠ABD的平分线,DBE的度数.22、已知:如图〔7〕,B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD的中点,CD=6㎝,求线段MC的长.。

第1讲 线段、角、相交线和平行线

第1讲 线段、角、相交线和平行线
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
ቤተ መጻሕፍቲ ባይዱ
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练
★能力提高训练
★知能优化训练

沪教版数学六年级(下)第七章线段与角的画法参考答案

沪教版数学六年级(下)第七章线段与角的画法参考答案

数学六年级(下) 第七章 线段与角的画法7.2 画线段的和、差、倍(1)一、填空题1. 叫做这条线段的中点。

2. 已知线段a ,2a 的含义是 ,3a 的含义是 ,na 的含义是 。

3. 两条线段可以 ,它们的和(或差)也是 ,其长度等于这两条线段的 。

4. 如图,AB+AC______BC (选填“>”或“<”),理由是 。

ABCA B DC第4题 第6题 第8题5. 已知线段AB ,延长AB 到C ,使BC=AB ,在线段AB 的反向延长线上截取AD=AC ,则有DB:AB=_________,CD:BD=___________。

6. 如图,已知AB:AC=1:3,AC:AD=1:4,且AB+AC+AD=48,则AB=_____,BC=______,CD=_______。

7. 两条相等的线段AB 、CD 有三分之一部分重合,M 、N 分别为AB 、CD 的中点,若MN=12cm ,则AB 的长为_________。

8. 如图所示,A 、B 、C 三点在一条直线上,图中有 条线段,分别是 ;这些线段之间的等量关系是:AB+BC= ,AC-BC= , AC-AB= 。

9. 根据右图填空:AB+BC= ;AD= +CD ;CD=AD- ;BD=CD+ =AD- ; AC-AB+CD= =BC+ .第9题 第10题10. 如图,点M 是线段AB 的中点,用符号表示有 种表示法,分别是 , , , , 。

11.如图,点M 是线段PQ 的中点。

若PM=6cm ,则MQ= cm ,这是因为 = ;若PM=6cm.则PQ= cm,这是因为 = ;若PQ=12cm.则MQ= cm,这是因为 = 。

第11题 第12题 12. 已知,如图点C 是线段AD 的中点,AC=211cm, BC=512cm,那么AD= cm ,BD= cm 13.根据所示图形填空。

已知线段a 、b ,且a>2b,画一条线条段,使它等于a-2b 。

六年级线段和角知识点

六年级线段和角知识点

六年级线段和角知识点在数学学习中,线段和角是非常基础且重要的概念。

六年级学生将会深入学习线段的定义、性质以及角的种类和测量方法。

本文将介绍六年级学生需要掌握的线段和角的知识点。

一、线段的定义与性质1. 线段的定义:线段是由两个不同的点所确定的具有固定长度和方向的有限直线部分。

2. 线段的长度:可以通过两点之间的距离来计算。

3. 线段的表示方法:通常用两个端点的字母表示,例如AB表示以A、B两点为端点的线段。

4. 线段的中点:线段中点是指线段上距离两个端点相等的点,记作M。

5. 线段的延长与截取:线段可以延长或截取为更长或更短的线段。

二、角的概念与种类1. 角的定义:角是由两条共同端点的射线所围成的图形。

2. 角的顶点:角的顶点是指射线的公共端点。

3. 角的度量单位:角的度量单位可以用度数或弧度表示。

4. 角的种类:a) 锐角:小于90度的角。

b) 直角:等于90度的角。

c) 钝角:大于90度但小于180度的角。

d) 平角:等于180度的角。

三、角的测量与特性1. 角的测量方法:a) 使用量角器:通过量角器可以准确测量角的度数。

b) 估算角的大小:通过角的开张程度估算角的大致数值。

2. 角的特性:a) 锐角和钝角的和可以构成一个直角。

b) 直角的两条边相互垂直。

c) 平角和其他角的和等于180度。

四、应用与解题技巧1. 通过线段的延长和截取,可以解决线段比较、构造等问题。

2. 角的测量和角的大小比较可以帮助解决几何图形的位置关系和证明问题。

3. 利用角的特性可以解决与角有关的问题,例如角平分线的性质等。

总结:六年级学生需要掌握线段和角的基本概念,包括线段的定义、性质,以及角的种类、测量方法和特性。

熟练掌握线段和角的知识有助于解决几何图形的构造、位置关系和证明问题。

通过反复练习和应用,六年级学生可以逐渐提高对线段和角的认识和理解,为进一步学习几何和解决实际问题打下坚实的基础。

以上就是六年级线段和角知识点的简要介绍。

新版沪教版六年级数学下册第七章线段与角教案及习题(2020新教材)

新版沪教版六年级数学下册第七章线段与角教案及习题(2020新教材)

第七章线段与角知识归纳一、线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

1、线段的表示:可以用表示短点的两个字母A、B表示,记作线段AB或可以用一个小写的英文字母,如a,表示,记作线段a2、线段的特点:1)有线长度,可以测量2)有两个端点3、线段的性质:1) 两点之间线段最短。

2)连接两点间线段的长度叫做这两点间的距离,可以记作d 。

3)★直线没有距离。

射线也没有距离。

因为,直线没有端点,射线只有一个端点,可以无限延长。

而线段不可以延长。

4、线段大小的比较:1)度量法2)叠合法3)观察法★“两点之间线段最短”5、画线段的和、差、倍将一条线段分成两条相等线段的点叫做这条线段的中点线段中点的表示:1)观察法2)折叠法3)度量法线段的中点是一个重要的概念,要使学生会用语言描述并掌握以下两点:(1)如图1∵C为AB中点(2)如图1∴C为AB中点.二、角:角是具有公共端点的两条射线组成的图形,公共端点叫做角的顶点,两条射线叫做角的边或可以这样说:角是有一条射线绕着它的端点旋转到另一个位置所成的图形处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边。

角的始边转动到角的终边所经过的平面部分叫做角的内部,简称角内部OBADC OBA1、 角的表示:1)角一般用三个大写英文字母表示,如下图记作∠AOB ,也可以记作∠O如果以点O 为顶点的角有多个,那么其中任何一个角必须用三个大写英文字母表示,而不能简单记作∠O2)也可以在角的内部标上一个小写的希腊字母,如α(读alpha )、β(读beta )、γ(读gamma )……,或者标上一个数字,如1、2、3……2、角的大小的比较 1)度量法 2)叠合法3、余角、补角(1) 如果两个角的和是一个平角,那么这两个角叫做互为补角.简称“互补”. (2) 如果两个角的和是一个直角,那么这两个角叫做互为余角,简称“互余”. (3) 补角、余角的性质★ 同角或等角的补角相等’;同角或等角的余角相等. 4、方位角方位角一般以正北、正南为基准,描述物体运动方向. 方位角α的取值范围为0900≤≤α 即“北偏东⨯⨯度”、“北偏西⨯⨯度”、“南偏东⨯⨯度”、“南偏西⨯⨯度”,★ “北偏东45度”为东北方向、“北偏西045度”西北方向、“南偏东045度”为东南方向、“南偏西045度”为西南方向. 5.画角的和、差、倍讲角平分线时既要会用文字表述又要掌握以下两点: (1)如图2∵ OC 平分∠AOB .(2)如图2∴OC 平分∠AOB典型例题【例1】 如右图所示,是线段的中点,则,.【例2】 如图,已知是线段上的两点,是的中点,是的中点,若,求线段的长. .【例3】 如图,已知线段AB 上依次有三个点把线段AB 分成2:3:4:5四个部分,,求BD 的长度.【例4】 线段上有两点、,,,,求的长.M A B 1______2A M =2_____2_____A B ==,B C A D M A B NC D ,M N a B C b==A D M D,,C D E 56AB =A B P Q 26A B =14AP =11PQ =B Q【例5】 已知:A ,B ,C ,D 四点共线,若3cm AB =,2cm BC =,4cm CD =,画出图形,求AD长.【例6】 如图所示,90AOB COD ∠=∠=︒,160AOD ∠=︒,求BOC ∠度数.【例7】 BOC ∠为AOC ∠外的一个锐角,射线OM 、ON 分别平分AOC ∠、BOC ∠.()190AOB ∠=°,30BOC ∠=°,求MON ∠的度数; ()2AOB α∠=,30BOC ∠=°,求MON ∠的度数;()390AOB ∠=°,BOC β∠=,还能否求出MON ∠的度数吗?若能,求出其值,若不能,说明理由.()4从前三问的结果你发现了什么规律?(5)若BOC ∠为AOC ∠内的一个锐角呢?【例8】 如图,OM 平分AOB ∠,ON 平分COD ∠,若50MON ∠=︒,10BOC ∠=︒, 求AOD ∠的小.C【例9】 如图10,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠的度数.课堂练习1 1、如图,,,点B 、O 、D 在同一直线上,则的度数为( ) (A ) (B ) (C ) (D )2、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则(1)∠AOC 的补角是 ; (2) 是∠AOC 的余角; (3)∠DOC 的余角是 ; (4)∠COF 的补角是 .ND OABC D 图图13、如图,点A 、O、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE ,求∠COB 的度数4、如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠ 的度数.5、如图8,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.7、把一张正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =______.8、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .EA O图 8A CBEFB '9、如图14,将一副三角尺的直角顶点重合在一起. (1)若∠DOB 与∠DOA 的比是2∶11,求∠BOC 的度数.(2)若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多少?★10 .角的个数的数法按逆时针、按顺时针一点引出n 条射线共形成)1(21-n n 个角. 如图,在图(a),在角内引一条射线时,图中共有(1+2)个角; 在图(b)中,在角内引两条射线时,图中共有(1+2+3)个角;在图(c)中,在角内引三条射线时,图中共有多少个角?如果在角内引n 条射线(n 为自然数)时,则共有几个角?(a) (b) (c)★11. 钟表上的时针、分针和秒针我们把钟表看成一个圆周,其上共有12个大格,故每个大格度数为003012360=,每个大格中又有5个小格,故每个小格度数为06530=(1)10:00时,时钟的时针与分针所成的角度是_____.(2)时间为三点半时,钟表时针和分针所成的角为______,由2点到7点半,时针转过的角度为______.(3)12时时,钟表上的时针与分针重合,问每多长时间两针再重合?(4)分针和秒针每隔多长时间重合一次?课堂练习21、如图,点C 在线段AB 上,AC = 8厘米,CB = 6厘米,点M 、N 分别是AC 、BC 的中点。

沪教版数学六年级下册第七章《线段与角的画法》教学设计

沪教版数学六年级下册第七章《线段与角的画法》教学设计

沪教版数学六年级下册第七章《线段与角的画法》教学设计一. 教材分析沪教版数学六年级下册第七章《线段与角的画法》的内容包括线段的画法、角的画法以及线段和角的基本性质。

这部分内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析六年级的学生已经掌握了初步的画图技巧,对于线段和角的概念有一定的了解。

但是,对于如何准确地画出线段和角,以及线段和角的基本性质,还需要进一步的指导和练习。

三. 教学目标1.掌握线段的画法,能够准确地画出给定长度的线段。

2.掌握角的画法,能够准确地画出给定度数的角。

3.理解线段和角的基本性质,能够运用这些性质进行简单的证明和计算。

四. 教学重难点1.线段的画法,特别是对于不同长度线段的画法。

2.角的画法,特别是对于不同度数角的画法。

3.线段和角的基本性质的理解和运用。

五. 教学方法采用讲解法、演示法、练习法、讨论法等相结合的方法,通过教师的引导和学生的积极参与,使学生掌握线段和角的画法以及基本性质。

六. 教学准备1.准备相关的教学PPT,包括线段的画法、角的画法以及线段和角的基本性质的讲解和示例。

2.准备一些实际的线段和角,以便进行演示和练习。

3.准备一些练习题,以便进行巩固和拓展。

七. 教学过程1.导入(5分钟)通过一个实际问题引入线段和角的概念,例如:“小明家和学校之间的距离是200米,请你画出这条线段。

”让学生思考和讨论如何画出这条线段,从而激发学生的学习兴趣。

2.呈现(15分钟)讲解线段的画法,包括如何使用尺子和圆规准确地画出给定长度的线段。

同时,展示一些实际的线段,让学生进行观察和理解。

3.操练(10分钟)让学生分组进行练习,每组给定一个长度,要求学生互相合作,使用尺子和圆规画出这个长度的线段。

教师巡回指导,解答学生的问题,并给予评价和反馈。

4.巩固(5分钟)讲解角的画法,包括如何使用尺子和圆规准确地画出给定度数的角。

同时,展示一些实际的角,让学生进行观察和理解。

第七章线段与角的画法

第七章线段与角的画法

角度的大小与线段 的长度无关,但与 线段的位置有关。
角度可以用来描述两 条射线之间的夹角, 而线段可以用来描述 两点之间的距离。
在几何学中,角度 和线段是两个基本 概念,它们在许多 问题中都有应用。
垂直线性质:垂直线将角分 为两个相等的部分
平行线性质:平行线之间的 线段长度相等
角平分线性质:角平分线上 的点到角的两边距离相等
验证角的正确性:最后检查所画的角是否符合题目要求,是否符合几何定理
定角的顶点
确定角的第一条边
确定角的度数
确定角的第二条边
确定中心点 放置量角器 确定角度 绘制角度
平行线与同位角 平行线与内错角 平行线与同旁内角 角平分线与角的两边
角度的度量单位是 度,线段的长度单 位是厘米或毫米。
标记线段名称:在线段上或旁 边标注线段的名称,以便识别 和区分不同的线段。
标记起点和终点:使用箭头或 文字标记线段的起点和终点, 以明确线段的名称。
标记线段长度:在线段上或旁 边标注线段的长度,以便了解
线段的长度信息。
标记线段颜色:使用不同颜色 标记不同的线段,以便区分和
识别不同的线段。
使用测量工具确定长度 根据已知比例计算长度 利用已知线段作为参照确定长度 使用数学公式计算长度
掌握基础作图工具:熟悉各种作图工具,如直尺、圆规、三角板等,是提高作图技能 的前提。
不断练习:通过大量的练习,熟悉各种线段与角的作图技巧,提高作图的准确性和速 度。
注重细节:在作图过程中,注意细节的把握,如线条的平滑度、角度的准确性等,这 些细节将直接影响作图的质量。
总结反思:及时总结作图的经验与教训,反思作图过程中的不足之处,针对性地加强 练习,不断提高作图技能。
随着科技的发展,线段与角的应用也在不断拓展和创新,如智能制造、机器人等 领域中也广泛应用了线段与角的理论和技术。

《线段和角的画法》知识点归纳

《线段和角的画法》知识点归纳
B A
③反方向延长射线 AB
A
B
2、线段大小比较 ①目测 ②测量(用刻度尺) ③用尺规量
A (c) A B (D) B C D
点 D 在线段 AB 延长线上
AB<CD
a b
a b
a<b
3、作一条线段等于已知线段
a
解:
a A B C
⑴作射线 AC ⑵在射线 AC 上截取线段 AB=a(以点 A 为圆心,a 为半径,画弧交射线 AC 作 点 B) ,线段 AB 即为所求 两点之间线段最短 两点之间的距离联结两点间的线段的长度叫两点之间的距离。
《线段和角的画法》知识点归纳 &7.1 1、 名称
A l A A B B
线段的大小比较
图形
B
表示方法 直线 AB 直线 l 射线 AB 射线 BA
线段 AB(线段 BA)
端点
能否度量
直线

不能
射线
一个 点A 两个 点A点B不能Leabharlann 线段A aB
线段 a
可以
①延长线段 AB
A B
②延长线段 BA(反向延长线段 AB)

六年级线段与角知识点

六年级线段与角知识点

六年级线段与角知识点线段与角是小学数学中的基础知识点,对于六年级学生来说,掌握这些知识点是十分重要的。

下面是关于线段与角的详细内容。

一、线段的定义与性质1. 线段是由两个不同的点所确定的一段连续的直线部分。

2. 线段的长度可以用两点坐标表示,如AB表示线段的长度。

3. 线段的长度是固定不变的,与线段的方向无关。

4. 两个不同的线段可以通过叠加得到一个新的线段,叫做合成线段。

二、角的定义与性质1. 角是由两条线段的公共端点及其两侧部分组成的形状。

2. 角的度量单位是度,常用符号是°。

3. 顺时针方向为负角,逆时针方向为正角。

4. 角的度数与其对应的弧度数是有关系的,1°=π/180 弧度。

5. 角的度数是固定的,与角的方向无关。

三、线段与角的运算1. 线段的加法:若CD=AB+BC,则表示线段CD是由AB和BC两个线段合成的。

2. 线段的减法:若BC=AB-CD,则表示线段BC是由AB去掉CD部分得到的。

3. 角的加法:若∠AOB=∠AOC+∠COB,则表示角AOB是由∠AOC和∠COB两个角合成的。

四、线段与角的应用1. 线段的测量:可以利用尺子或标尺测量线段的长度,要注意读数的准确性。

2. 角的测量:可以利用直尺和量角器来测量角的度数,要注意将量角器对准角的顶点和边。

3. 角的判断:可以利用直观的判断和角的大小关系来判断角的大小,如锐角、直角和钝角。

五、线段与角的综合运用1. 圆的性质:圆是由一组等距离的点组成,其中每个点到圆心的距离都相等,这个距离叫做半径。

2. 弧的性质:圆上的一段弧可以看作是两个半径所夹的角,弧的长度与角的度数是有关系的。

3. 扇形的性质:圆心角相等的弧所对应的扇形面积相等。

4. 线段与角的综合运用可以通过求解几何题来练习,如求解三角形的边长、面积等。

六年级的学生应该通过反复练习和应用,加深对线段与角知识点的理解和掌握。

只有在实际运用中,才能更好地理解其意义和价值。

第七章线段与角的画法(单元小结)-六年级数学下册同步精品课堂(沪教版)

第七章线段与角的画法(单元小结)-六年级数学下册同步精品课堂(沪教版)
5. 经过点N作 射线 OB.
∠ AOB 就是所求作的角.
例题讲解
例题5 画线段的和、差、倍.
已知线段a、b,画出一条线段, 使它等于2a-b.来自.ab
O
AC
B
P
解 (1)画射线OP; (2)在射线OP上顺次截取OA=a,AB=a; (3)在线段OB上截取BC=b.
线段 OC 就是所要画的线段.
例题讲解
课堂练习
练习1如图,已知点B是线段AC上的一点,如果点M是线段AB的中点,点N是线段AC的
中点,那么BC= MN.
.y . . y
A xM xB N
C
分析 设AM=x, AN=y,
点M是线段AB的中点 点N是线段AC的中点
AB=2AM=2MB=2x AC=2AN=2NC=2y
又BC=AC-AB
又MN=AN-AM
分别以点D、E为圆心,以大于 DE的同一长度为半径作
弧,两弧交于∠AOB内一点C.
知识梳理
余角
概念
如果两个角的度数的和是90°,那么这两 个角叫做互为余角,简称互余.其中一个角称 为另一个角的余角.
表示 命题
∠α+∠β= 90°
∠α是∠β的余角 ∠β是∠α的余角 ∠α与∠β互余
同角(或等角)的余角相等.
C
上图中,∠BOC=_∠___A_O_C___+__∠__A__O_B__;
∠AOC=_∠__B_O__C___-__∠__A_O__B__.
1
答:图中共有3个角,分别是 ∠AOB , ∠AOC,∠BOC.
例题讲解
例题3 画一条线段等于已知线段.
1. 度量画法(刻度尺); 2. 尺规作图.
a
A

线段与角度知识点总结

线段与角度知识点总结

线段与角度知识点总结在数学中,线段和角度是基本的几何概念,它们对于解决各种几何问题和实际应用非常重要。

本文将对线段与角度的相关知识点进行总结,包括定义、性质、测量、运算等方面,以帮助读者更好地理解和掌握这些重要的几何概念。

一、线段的基本概念1.1 线段的定义线段是由两个端点及它们之间的所有点组成的有限部分。

其中,端点是线段的起点和终点,线段上的所有点都位于这两个端点之间。

线段通常用字母表示,如线段AB,其中A和B分别为线段的两个端点。

1.2 线段的性质线段具有以下几个基本性质:(1) 长度:线段的长度是用来衡量线段的大小的重要指标,通常用线段两个端点的距离来表示。

在直角坐标系中,线段的长度可以通过两个端点的坐标计算得到。

(2) 延长性:线段可以延长成无穷大,即线段的长度是可变的。

(3) 独一性:直线上的任意两点确定唯一的一条线段。

(4) 有序性:线段的两个端点是有序的,即线段AB和线段BA是不同的。

1.3 线段的运算在线段的运算中,常涉及到线段的加法、减法、乘法和除法等操作。

这些运算通常都是建立在线段长度的概念上的,可以通过比较线段长度来进行计算。

二、角度的基本概念2.1 角度的定义角度是由两条射线共同起点构成的几何图形,通常用度(°)来表示。

其中,两条射线称为角的两边,它们的公共起点称为角的顶点。

角度通常用字母来表示,如∠ABC,其中B为角的顶点,而A和C分别为角的两边。

2.2 角度的性质角度具有以下几个基本性质:(1) 角度的度数:角度的度数是用来衡量角度大小的重要指标,通常用角的两边在单位圆上所对应的弧长来表示。

在直角坐标系中,角度的度数可以通过两条射线的方向和长度计算得到。

(2) 有向性:角度有方向性,即角度的起始边和终止边是有序的。

(3) 直角度:度数为90°的角称为直角,它是最基本的角度单位之一。

(4) 余角:与角度相加为90°的角称为余角,即两个角的度数之和为90°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新精选初中六年级下册数学[第七章线段与角的画法第1节线段的相等与和、差、倍]沪教版练习题[含答案解析]三十五第1题【单选题】
如图,从小明家到超市有3条路,其中第2条路最近,因为( )
A、两点之间的所有连线中,线段最短
B、经过两点有且只有一条直线
C、经过直线外一点,有且只有一条直线与这条直线平行
D、在同一平面内,过一点有且只有一条直线与已知直线垂直
【答案】:
【解析】:
第2题【单选题】
已知线段AB及一点P,如果PA+PB=AB,那么正确的是( )
A、P为AB的中点
B、P在线段AB上
C、P在线段AB外
D、P在线段MN上
【答案】:
【解析】:
第3题【单选题】
如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间的距离是( )
A、5
B、2.5
C、5或2.5
D、5或1
【答案】:
【解析】:
第4题【单选题】
如图给出的分别有射线、直线、线段,其中能相交的图形有( )
A、①②③④
B、①
C、②③④
D、①③
【答案】:
【解析】:
第5题【单选题】
把两条线段AB和CD放在同一条直线上比较长短时,下列说法错误的是( )
A、如果线段AB的两个端点均落在线段CD的内部,那么AB<CD
B、如果A,C重合,B落在线段CD的内部,那么AB<CD
C、如果线段AB的一个端点在线段CD的内部,另一个端点在线段CD的外部,那么AB>CD
D、如果B,D重合,A,C位于点B的同侧,且落在线段CD的外部,则AB>CD
【答案】:
【解析】:
第6题【填空题】

C是线段AB 上一点,BC=4 厘米,D 是AC 的中点,DB=7 厘米,则AB=__厘米.【答案】:
【解析】:
第7题【填空题】
点C在射线AB上,若AB=3,BC=2,则AC为______
【答案】:
【解析】:
第8题【填空题】
如图所示,小明到小颖家有三条路,小明想尽快到小颖家请你帮他选条线路______
【答案】:
【解析】:
第9题【填空题】
数轴是上点A、点B表示的数分别是-1和3,则点A、点B之间的距离是______.【答案】:
【解析】:
第10题【填空题】
如图,两条长度均为2的线段AB和线段CD互相重合,将AB沿直线l向左平移m个单位长度,将CD 沿直线l向右也平移m个单位长度,当C、B是线段AD的三等分点时,则m的值为______.
【答案】:
【解析】:
第11题【解答题】
如图,AB=18cm,C是线段AB的三等分点,D是线段CB上一点,CD比DB长4cm,求AD的长.
【答案】:
【解析】:
第12题【解答题】
已知如图,D是线段CB的中点,AC:CD=7:13,且DB=9cm,求AB的长.
【答案】:
【解析】:
第13题【解答题】
如图,B,C是线段AD上任意两点,B在A,C之间.M、N分别是AB,CD的中点.已知AD=a,MN=b.求BC.
【答案】:
【解析】:
第14题【作图题】
已知线段a,b,用直尺和圆规画出一条线段,使它等于2a-b(不要求写画法)
【答案】:
【解析】:。

相关文档
最新文档