初中数学最值问题典型例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《最值问题》典型例题
一、解决几何最值问题的通常思路
两点之间线段最短;
直线外一点与直线上所有点的连线段中,垂线段最短;
三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)
是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.
几何最值问题中的基本模型举例
轴对称最值图形
l
P
B
A
N
M l
B
A
A
P
B
l
原理两点之间线段最短两点之间线段最短三角形三边关系
特征
A,B为定点,l为定直
线,P为直线l上的一
个动点,求AP+BP的
最小值
A,B为定点,l为定直线,
MN为直线l上的一条动线
段,求AM+BN的最小值
A,B为定点,l为定直线,
P为直线l上的一个动
点,求|AP-BP|的最大值转化
作其中一个定点关于定
直线l的对称点
先平移AM或BN使M,N
重合,然后作其中一个定
点关于定直线l的对称点
作其中一个定点关于定
直线l的对称点
折叠最值图形
B'
N
M
C
A
B
原理两点之间线段最短
特征
在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.
转化转化成求AB'+B'N+NC的最小值
二、典型题型
1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为.
【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.
∵PC关于OA对称,
∴∠COP=2∠AOP,OC=OP
同理,∠DOP=2∠BOP,OP=OD
∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.
∴△COD是等腰直角三角形.
则CD=2OC=2×32=6.
【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.
2.如图,当四边形P ABN的周长最小时,a=.
【分析】因为AB,PN的长度都是固定的,所以求出P A+NB的长度就行了.问题就是P A+NB什么时候最短.
把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时P A+NB最短.
设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.
【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),
作B′关于x轴的对称点B″,根据作法知点B″(2,1),
设直线AB″的解析式为y=kx+b,
则
12
3
k b
k b
=+
⎧
⎨
-=+
⎩
,解得k=4,b=﹣7.
∴y=4x﹣7.当y=0时,x=7
4,即P(
7
4
,0),a=
7
4
.
故答案填:7
4
.
【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.
3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为.
D P
B′N B
M
A
【分析】作点B 于直线l 的对称点B ′,则PB =PB ′因而|P A ﹣PB |=|P A ﹣PB ′|,则当A ,B ′、P 在一条直线上时,|P A ﹣PB |的值最大.根据平行线分线段定理即可求得PN 和PM 的值然后根据勾股定理求得P A 、PB ′的值,进而求得|P A ﹣PB |的最大值.
【解答】解:作点B 于直线l 的对称点B ′,连AB ′并延长交直线l 于P . ∴B ′N =BN =1,
过D 点作B ′D ⊥AM , 利用勾股定理求出AB ′=5 ∴|P A ﹣PB |的最大值=5.
【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.
4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .
【分析】本题关键在于找到两个极端,即BA ′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA ′取最大值3和当点Q 与D 重合时,BA ′的最小值1.所以可求点A ′在BC 边上移动的最大距离为2.
【解答】解:当点P 与B 重合时,BA ′取最大值是3, 当点Q 与D 重合时(如图),由勾股定理得A ′C =4,此时BA ′取最小值为1. 则点A ′在BC 边上移动的最大距离为3﹣1=2. 故答案为:2
【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.
5.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .