初中数学最值问题典型例题

合集下载

初中数学最值问题专题

初中数学最值问题专题

中考数学最值问题【例题1】(经典题)二次函数y二2 (x-3) 2-4的最小值为.【例题2】(2018江西)如图,AB是。

的弦,AB=5,点C是。

上的一个动点,且NACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是___ .C【例题3】(2019湖南张家界)已知抛物线y=ax2+bx+c (a不0)过点A(1, 0), B(3, 0)两点,与y 轴交于点C, OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM^BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当^PBC面积最大时,求P点坐标及最大面积的值;(4)若点Q为线段OC上的一动点,问AQ+ 2 QC是否存在最小值若存在,求出这个最小值;若不存在,请说明理由.1.(2018河南)要使代数式V-2^37有意义,则乂的( )A.最大值为2B.最小值为2C.最大值为-D.最大值为°3 3 2 22.(2018四川绵阳)不等边三角形AABC的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为。

3.(2018齐齐哈尔)设a、b为实数,那么“2+“〃 +从一” 的最小值为04.(2018云南)如图,MN是。

的直径,MN=4, NAMN=40° ,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.C5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1WxV15)之间的函数关系式,并求出第几天时销售利润最大(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少元,则第15天在第14天的价格基础上最多可降多少元6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R (元),售价每只为P (元),且R、P与x的关系式分别为R = 500 + 30x , P = 170 —2x。

(完整版)初中数学《几何最值问题》典型例题

(完整版)初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.轴对称最值图形lPBANM lBAAPBl 原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值转化作其中一个定点关于定直线l的对称点先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点作其中一个定点关于定直线l的对称点折叠最值图形B'NMCAB原理两点之间线段最短特征在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.转化转化成求AB'+B'N+NC的最小值1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=2OC=2×32=6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形P ABN的周长最小时,a=.【分析】因为AB,PN的长度都是固定的,所以求出P A+NB的长度就行了.问题就是P A+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时P A+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:74.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A 、B 两点在直线的两侧,点A 到直线的距离AM =4,点B 到直线的距离BN =1,且MN =4,P 为直线上的动点,|P A ﹣PB |的最大值为.D PB′N MA【分析】作点B 于直线l 的对称点B ′,则PB =PB ′因而|P A ﹣PB |=|P A ﹣PB ′|,则当A ,B ′、P 在一条直线上时,|P A ﹣PB |的值最大.根据平行线分线段定理即可求得PN 和PM 的值然后根据勾股定理求得P A 、PB ′的值,进而求得|P A ﹣PB |的最大值.【解答】解:作点B 于直线l 的对称点B ′,连AB ′并延长交直线l 于P . ∴B ′N =BN =1,过D 点作B ′D ⊥AM , 利用勾股定理求出AB ′=5 ∴|P A ﹣PB |的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .【分析】本题关键在于找到两个极端,即BA ′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA ′取最大值3和当点Q 与D 重合时,BA ′的最小值1.所以可求点A ′在BC 边上移动的最大距离为2.【解答】解:当点P 与B 重合时,BA ′取最大值是3, 当点Q 与D 重合时(如图),由勾股定理得A ′C =4,此时BA ′取最小值为1. 则点A ′在BC 边上移动的最大距离为3﹣1=2. 故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PF AE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458 .【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD,∴DE2,根据三角形的三边关系,OD<OE+DE,∴当OD过点E是最大,最大值为2+1.故答案为:2+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD 和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=22(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22x,CD′=22(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为2×33∴PK+QK3故答案为:3.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP•(BB′+CC′+DD′)=1,又由1≤AP≤2,即可求得答案.【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP+S△ABP+S△ACP=1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2 AP,∵1≤AP≤2,∴当P当P与C重合时,有最小值2.∴2≤BB′+CC′+DD′≤2.故答案为:2≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2 AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。

初中数学竞赛:最值问题求法应用举例[附答案]

初中数学竞赛:最值问题求法应用举例[附答案]

最值问题求法例题(1)、若实数a ,b ,c 满足a2 + b2+ c2= 9,则代数式(a - b)2 + (b —c)2 +(c - a)2的最大值是()A.27 B、 18 C、15 D、 12例题(2)、如果对于不小于8的自然数N ,当3N+1是一个完全平方数时,N + 1都能表示成K个完全平方数的和,那么K的最小值是()A、 1B、 2C、 3D、 4例题(3)、设a、b为实数,那么a2+ab+b2-a-2b的最小值是——————————。

例题(4)、已知实数a、b满足a2+ab+b2=1 ,则a2-ab+b2的最小值和最大值的和是————————。

例题5、若a、b满足3a+5∣b∣= 7 ,则S= 2a-3∣b∣的最大值为-------------------,最小值为--------------------。

(二)、直接运用a 2+b 2≥ 2ab ( a +b ≥ 2ab )性质求最值。

例题(6)、若X > 0,则函数Y =3X +31X+21++XX 的最小值。

例题(7)、已知 a 、b 、c 、d 均为实数,且a +b +c +d = 4 ,a 2+b 2+c 2+d 2 =316,求a 的最小值与最大值。

(三)、用一元二次方程根的判别式Δ=b 2-4ac (结合韦达定理)求最值。

例题(8)、已知实数a 、b 、c 满足a +b +c = 2 ,abc = 4 ,○1求a 、b 、c 中最大者的最小值 ;○2求∣a ∣+∣b ∣+∣c ∣的最小值。

例题(9)、求函数Y = 12156322++++X X X X 的最小值。

(四)、用绝对值的几何意义和取零点、分段讨论法求最值。

例题(10)、a b c d e是一个五位自然数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a<b<c<d ,则│a-b │+│b-c │+│c -d │+│d -e │的最大值是 ———。

初中数学千题解——最值问题100题(学生版)

初中数学千题解——最值问题100题(学生版)

1.如图3.1所示,在Rt △ABC 中,∠A =30°,AB =4,点D 为边AB 的中点,点P 为边AC 上的动点,则PB +PD 的最小值为( )A.B.A.A.2.如图3.2所示,在矩形ABCD 中,AB =5,AD =3,动点P 满足13PAB ABCDS S=V 矩形,则点P 到AB 两点距离之和P A +PB 的最小值为 .3.如图3.3所示,在矩形ABCD 中,AD =3,点E 为边AB 上一点,AE =1,平面内动点P 满足13PAB ABCDS S=V 矩形,则DP EP -的最大值为 .4.已知y =y 的最小值为.5.已知y =y 的最大值为 .6.如图3.4所示,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =D 是边AB 上一动点,连接CD ,以AD 为直径的圆交CD 于点E ,则线段BE 长度的最小值为 .B7.如图3.5所示,正方形ABCD 的边长是4,点E 是边AB 上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 时边AB 上另一动点,则PD +PG 的最小值为 .GP E DCBA图3.1PCBD AP ADBC图3.2图3.3B8.如图3.6所示,在矩形ABCD 中,AB =2,AD =3,点E 、F 分别为边AD 、DC 上的点,且EF =2,点G 为EF 的中点,点P 为边BC 上一动点,则P A +PG 的最小值为 .GP FED CB A9.在平面直角坐标系中,A (3,0),B (a ,2),C (0,m ),D (n ,0),且m 2+n 2=4,若点E 为CD 的中点,则AB +BE 的最小值为( )A .3B .4C .5D .25 10.如图3.7所示,AB =3,AC =2,以BC 为边向上构造等边三角形BCD ,则AD 的取值范围为 .DCB11.如图3.8所示,AB =3,AC =2,以BC 为腰(点B 为直角顶点)向上构造等腰直角三角形BCD ,则AD 的取值范围为 ;12. 如图3.9所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,则AD 的取值范围为 ,13. 如图3.10所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为 ,图3.8DC图3.9DBAC14. 如图3.11所示,正六边形ABCDEF 的边长为2,两顶点A 、B 分别在x 轴和y 轴上运动,则顶点D 到坐标原点O 的距离的最大值和最小值的乘积为 ;15. 如图3.12所示,AB =4,点O 为AB 的中点,⊙O 的半径为1,点P 是⊙O 上一动点,△PBC 是以PB 为直角边的等腰直角三角形(点P 、B 、C 按逆时针方向排列),则AC 的取值范围为 ;图3.10PC图3.11图3.12CAB16.如图3.13所示,⊙O 的半径为3,Rt △ABC 的顶点A 、B 在⊙O 上,∠B =90°,点C 在⊙O 内,且tan A =34.当点A 在圆上运动时,OC 的最小值为( )B.32D.53图3.1317.如图3.14所示,在平面直角坐标系中,Q (3,4),点P 是以Q 为圆心、2为半径的⊙Q 上一动点,A (1,0),B (-1,0),连接P A 、PB ,则P A 2+PB 2的最小值是___________.18.如图3.15所示,两块三角尺的直角顶点靠在一起,BC =3,EF =2,G 为DE 上一动点.将三角尺DEF 绕直角顶点F 旋转一周,在这个旋转过程中,B 、G 两点的最小距离为___________.图3.1519.如图3.16所示,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,BC =△ADC 与△ABC 关于AC 对称,点E 、F 分别是边DC 、BC 上的任意一点,且DE =CF ,BE 、DF 相交于点P ,则CP 的最小值为( )A.1 C.32D.2图3.16PEDBA20.如图3.17所示,sin O =35,长度为2的线段DE 在射线OA 上滑动,点C 在射线OB 上,且OC =5,则△CDE 周长的最小值为___________.图3.17OEDCBA21、如图3.18所示,在矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,则PM+MN+NQ 的最小值是______________。

初中数学《几何最值问题》典型例题

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.几何最值问题中的基本模型举例轴对称最值图形lPBANM lBAAPBl原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值转化作其中一个定点关于定直线l的对称点先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点作其中一个定点关于定直线l的对称点折叠最值图形B'NMCAB原理两点之间线段最短特征在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.转化转化成求AB'+B'N+NC的最小值二、典型题型1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=2OC=2×32=6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形P ABN的周长最小时,a=.【分析】因为AB,PN的长度都是固定的,所以求出P A+NB的长度就行了.问题就是P A+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时P A+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:74.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为.D PB′N BMA【分析】作点B 于直线l 的对称点B ′,则PB =PB ′因而|P A ﹣PB |=|P A ﹣PB ′|,则当A ,B ′、P 在一条直线上时,|P A ﹣PB |的值最大.根据平行线分线段定理即可求得PN 和PM 的值然后根据勾股定理求得P A 、PB ′的值,进而求得|P A ﹣PB |的最大值.【解答】解:作点B 于直线l 的对称点B ′,连AB ′并延长交直线l 于P . ∴B ′N =BN =1,过D 点作B ′D ⊥AM , 利用勾股定理求出AB ′=5 ∴|P A ﹣PB |的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .【分析】本题关键在于找到两个极端,即BA ′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA ′取最大值3和当点Q 与D 重合时,BA ′的最小值1.所以可求点A ′在BC 边上移动的最大距离为2.【解答】解:当点P 与B 重合时,BA ′取最大值是3, 当点Q 与D 重合时(如图),由勾股定理得A ′C =4,此时BA ′取最小值为1. 则点A ′在BC 边上移动的最大距离为3﹣1=2. 故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PF AE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458.【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD=BC=1,∴DE2根据三角形的三边关系,OD<OE+DE,∴当OD过点E2.故答案为:2+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD 和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=22(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22x,CD′=22(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为2×33∴PK+QK33【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP•(BB′+CC′+DD′)=1,又由1≤AP≤2,即可求得答案.【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP+S△ABP+S△ACP=1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2 AP,∵1≤AP≤2,∴当P与B重合时,有最大值2;当P与C重合时,有最小值2.∴2≤BB′+CC′+DD′≤2.故答案为:2≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2 AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。

初中数学《最值问题》典型例题 -【完整版】

初中数学《最值问题》典型例题 -【完整版】

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.几何最值问题中的基本模型举例然后作其中一个定点关于定直线的对称点关于定直线的对称点折叠最值图形B'NMCAB原理两点之间线段最短特征在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.转化转化成求AB'B'NNC的最小值1.如图:点、N分别在边OA、OB上运动,若∠AOB=45°,O32N的周长的最小值为.【分析】作,N 是CD 与OA ,OB 的交点时,△,N 是CD 与OA ,OB 的交点时,△222N 周长最小的条件是解题的关键.2.如图,当四边形123k b k b =+⎧⎨-=+⎩74747474=4,点B到直线的距离BN =1,且MN =4,D PB′N MA的值然后根据勾股定理求得,利用勾股定理求出AB ′=5∴|45 ON=90°,矩形ABCD的顶点A、B分别在458边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2AB=1,∴OE=AE=12∵BC=1,四边形ABCD是矩形,∴AD=BC=1,∴DE=2,根据三角形的三边关系,OD<OEDE,∴当OD过点E是最大,最大值为21.故答案为:21.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=,BC=4﹣,根据等腰直角三角形性质,得出CD2,CD2(4﹣),根据勾股定理然后用配方法即可求解.【解答】解:设AC=,BC=4﹣,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22,CD′=22(4﹣),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2CE2=12212(4﹣)2=2﹣48=(﹣2)24,∵根据二次函数的最值,∴当取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PKQK的最小值为.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PKQK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,=3,∴点P′到CD的距离为2×32∴PKQK的最小值为3.故答案为:3.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′CC′DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD =12,S△ABP S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP•(BB′CC′DD′)=1,又由1≤AP【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP S△ABP S△ACP=1,∴12AP•BB′12AP•CC′12AP•DD′=12AP•(BB′CC′DD′)=1,则BB′CC′DD′=2AP,∵1≤AP∴当P与B重合时,有最大值2;当P与C重合时,有最小值BB′CC′DD′≤2.BB′CC′DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP S△ABP S△ACP=1,继而得.到BB′CC′DD′=2AP10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PEPF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PEPF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PEPF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PEPF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。

含参数二次函数的最值问题(初中数学中考专题)

含参数二次函数的最值问题(初中数学中考专题)
解得 综上所述m=1,n=﹣1或m=﹣1,n=﹣1.
变式练习 (1)、当 - 2 x 1时,二次函数 y x2 4ax 3a的最小值等于 -1,求a的值.
(2)、当﹣1≤x≤1时,函数y=﹣x2﹣ax+b+1(a>0)的最小值是﹣4, 最大值是0,求a、b的值.
(3)、当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4, 求实数m的值.
变式练习 (1)、当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,求a的值.
(2)、已知二次函数y=﹣x2+6x﹣5.当t≤x≤t+3时,函数的最 大值为m,最小值为n,若m﹣n=3,求t的值.
变式练习 (3)、设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数 x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数, 它在给定的闭区间上都有最小值.求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1] (t为任意实数)上的最小值f(x)的解析式.
5 55
是闭区间[a,b]上的“闭函数”,求a+b的值.
变式练习
(5)、已知关于x的二次函数y=x2+bx+c(实数b,c为常数).若b2﹣c= 0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值.
初中数学中考专题讲解 二次函数含参数的最值问题
引例 引例.对于二次函数 (1)求它的最小值和最大值. (2)当1≤x≤4时,求它的最小值和最大值. (3)当-2≤x≤1时,求它的最小值和最大值. (4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出 现在哪些位置?
二次函数三要素:开口方向,对称轴,自变量取值范围,画 草图,数形结合。

初中数学的几何最值问题

初中数学的几何最值问题

1. 如图.∠MON=90°.矩形ABCD 的顶点A 、B 分别在边OM.ON 上.当B 在边ON 上运动时.A 随之在边OM 上运动.矩形ABCD 的形状保持不变.其中AB=2.BC=1.运动过程中.点D 到点O 的最大距离为【 】A .21+B .5C .1455 5D .522.在锐角三角形ABC 中.BC=24.∠ABC=45°.BD 平分∠ABC .M 、N分别是BD 、BC 上的动点.则CM+MN 的最小值是 。

3.如图.圆柱底面半径为2cm .高为9cm π.点A 、B 分别是圆柱两底面圆周上的点.且A 、B 在同一母线上.用一棉线从A 顺着圆柱侧面绕3圈到B.求棉线最短为 cm 。

4. 在△ABC 中.AB =5.AC =3.AD 是BC 边上的中线.则AD 的取值范围是 .5.如图.长方体的底面边长分别为2cm 和4cm .高为5cm .若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q 点.则蚂蚁爬行的最短路径长为【 】A.13cmB.12cmC.10cmD.8cm6.如图所示.在边长为2的正三角形ABC 中.E 、F 、G 分别为AB 、AC 、BC的中点.点P 为线段EF 上一个动点.连接BP 、GP.则△BPG 的周长的最小值是 .7.如图.菱形ABCD 中.AB=2.∠A=120°.点P.Q.K 分别为线段BC.CD.BD 上的任意一点.则PK+QK 的最小值为 A . 1 B .3 C . 2D .3+18. 如图.点A 的坐标为(-1.0).点B 在直线y x =上运动.当线段AB 最短时.点B 的坐标为【 】A.(0.0) B.(21-.21-) C.(22.22-) D.(22-.22-)9. 如图.△ABC中.∠BAC=60°.∠ABC=45°.AB=22.D是线段BC上的一个动点.以AD为直径画⊙O分别交AB.AC于E.F.连接EF.则线段EF长度的最小值为.10.已知梯形ABCD.AD∥BC.AB⊥BC.AD=1.AB=2.BC=3.问题1:如图1.P为AB边上的一点.以PD.PC为边作平行四边形PCQD.请问对角线PQ.DC的长能否相等.为什么?问题2:如图2.若P为AB边上一点.以PD.PC为边作平行四边形PCQD.请问对角线PQ的长是否存在最小值?如果存在.请求出最小值.如果不存在.请说明理由.问题3:若P为AB边上任意一点.延长PD到E.使DE=PD.再以PE.PC为边作平行四边形PCQE.请探究对角线PQ的长是否也存在最小值?如果存在.请求出最小值.如果不存在.请说明理由.问题4:如图3.若P为DC边上任意一点.延长PA到E.使AE=nPA(n为常数).以PE、PB为边作平行四边形PBQE.请探究对角线PQ的长是否也存在最小值?如果存在.请求出最小值.如果不存在.请说明理由.11. 如图所示.在菱形ABCD中.AB=4.∠BAD=120°.△AEF为正三角形.点E、F分别在菱形的边BC.CD上滑动.且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动.总有BE=CF;(2)当点E、F在BC.CD上滑动时.分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变.求出这个定值;如果变化.求出最大(或最小)值.12. 如图.在△ABC中.点D、E分别在边BC、AC上.连接AD、DE.且∠1=∠B=∠C.(1)由题设条件.请写出三个正确结论:(要求不再添加其他字母和辅助线.找结论过程中添加的字母和辅助线不能出现在结论中.不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°.BC=2.当点D在BC上运动时(点D不与B、C重合).①求CE的最大值;②若△ADE是等腰三角形.求此时BD的长.(注意:在第(2)的求解过程中.若有运用(1)中得出的结论.须加以证明)13.如图.等腰梯形ABCD中.AD∥BC.AD=AB=CD=2.∠C=60°.M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转.当MD(即MD′)与AB交于一点E.MC(即MC′)同时与AD交于一点F时.点E.F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在.请说明理由;如果存在.请计算出△AEF周长的最小值.14.如图.⊙O的半径为2.点O到直线l的距离为3.点P是直线l上的一个动点.PQ切⊙O于点Q.则PQ的最小值为【】15.如图.在Rt△ABC中.∠C=90°.AB=10cm.AC:BC=4:3.点P从点A出发沿AB方向向点B 运动.速度为1cm/s.同时点Q从点B出发沿B→C→A方向向点A运动.速度为2cm/s.当一个运动点到达终点时.另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒).△PBQ的面积为y(cm2).当△PBQ存在时.求y与x的函数关系式.并写出自变量x的取值范围;(3)当点Q在CA上运动.使PQ⊥AB时.以点B、P、Q为定点的三角形与△ABC是否相似.请说明理由;(4)当x=5秒时.在直线PQ上是否存在一点M.使△BCM得周长最小.若存在.求出最小周长.若不存在.请说明理由.16. 如图.圆柱形玻璃杯高为12cm、底面周长为18cm.在杯内离杯底4cm的点C处有一滴蜂蜜.此时一只蚂蚁正好在杯外壁.离杯上沿4cm与蜂蜜相对的点A处.则蚂蚁到达蜂蜜的最短距离为 cm.17. 如图.四边形ABCD中.∠BAD=120°.∠B=∠D=90°.在BC、CD上分别找一点M、N.使△AMN周长最小时.则∠AMN+∠ANM的度数为【】A.130° B.120° C.110° D.100°18. 点A、B均在由面积为1的相同小矩形组成的网格的格点上.建立平面直角坐标系如图所示.若P是x轴上使得-的值最大的点.Q是y轴上使得QA十QB的值最小PA PB⋅=.的点.则OP OQ19. 阅读材料:例:说明代数式 22x 1(x 3)4++-+的几何意义.并求它的最小值.解: 222222x 1(x 3) 4 (x 0)1(x 3)2++-+=-++-+.如图.建立平面直角坐标系.点P (x.0)是x 轴上一点.则22(x 0)1-+可以看成点P 与点A (0.1)的距离.22(x 3)2-+可以看成点P 与点B (3.2)的距离.所以原代数式的值可以看成线段PA 与PB 长度之和.它的最小值就是PA +PB 的最小值.设点A 关于x 轴的对称点为A′.则PA=PA′.因此.求PA +PB 的最小值.只需求PA′+PB 的最小值.而点A′、B 间的直线段距离最短.所以PA′+PB 的最小值为线段A′B 的长度.为此.构造直角三角形A′CB .因为A′C=3.CB=3.所以A′B=32.即原式的最小值为32。

初中数学的几何最值问题

初中数学的几何最值问题

1. 如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O的最大距离为【 】A .21+B .5C .1455 5D .522.在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。

3.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm 。

4. 在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .5.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】A.13cmB.12cmC.10cmD.8cm6.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 .7.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 A . 1 B .3C . 2D .3+18. 如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为【 】A.(0,0) B.(21-,21-) C.(22,22-) D.(22-,22-)9. 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.10.已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.11. 如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.12. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)13.如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD 交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.14.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为【】15.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.16. 如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.17. 如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130° B.120° C.110° D.100°18. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得-的值最大的点,Q是y轴上使得QA十QB的值最PA PB⋅=.小的点,则OP OQ19. 阅读材料:例:说明代数式 22x 1(x 3)4++-+的几何意义,并求它的最小值. 解: 222222x 1(x 3) 4 (x 0)1(x 3)2++-+=-++-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则22(x 0)1-+可以看成点P 与点A (0,1)的距离,22(x 3)2-+可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA +PB 的最小值.设点A 关于x 轴的对称点为A′,则PA=PA′,因此,求PA +PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,所以PA′+PB 的最小值为线段A′B 的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=32,即原式的最小值为32。

初中数学一次函数与二次函数最值问题专项

初中数学一次函数与二次函数最值问题专项

初中数学一次函数与二次函数最值问题专项2204442-,)04a ac b y b a x ac b a a a x <-=→=--∍>→=⎡⎢⎢⎣2一次函数的最值:局部定义区间:自变量的取值范围受到题意的限制,使自变量的取值范围缩小。

不连续函数最值:不连续函数的图像常表现为是一些孤立的点,自变量的取值范围是整数。

求最值,以题意确定自变量的值,从而得到最值。

最大值:即b 二次函数的最值:抛物线的顶点(2a 4ac-b 最小值:即y=4a 2b a-⎡⎢⎢⎢⎢⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡⎢⎢⎢⎢⎢⎢⎢⎣⎣⎣ 一次函数:例1 已知一次函数当自变量x 分别取3和4时,得函数值1和3 ,问当1≤x ≤5时,函数的最大之和最小值各是多少?分析:[从函数解析式的角度]:将两个点的坐标代入解析式,求一次函数的解析式。

[从自变量的取值范围角度]:由于自变量的取值受到限制,则函数值的取值范围受到限制。

因在自变量所涉及的范围内,求最值。

解:设一次函数的解析式为:)0(≠+=k b kx y有已知得:(3,1),(4,3)满足函数解析式。

⎩⎨⎧=+=+3413b k b k ⎩⎨⎧-==→52b k 所以:一次函数解析式为:52-=x y又因为⎪⎩⎪⎨⎧≤-≤-≤≤≤≤5523,1022,51x x x所以最大值为5,最小值为-3例2:画出函数y=︱2x ︱+x-1的图像,利用图像回答:(1) x 取何值时,y 随x 的增大而减小?(2) 函数图像上最低点的坐标是多少?函数y 的最小值?分析:[从x 的取值范围角度]:写出函数的解析式[从增减性的角度]:根据图像,找到x 的取值范围,使y 随x 的增大而减小。

[从最值的角度]:根据图像,找最低点,则最低点的纵坐标所对的数值即为最小值。

二次函数:例3:炮弹从炮口射出后,飞行的高度h 米与飞行的时间t 秒之间的函数关系式20sin 5h v t t α=-,其中0v 是炮弹发射的初速度,α是炮弹的发射角。

初中数学几何最值问题

初中数学几何最值问题

初中数学几何最值问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]初中数学几何最值问题在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题.近年来,各地中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、分析问题和解决问题的能力.本文针对不同类型的几何最值问题作一总结与分析,希望对大家有所帮助.最值问题的解决方法通常有如下6大类:1.三角形的三边关系例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.2.两点间线段最短例2 如图2,圆柱底面半径为2cm,高为9 cm,点,A B分别是回柱两底面圆周上的点,且,A B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线长度最短为 .` 3.垂线段最短例3 如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC 上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是____________•4.利用轴对称例4.如上右图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)例5 如图5,正方形ABCD,4AB=,E是BC的中点,点P是对角线AC上一动点,则PE PB+的最小值为 .5.利用二次函数例6在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.6利用圆中直径是最长的弦例7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.同步练习1.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD 边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为___________.2.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长。

初中数学几何最值问题

初中数学几何最值问题
精品
2 模型思想
2.1 建立方程模型 例4 已知△ XYZ是直角边长为1的等腰直角三角形( ∠Z=90 。),它的三
个顶点分别在等腰Rt△ ABC(∠ C=90。)的三边上. 求△ ABC直角边长的最大可能值.
精品
精品
精品
精品
几何最值问题
精品
1 几何变换
1.1 利用平移变换 例1 :已知点P在锐角△ABC的边上运动.试
确定点P的位置,使P A+PB+PC最小,并证 明你的结论. 解:当点P在锐角△ ABC最短边上的高的垂足 位置时, P A+PB+PC最小.
精品
精品Βιβλιοθήκη 精品【小结】利用旋转变换将“Y”字型线段组 转化为两定点之问的折线段,利用两点之间 线段最短确定在点共线的情形下取得最值.

初中数学《几何最值问题》典型例题

初中数学《几何最值问题》典型例题


A 落在 BC 边上的 A′处, P、Q 分别在 AB、AD 边
【分析】 本题关键在于找到两个极端,即 BA′取最大或最小值时,点 P 或 Q 的位置.经实验不难发现,分 别求出点 P 与 B 重合时, BA′取最大值 3 和当点 Q 与 D 重合时, BA′的最小值 1.所以可求点 A′在 BC 边上 移动的最大距离为 2. 【解答】 解:当点 P 与 B 重合时, BA ′取最大值是 3, 当点 Q 与 D 重合时(如图) ,由勾股定理得 A′C=4 ,此时 BA ′取最小值为 1. 则点 A′在 BC 边上移动的最大距离为 3﹣ 1=2 . 故答案为: 2

3
【分析】 如图,经分析、探究,只有当直径 EF 最大,且点 A 落在 BD 上时, PD 最小;根据勾股定理求出 BD 的长度,问题即可解决. 【解答】 解:如图, ∵当点 P 落在梯形的内部时,∠ P=∠ A=90°, ∴四边形 PFAE 是以 EF 为直径的圆内接四边形, ∴只有当直径 EF 最大,且点 A 落在 BD 上时, PD 最小, 此时 E 与点 B 重合; 由题意得: PE =AB =8, 由勾股定理得: BD 2=82+62=80 ,
【题后思考】 本题考查了作图﹣轴对称变换,勾股定理等,熟知
“两点之间线段最短 ”是解答此题的关键.
4.动手操作:在矩形纸片 ABCD 中, AB=3, AD =5.如图所示,折叠纸片,使点
折痕为 PQ,当点 A′在 BC 边上移动时,折痕的端点 P、Q 也随之移动.若限定点
上移动,则点 A′在 BC 边上可移动的最大距离为
1
1
1
1
∵ S△ ADP = S 正方形 ABCD = , S△ABP+ S△ACP =S△ ABC= S 正方形 ABCD = ,

初中数学几何最值问题典型例题

初中数学几何最值问题典型例题

初中数学几何最值问题典型例题GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.几何最值问题中的基本模型举例二、典型题型1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=PMN的周长的最小值为.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD OC=6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形PABN的周长最小时,a= .【分析】因为AB,PN的长度都是固定的,所以求出PA+NB的长度就行了.问题就是PA+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时PA+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:74.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为.【分析】作点B于直线l的对称点B′,则PB=PB′因而|PA﹣PB|=|PA﹣PB′|,则当A,B′、P在一条直线上时,|PA﹣PB|的值最大.根据平行线分线段定理即可求得PN和PM的值然后根据勾股定理求得PA、PB′的值,进而求得|PA﹣PB|的最大值.【解答】解:作点B于直线l的对称点B′,连AB′并延长交直线l于P.∴B′N=BN=1,过D点作B′D⊥AM,利用勾股定理求出AB′=5∴|PA﹣PB|的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.【分析】本题关键在于找到两个极端,即BA′取最大或最小值时,点P或Q的位置.经实验不难发现,分别求出点P与B重合时,BA′取最大值3和当点Q与D重合时,BA′的最小值1.所以可求点A′在BC边上移动的最大距离为2.【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD的最小值等于.【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PFAE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458.【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON 上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE =AE =12AB =1, ∵BC =1,四边形ABCD 是矩形,∴AD =BC =1,∴DE根据三角形的三边关系,OD <OE +DE ,∴当OD 过点E .故答案为:+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD 过AB 的中点时值最大是解题的关键.7.如图,线段AB 的长为4,C 为AB 上一动点,分别以AC 、BC 为斜边在AB 的同侧作等腰直角△ACD 和等腰直角△BCE ,那么DE 长的最小值是 .【分析】设AC =x ,BC =4﹣x ,根据等腰直角三角形性质,得出CD =2x ,CD ′=2(4﹣x ),根据勾股定理然后用配方法即可求解. 【解答】解:设AC =x ,BC =4﹣x ,∵△ABC ,△BCD ′均为等腰直角三角形,∴CD =2x ,CD ′=2(4﹣x ), ∵∠ACD =45°,∠BCD ′=45°,∴∠DCE =90°,∴DE 2=CD 2+CE 2=12x 2+12(4﹣x )2=x 2﹣4x +8=(x ﹣2)2+4, ∵根据二次函数的最值,∴当x 取2时,DE 取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD 中,AB =2,∠A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK +QK 的最小值为 .【分析】根据轴对称确定最短路线问题,作点P 关于BD 的对称点P ′,连接P ′Q 与BD 的交点即为所求的点K ,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P ′Q ⊥CD 时PK +QK 的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为∴PK+QK.故答案为:.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD =12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP?(BB′+CC′+DD′)=1,又由1≤AP,即可求得答案.【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP+S△ABP+S△ACP=1,∴12AP?BB′+12AP?CC′+12AP?DD′=12AP?(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2AP,∵1≤AP∴当P与B重合时,有最大值2;当P与C.≤BB′+CC′+DD′≤2.故答案为:≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。

人教版初中数学八下 小专题(十九) 一次函数的应用——最值问题

人教版初中数学八下 小专题(十九) 一次函数的应用——最值问题

(2)该品牌经销商计划新进一批A型车和新款B型车共60辆,且B型车的进货数量 不超过A型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批自 行车售出后获利最多? 解:(2)设购进A型车m辆,总利润为w元. 根据题意,得60-m≤2m,解得m≥20. w=(1 600-1 100)m+(2 000-1 400)(60-m)=-100m+36 000. ∵-100<0,∴w随着m的增大而减小, ∴当m=20时,w取得最大值,此时购进A型车20辆,B型车40辆. 答:购进A型车20辆,B型车40辆时,才能使这批自行车售出后获利最多.
2.某品牌经销商经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400
元,若卖出的数量相同,销售总额将比去年减少20%.
(注:下表是A,B两种型号车今年的进货价和销售价)
型号
A型车
B型车
进货价
1 100元/辆
1 400元/辆
销售价
x元/辆
2 000元/辆
(1)设今年A型车每辆销售价为x元,求x的值;
65
20
成套售价/ (元·套-1)
78
已知该家纺专卖店计划购进此款枕芯和枕套的总数量不超过70个,且枕芯的数量 比枕套数量的2倍多10个.若将一半的枕套配上枕芯成套(一个枕套配一个枕芯) 销售,其余均以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是 多少元?
答:当购进枕套20个,枕芯50个时,才能获得最大利润,最大利润是1 030元.
小专题(十九) 一次函数的应 用——最值问题
1.某小区对广场进行改造,在广场周边种植景观树,通过市场调查,3棵甲景观树与 1棵乙景观树的种植费用为570元;1棵甲景观树与2棵乙景观树的种植费用为390 元. (1)甲、乙两种景观树每棵的种植费用分别为多少元?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.几何最值问题中的基本模型举例轴对称最值图形lPBANM lBAAPBl原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值转化作其中一个定点关于定直线l的对称点先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点作其中一个定点关于定直线l的对称点折叠最值图形B'NMCAB原理两点之间线段最短特征在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.转化转化成求AB'+B'N+NC的最小值二、典型题型1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=2OC=2×32=6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形P ABN的周长最小时,a=.【分析】因为AB,PN的长度都是固定的,所以求出P A+NB的长度就行了.问题就是P A+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时P A+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:74.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为.D PB′N BMA【分析】作点B 于直线l 的对称点B ′,则PB =PB ′因而|P A ﹣PB |=|P A ﹣PB ′|,则当A ,B ′、P 在一条直线上时,|P A ﹣PB |的值最大.根据平行线分线段定理即可求得PN 和PM 的值然后根据勾股定理求得P A 、PB ′的值,进而求得|P A ﹣PB |的最大值.【解答】解:作点B 于直线l 的对称点B ′,连AB ′并延长交直线l 于P . ∴B ′N =BN =1,过D 点作B ′D ⊥AM , 利用勾股定理求出AB ′=5 ∴|P A ﹣PB |的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .【分析】本题关键在于找到两个极端,即BA ′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA ′取最大值3和当点Q 与D 重合时,BA ′的最小值1.所以可求点A ′在BC 边上移动的最大距离为2.【解答】解:当点P 与B 重合时,BA ′取最大值是3, 当点Q 与D 重合时(如图),由勾股定理得A ′C =4,此时BA ′取最小值为1. 则点A ′在BC 边上移动的最大距离为3﹣1=2. 故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PF AE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458 .【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD,∴DE2根据三角形的三边关系,OD<OE+DE,∴当OD过点E2.故答案为:2+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD 和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=22(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22x,CD′=22(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为2×323∴PK+QK3.3【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP•(BB′+CC′+DD′)=1,又由1≤AP≤2,即可求得答案.【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP+S△ABP+S△ACP=1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2 AP,∵1≤AP≤2,∴当P与B重合时,有最大值2;当P与C重合时,有最小值2.∴2≤BB′+CC′+DD′≤2.故答案为:2≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2 AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。

相关文档
最新文档