初中数学经典例题讲解
初中数学10大解题方法及典型例题详解
初中数学10大解题方法及典型例题详解1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
例题:用配方法解方程x2+4x+1=0,经过配方,得到( )A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。
【解】将方程x2+4x+1=0,移向得:x2+4x=-1,配方得:x2+4x+4=-1+4,即(x+2) 2=3;因此选D。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
例题:若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为()A.-2 B.2 C.0 D.1【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。
【解】∵x2+mx-3因式分解的结果为(x-1)(x+3),即x2+mx-3=(x-1)(x+3),∴x2+mx-3=(x-1)(x+3)=x2+2x-3,∴m=2;因此选B。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
初中数学函数典型例题
初中数学函数典型例题1、已知:m n 、是方程2650x x -+=的两个实数根,且m n <,抛物线2y x bx c =-++的图像经过点A(,0m )、B(0n ,).(1) 求这个抛物线的解析式;(2) 设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线2y ax bx c =++(0)a ≠的顶点坐标为24(,)24b ac b a a --) (3) P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.[解析] (1)解方程2650,x x -+=得125,1x x ==由m n <,有1,5m n ==所以点A 、B 的坐标分别为A (1,0),B (0,5).将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++=⎧⎨=⎩解这个方程组,得45b c =-⎧⎨=⎩所以,抛物线的解析式为245y x x =--+(2)由245y x x =--+,令0y =,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9).过D 作x 轴的垂线交x 轴于M. 则1279(52)22DMC S ∆=⨯⨯-= 12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯= 所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形. (3)设P 点的坐标为(,0a )因为线段BC 过B 、C 两点,所以BC 所在的值线方程为5y x =+.那么,PH 与直线BC 的交点坐标为(,5)E a a +,PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+ 解这个方程,得32a =-或5a =-(舍去) ②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+ 解这个方程,得23a =-或5a =-(舍去) P 点的坐标为3(,0)2-或2(,0)3-.2、某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x 的取值范围);(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?[解析] (1)设所求函数关系式为y=kx+b .由图象可知过(10,100),(30,80)两点,得101003080k b k b +=⎧⎨+=⎩解得1110k b =-⎧⎨=⎩∴ y=-x+llO(2)当y=10时,-x+110=10,x=100机器运行100分钟时,第一个加工过程停止(3)第一个加工过程停止后再加满油只需9分钟加工完这批工件,机器耗油166升3、(2006北京海淀)已知抛物线y x x c 122=-+的部分图象如图1所示。
初中数学《一次函数变量与函数》典型例题及答案解析
解:由题意,得 ,
解得x≤3且x≠2,
故选:C.
【点睛】
本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式组是解题关键.
10.下列各曲线中,不能表示y是x的函数的是( )
A. B. C. D.
【答案】D
【Hale Waihona Puke 析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.
【答案】C
【解析】
【分析】
根据函数定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,解答即可.
【详解】
A项中,长方形的宽一定,是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也变,是函数关系;
B项中,正方形的周长与面积是两个变量,给出一个周长的值C,边长即为 ,相应地面积为 ,是函数关系;
【答案】A
【解析】
【分析】
由三角形外角性质可得结论.
【详解】
∵三角形一个外角等于与它不相邻的两个内角和,
∴y=x+60.
故选:A.
【点睛】
考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.
5.小明和他爸爸做了一个实验,小明由一幢245米高的楼顶随手放下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间之间有下面的关系:
【详解】
解;观察表格,得
时间在变,人口在变,故C正确;
故选;C.
【点睛】
本题考查的知识点是常量与变量,解题关键是利用常量与变量的定义.
12.在圆周长计算公式C=2πr中,对半径不同的圆,变量有( )
初中数学经典例题解析
初中数学经典例题解析方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
例:用配方法将二次函数一般式变为顶点式2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
例:用因式分解法解一元二次方程3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
例:换元法化简整式(x+2y)2-(x-2y)2换元法1令a= x+2y,b= x-2y原式=a2-b2=(a+b)(a-b)a+b=2x,a-b=4y∴原式=2x?4y=8xy换元法2令a=x,b=2y原式=(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=4ab=8xy4、判别式法与韦达定理一元二次方程x2+bx+c=0(a≠0)中,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
例:判别式:△=b2-4ac韦达定理5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
(完整版)初一年级数学经典例题
数学天地:初一年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()( =2007120061......41313121211-++-+-+- =200711- =20072006 例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解 原式=2132......9897999810099⨯⨯⨯⨯⨯=1001 例4 计算:2-22-23-24-……-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解 原式=2-22-23-24-……-218+219(-1+2)=2-22-23-24-……-218+219=2-22-23-24-……-217+218(-1+2)=2-22-23-24-……-217+218=……=2-22+23=6【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:()()......1111++++b a ab ()()200620061++b a 的值. (提示:此题可看作例1的升级版,求出a 、b 的值代入就成为了例1.) 2、代数式abab b b a a ++的所有可能的值有( )个(2、3、4、无数个) 【参考答案】1、20082007 2、3 字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当n=1,S=1①n=2,S=5②③n=3,S=9变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得35=x ,把x 、y 的值代入2x-4y+6可得答案328.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解 由3x-6y-5=0,得352=-y x 所以2x-4y+6=2(x-2y)+6=6352+⨯=328 例2已知代数式1)1(++-n n x x ,其中n 为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .分析 当x=1时,可直接代入得到答案.但当x=-1时,n 和(n-1)奇偶性怎么确定呢?因n 和(n-1)是连续自然数,所以两数必一奇一偶.解 当x=1时,1)1(++-n n x x =111)1(++-n n =3当x=-1时,1)1(++-n n x x =1)1()1()1(+-+--n n =1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……752=5625= ,852=7225=(1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n (n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61 ①填空:第11,12,13三个数分别是 , , ;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①111-,121,1311-;②20081;③0. 2、1+n ×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线. A .20 B .36 C .34 D .22分析与解 让直线m 上的4个点和直线n 上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n 上的5个点各确定的一条直线,共22条直线.故选D. 例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM 内,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______. 分析 求∠MON 有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC 靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解 因为OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,所以∠MOB=21∠AOB ,∠NOB=21∠COB 所以∠MON=∠M OB-∠N OB=21∠AOB-21∠C OB=21(∠AOB-∠C OB )=21∠AOC=21×80°=40° 例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小; O AM C N O B AC D E 图1图2图3(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析 此题看起来较复杂,OC 还要在∠AOB 内绕O 点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE 是∠AOB 的一半,也就是说要求的∠DOE , 和OC 在∠AOB 内的位置无关.解 (1)因为OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC.所以∠DOC=21∠BOC ,∠COE=21∠COA 所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA )=21∠AOB 因为∠AOB=60°所以∠DOE =21∠AOB= 21×60°=30° (2)由(1)知∠DOE =21∠AOB ,和OC 在∠AOB 内的位置无关.故此时∠DOE 的大小和(1)中的答案相同.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。
初中数学《一次函数、正比例函数》典型例题及答案解析
初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。
【初中数学】二元一次方程8种典型例题详解
【初中数学】二元一次方程8种典型例题详解1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。
3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
1.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
典型例题:【思路点拨】由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
变式拓展:【思路点拨】由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。
2.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。
典型例题:【思路点拨】本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
变式拓展:【思路点拨】根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。
3.工作量问题知识梳理我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。
初一数学下册知识点《实数的定义》经典例题及解析
实数的定义一、选择题(本大题共80小题,共240.0分)1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A. -2a+bB. 2a-bC. -bD. b【答案】A【解析】解:由图可知:a<0,a-b<0,则|a|+=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.2.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A. aB. bC. cD. d【答案】D【解析】解:由数轴可得:a<b<c<d,故选:D.根据实数的大小比较解答即可.此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.关于的叙述正确的是()A. 在数轴上不存在表示的点B. =+C. =±2D. 与最接近的整数是3【答案】D【解析】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.4.下列各数中是有理数的是()A. πB. 0C.D.【答案】B【解析】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.5.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. -a>b【答案】D【解析】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,-a>b,故选项D正确,故选:D.根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.6.关于的叙述不正确的是()A. =2B. 面积是8的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点【答案】C【解析】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选:C.=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.7.下列实数中,属于有理数的是()A. B. C. π D.【答案】D【解析】解:A、-是无理数,故A错误;B、是无理数,故B错误;C、π是无理数,故C错误;D、是有理数,故D正确;故选:D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.8.如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【答案】B【解析】解:∵2<<3,∴0<3-<1,故表示数3-的点P应落在线段OB上.故选:B.根据估计无理数的方法得出0<3-<1,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.9.-的相反数是()A. B. - C. - D. -2【答案】A【解析】解:-的相反数是.故选:A.根据只有符号不同的两个数叫做互为相反数解答.本题考查了实数的性质,熟记相反数的定义是解题的关键.10.实数a,b在数轴上的位置如图所示,则化简-+b的结果是()A. 1B. b+1C. 2aD. 1-2a【答案】A【解析】解:由数轴可得:a-1<0,a-b<0,则原式=1-a+a-b+b=1.故选A.利用数轴得出a-1<0,a-b<0,进而利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.11.下列说法错误的是()A. 正整数和正分数统称正有理数B. 两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D. 3.1415926是小数,也是分数【答案】B【解析】解:A、正整数和正分数统称为正有理数,正确;B、两个无理数相乘的结果不可能为零,错误;C、正整数,0负整数统称为整数,正确;D、3.1415926是小数,也是分数,正确,故选B利用有理数,整数,无理数,以及分数的定义判断即可.此题考查了实数,涉及的知识有:有理数,无理数,整数与分数,熟练掌握各自的定义是解本题的关键.12.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】解:①任何无理数都是无限小数,故说法正确;②实数与数轴上的点一一对应,故说法错误;③在1和3之间的无理数有无数个,故说法错误;④不是分数,它不是有理数,故说法错误.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,故说法正确.故选B.①根据无理数就是无限不循环小数即可判定;②根据有理数与数轴上的点的对应关系即可的;③根据无理数的定义及开平方运算的法则即可判定;④根据无理数、有理数的定义即可判定;⑤根据近似数的精确度即可判定.此题主要考查了实数的定义及其分类.注意分数能表示成的形式,其中A、B都是整数.因而像不是分数,而是无理数.13.下列说法中正确的是()A. 实数-a2是负数B.C. |-a|一定是正数D. 实数-a的绝对值是a【答案】B【解析】【分析】本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.分别根据平方运算的特点,平方根的性质和绝对值的性质进行逐一分析即可.【解答】解:A、实数-a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|-a|不一定是正数,a=0时不成立,故选项错误;D、实数-a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.14.在,,0,,,227,,相邻两个6之间1的个数逐次加中,有理数的个数为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.分别根据实数的分类及有理数、无理数的概念进行解答.【解答】在-3,,0,-3.5,﹣10%,227,π,0.61611611 6…(相邻两个6之间1的个数逐次加1)中,有理数为:-3,,0,-3.5,10%,227,共有6个.故选C.15.下列说法正确的是()A. 无限小数都是无理数B. 9的立方根是3C. 平方根等于本身的数是0D. 数轴上的每一个点都对应一个有理数【答案】C【解析】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选:C.根据实数的分类、平方根和立方根的定义进行选择即可.本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.16.关于的叙述,错误的是()A. 是有理数B. 面积为12的正方形边长是C. =2D. 在数轴上可以找到表示的点【答案】A【解析】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.17.下列语句中正确的是()A. 正整数和负整数统称为整数B. 有理数和无理数统称为实数C. 开方开不尽的数和π统称为无理数D. 正数、0、负数统称为有理数【答案】B【解析】解:A、正整数和负整数,还有零统称为整数,故A错误;B、有理数和无理数统称为实数,故B正确;C、开方开不尽的数和π都是无理数,故C错误;D、整数、分数统称为有理数,故D错误;故选B.根据实数的分类进行选择即可.本题考查了实数,掌握实数的分类是解题的关键.18.下列说法:;数轴上的点与有理数成一一对应关系;是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,正确的个数有A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如,等,也有π这样的数.①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①,故说法错误;②数轴上的点与实数成一一对应关系,故说法错误;③-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是③④⑥共3个.故选B.19.在实数范围内,下列判断正确的是()A. 若|m|=|n|,则m=nB. 若a2>b2,则a>bC. 若=()2,则a=bD. 若=,则a=b【答案】D【解析】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.解答此题的关键是熟知以下概念:(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.(2)如果一个数的平方等于a,那么这个数叫作a的平方根.20.对于-3.7,下列说法不正确的是()A. 是负数B. 是分数C. 是有理数D. 是无理数【答案】D【解析】解:-3.7是无限循环小数,是负数,是分数,是有理数,不是无理数故选:D.根据有理数的定义可得.本题主要考查实数,熟练掌握有理数的定义是解题的关键.21.在数-2,π,0,2.6,+3,中,属于整数的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】解:在数-2,π,0,2.6,+3,中,整数有-2,0,+3,属于整数的个数,3.故选:B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.22.下列数轴上的点A都表示实数a,其中,一定满足|a|>2的是()A. ①③B. ②③C. ①④D. ②④【答案】B【解析】【分析】本题考查了有理数比较大小,根据绝对值的大小解题是关键.根据绝对值是数轴上的点到原点的距离,图示表示的数,可得答案.【解答】解:一定满足|a|>2的,A在-2的左边,或A在2的右边,故选:B.23.下列说法正确的是()①0是绝对值最小的实数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④带根号的数是无理数A. ①②③④B. ①②③C. ①③D. ①②【答案】D【解析】解:①0是绝对值最小的实数,故①正确;②相反数大于本身的数是负数,故②正确;③数轴上原点两侧且到原点距离相等的数互为相反数,故③错误;④带根号的数不一定是无理数,故④错误.故选:D.依据绝对值、相反数、无理数的概念进行判断即可.本题主要考查的是实数的相关概念,熟练掌握相关知识是解题的关键.24.如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()A. ﹣2πB. 3﹣2πC. ﹣3﹣2πD. ﹣3+2π【答案】B【解析】解:由题意得:AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,∵点B在原点的左侧,∴点B所表示的数为-(2π-3)=3-2π,故选:B.线段AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,点B在原点的左侧,因此点B所表示的数为-(2π-3)=3-2π,于是得出答案.考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.25.下列说法,正确的有()个①m是一个实数,m2的算术平方根是m;②m是一个实数,则-m没有平方根;③带根号的数是无理数;④无理数是无限小数.A. 0B. 1C. 2D. 3【答案】B【解析】解:①如果m是一个实数,m2的算术平方根是|m|,当m是非负数时,m2的算术平方根是m;所以此说法不正确;②如果m是一个正数,则-m没有平方根;所以此选项不正确;③带根号的数不一定是无理数,如=2,是有理数;所以此选项说法不正确;④无理数是无限不循环小数,所以无理数是无限小数,所以此选项说法正确;所以本题说法正确的有1个:④,故选B.①根据算术平方根的定义进行判断;②根据平方根的定义进行判断;③带根号的数不一定是无理数,开方开不尽的数是无理数;④根据无理数的定义进行判断.此题主要考查了实数的定义、平方根及算术平方根的定义、无理数的定义.属于基础知识,熟练掌握这些基本概念是解题的关键.26.已知实数a在数轴上的位置如图,则化简|1-a|+的结果为()A. 1B. -1C. 1-2aD. 2a-1【答案】C【解析】解:由数轴可得:-1<a<0,则|1-a|+=1-a-a=1-2a.故选:C.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.27.下列说法错误的是()A. 的平方根是±2B. 是无理数C. 是有理数D. 是分数【答案】D【解析】【分析】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数.A.根据算术平方根、平方根的定义即可判定;B.根据无理数的定义即可判定;C.根据无理数和立方根的定义即可判定;D.根据开平方和有理数、无理数和分数的定义即可判定.【解答】解:,,故A正确;是无理数,故B正确;是有理数,故C正确;不是分数,它是无理数,故D选项错误.故选D.28.有以下说法:其中正确的说法有()(1)开方开不尽的数是无理数;(2)无理数是无限循环小数(3)无理数包括正无理数和负无理数;(4)无理数都可以用数轴上的点来表示;(5)循环小数都是有理数A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:(1)开方开不尽的数是无理数,该说法正确;(2)无理数是无限不循环小数,原说法错误;(3)无理数包括正无理数和负无理数,该说法正确;(4)无理数都可以用数轴上的点来表示,该说法正确;(5)循环小数都是有理数,该说法正确.正确的有4个.故选:D.根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29.如图,数轴上点P表示的数可能是()A. B. C. D.【答案】B【解析】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了实数与数轴,利用被开方数越大算术平方根越大得出<<<<<是解题关键.30.如图,数轴上,AB=AC,A,B两点对应的实数分别是和-1,则点C所对应的实数是()A. 1+B. 2+C. 2-1D. 2+1【答案】D【解析】解:AC=AB=+1,C点坐标A点坐标加AC的长,即C点坐标为++1=2+1,故选:D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出AC的长是解题关键.31.下列各数中,属于有理数的是()A.B.C. πD. 3.1313313331……(两个“1”之间依次多一个3)【答案】A【解析】解:A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D、3.1313313331……(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.32.下列各组数中互为相反数的是()A. -3与B. -(-2)与-|-2|C. 5与D. -2与【答案】B【解析】解:A、-3与不符合相反数的定义,故选项错误;B、-(-2)=2,-|-2|=-2只有符号相反,故是相反数,故选项正确.C、无意义,故选项错误;D、-2=-2,=-2相等,不符合相反数的定义,故选项错误.故选:B.首先根据绝对值的定义化简,然后根据相反数的定义即可解答.此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0的相反数是其本身.33.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.34.下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④16.8万精确到十分位;⑤(-4)2的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】D【解析】解:-<-,故①错误;当m=0时,是0,不是正数,故②错误;无理数一定是无限小数,故③正确;16.8万精确到千位,故④错误;(-4)2的算术平方根是4.故⑤正确;即正确的有③⑤,故选:D.根据实数的大小比较,算术平方根的定义,无理数的定义,精确度逐个判断即可.本题考查了实数的大小比较,算术平方根的定义,无理数的定义,精确度等知识点,能熟记知识点的内容是解此题的关键.35.下列说法正确的是()A. 立方根等于它本身的实数只有0和1B. 平方根等于它本身的实数是0C. 1的算术平方根是D. 绝对值等于它本身的实数是正数【答案】B【解析】【分析】此题考查了立方根,平方根,算术平方根,绝对值,掌握这些概念是关键,逐项分析即可得到答案.【解答】解:A.立方根等于它本身的数是0,-1,1,故A错误;B.平方根等于它本身的实数是0,故B正确;C.1的算术平方根是1,故C错误;D.绝对值等于它本身的实数是正数,0,故C错误;故选B.36.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A. -a<-bB. a+b<0C. |a|<|b|D. a-b>0【答案】C【解析】解:根据点a、b在数轴上的位置可知-1<a<0,1<b<2,则-a>-b,a+b>0,|a|<|b|,a-b<0.故选:C.根据点a、b在数轴上的位置可判断出a、b的取值范围,即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.37.设面积为6的正方形的边长为a.下列关于a的四种说法:①a是有理数;②a是无理数;③a可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:∵面积为3的正方形的边长为a,∴a=,故①a是有理数,错误;②a是无理数,正确;③a可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共3个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.38.实数a,b,c在数轴上的位置如图所示,则化简|b|+|c-a|-|a+b|的结果为()A. 2a+2b-cB. -cC. c-2aD. a-b-c【答案】B【解析】解:从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,故a+b>0,c-a<0,即有|b|+|c-a|-|a+b|=b-(c-a)-(a+b)=b-c+a-a-b=-c.故选:B.首先从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,接着可得a+b>0,c-a<0,然后即可化简|b|+|c-a|-|a+b|.此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.39.我们知道有一些整数的算术平方根是有理数,如,,,…已知n=1,2,3,…,99,100,易知中共有10个有理数,那么中的有理数的个数是()A. 20B. 14C. 13D. 7【答案】D【解析】解:∵是有理数,∴2n是完全平方数,∵n=1,2,3,…,99,100,∴2n=2,4,6,…,198,200,∴在2,4,6,…,198,200的这组数据中,完全平方数有2,8,18,36,64,100,144,196,∴中的有理数的个数是7,故选:D.在2,4,6,…,198,200的这组数据中,找出完全平方数即可.本题考查了实数,完全平方数,正确的找出完全平方数是解题的关键.40.将四个数-,,,表示在数轴上,被如图所示的墨迹覆盖的数是()A. -B.C.D.【答案】D【解析】解:,,,,因为盖住的数大于2小于3,故选:D.盖住的数大于2小于3,估计,,的值可确定答案.本题考查无理数值的大小估计.确定无理数在哪两个整数之间是解答的关键.41.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;按此规律继续翻转下去,则数轴上数2019所对应的点是()A. 点AB. 点BC. 点CD. 点D【答案】C【解析】解:当正方形在转动第一周的过程中,1所对应的点是A,2所对应的点是B,3所对应的点是C,4所对应的点是D,∴四次一循环,∵2019÷4=504…3,∴2019所对应的点是C.故选:C.由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一循环,由次可确定出2019所对应的点.本题主要考查实数与数轴以及正方形的性质,确定出点的变化规律是解题的关键.42.下列格式中,化简结果与的倒数相同是()A. B. C. D.【答案】A【解析】解:的倒数是.A、原式=,故本选项正确.B、原式=,故本选项错误.C、原式=-,故本选项错误.D、原式=,故本选项错误.故选:A.的倒数是,根据实数的性质、绝对值的计算方法解答.考查了实数的性质,倒数的定义以及绝对值,属于基础题,熟记计算法则即可解题.43.实数a.b在数轴上的位置如图所示,下列各式中不成立的是()A. -a>bB. a+6<0C. a-b<a+bD. |a|+|b|<|a+b|【答案】D【解析】解:选项A正确:找出表示数a的点关于原点的对称点-a,与b相比较可得出-a>b.选项B正确:a+b<0;选项C正确:a-b<a+b;选项D正确的是|a|+|b|>|a+b|,故这个选项不成立.故选:D.根据一对相反数在数轴上的位置特点,先找出与点a相对应的-a,然后与b相比较,即可排除选项求解.本题考查了实数与数轴的关系.用字母表示数,具有抽象性.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.因为是选择题,也可以采用特值法,如:取a=-2,b=1,代入四个选项,逐一检验,就可以得出正确答案.这样做具体且直观.44.关于下列说法中不正确的是()A. 是无理数B. 的平方是2C. 2的平方根是D. 面积为2的正方形的边长可表示为【答案】C【解析】解:A、是无理数,正确,故本选项不符合题意;B、的平方是2,正确,故本选项不符合题意;C、2的平方根是,错误,故本选项符合题意;D、面积为2的正方形的边长为,正确,故本选项不符合题意;故选:C.根据无理数、实数的乘方、平方根的定义、算术平方根的定义逐个判断即可.本题考查了实数及分类、无理数、实数的乘方、平方根的定义、算术平方根的定义,能熟记知识点的内容是解此题的关键,注意:实数包括无理数和有理数,无理数是指无限不循环小数.45.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.46.①倒数等于本身的数为1;②若a、b互为相反数,那么a、b的商必定等于﹣1;③对于任意实数x,|x|+x一定是非负数;④一个数前面带有“﹣”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0和1;⑧平方等于自身的数为0和1;其中正确的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。
人教版初中数学平面直角坐标系典型例题及答题技巧
人教版初中数学平面直角坐标系典型例题及答题技巧单选题1、在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2)B.(2,2)C.(−2,2)D.(2,−2)答案:D解析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为D2、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意故选:D小提示:本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.3、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.4、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.5、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.6、在下列所给出坐标的点中,在第二象限的是A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)答案:B解析:解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(-2,3)、(-2,-3)、(2,-3)中只有(-2,3)在第二象限.故选:B.7、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.8、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.填空题9、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.10、在平面直角坐标系中,将点A(−1,−2)向右平移7个单位长度,得到点B,则点B的坐标为__________.答案:(6,-2)解析:根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点B的坐标为(-1+7,-2),进而可得答案.解:将点A(-1,-2)向右平移了7个单位长度得到点B,则点B的坐标为(-1+7,-2),即(6,-2),所以答案是:(6,-2).小提示:此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.11、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.12、若点A(m+3,m−3)在x轴上,则m=__________.答案:3解析:由题意直接根据x轴上的点的纵坐标为0列出方程求解即可.∵点A(m+3,m−3)在x轴上,∴m-3=0,∴m=3.所以答案是:3.小提示:本题考查点的坐标,熟记x轴上的点的纵坐标为0是解题的关键.13、如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是___.答案:(10,8√3)解析:根据题意建立如图所示的直角坐标系,则OA=2,AB=16,∠ABC=30°,所以AC=8,BC=8√3,则OC=OA+AC=10,所以B(10,8√3),故答案为(10,8√3).解答题14、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.15、如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.(1)在图中建立直角坐标系,使点A、B的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x轴上是否存在点C,使△ABC为等腰三角形(其中AB为腰)?若存在,请直接写出所有满足条件的点C的坐标.答案:(1)答案见解析;(2)存在,点C的坐标(-6,0)或(4,0)或(7,0).解析:(1)根据点B(-1,0),判断x轴经过点B,且B右侧的点就是原点,建立坐标系即可;(2)分情形求解即可.(1)∵点B(-1,0),∴x轴经过点B,且B右侧的点就是原点,建立坐标系如图1所示;(2)存在,点C的坐标(-6,0)或(4,0)或(7,0).理由如下:∵A(3,3),B(-1,0),∴AB=√(3−(−1))2+(3−0)2=5,当AB为等腰三角形的腰时,(1)以B为圆心,以BA=5为半径画弧,角x轴于两点,原点左边的C1,右边为C2,∵AB=5,点B(-1,0),∴C1(-6,0),C2(4,0);(2)以A为圆心,以AB=5为半径画弧,角x轴于一点,原点的右边为C3,∵AB=5,点A到x轴的距离为3,(-1,0),∴等腰三角形AB C3的底边长为2√52−32=8,∴C3(7,0);综上所述,存在,点C的坐标(-6,0)或(4,0)或(7,0).小提示:本题考查了平面直角坐标系的建立,等腰三角形的判定,勾股定理,熟练掌握坐标系的特点,等腰三角形的判定,科学分类求解是解题的关键.。
初中一年级数学经典例题讲解
例题:问题:求解一元一次方程3x - 1 = 2x + 6分析:这是一元一次方程,未知数x的系数为3和-1,常数项为-1和6。
需要按照一元一次方程的求解方法进行求解。
解答:按照一元一次方程的求解方法,可将方程化为x = a的形式进行求解。
步骤如下:1. 将方程中的常数项移动到右边,即把6移到右边,得3x - 2x = 6 + 1。
2. 将方程两边同时乘以1/5,得(3-2)x = (6+1)/5。
3. 求解得到x = (6+1)/5 + 6/(3-2)。
4. 计算得到x = 7/5。
讲解:这道题目主要考察学生对一元一次方程的掌握情况,需要学生能够熟练运用一元一次方程的求解方法。
首先,我们需要把方程中的常数项移到右边,同时注意符号的变化。
接着,将方程两边同时乘以一个数(一般为1或-1),把分母去掉。
最后,解出x即可。
在解题过程中,需要注意以下几点:1. 一元一次方程中未知数的系数不能为0,否则方程无解。
2. 在将方程两边乘以一个数进行化简时,需要选择一个合适的数,一般选择1或-1。
3. 在求解过程中,需要注意运算顺序和符号的变化。
通过这道例题的讲解,希望能够帮助学生更好地掌握一元一次方程的求解方法,提高解题能力。
同时,也希望学生在解题过程中注意以上几点,避免出现错误。
拓展:除了本题中的一元一次方程外,初中数学中还有许多其他类型的经典例题,例如一元二次方程、不等式、函数等。
这些题目都是初中数学的重点和难点之一,需要学生认真掌握。
例如一元二次方程的求解方法有多种,包括直接开平方法、因式分解法和公式法等。
不等式的解法也需要学生掌握不等式的性质和不等式组的解法。
函数则是初中数学的重点之一,需要学生掌握各种函数的性质和图像,以及函数与方程组、不等式之间的关系和应用。
此外,初中数学中还有许多经典例题的变形和扩展,需要学生在掌握基础知识点的基础上进行灵活运用和拓展思维。
例如在解答题目的过程中遇到了一些特殊情况需要进行特殊处理,或者需要对题目进行变形和延伸以更好地考察学生的综合能力等。
完整)初中数学《几何最值问题》典型例题
完整)初中数学《几何最值问题》典型例题初中数学《最值问题》典型例题一、解决几何最值问题的通常思路解决几何最值问题的理论依据是:两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
根据不同特征转化是解决最值问题的关键。
通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段。
几何最值问题中的基本模型举例:1.三角形三边关系在三角形ABC中,M,N分别是边AB,BC上的动点,求AM+BN的最小值。
解析:先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点。
2.图形对称在△ABC中,M,N两点分别是边AB,BC上的动点,将△XXX沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值。
解析:转化成求AB'+B'N+NC的最小值。
二、典型题型1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△XXX的周长的最小值为.解析:作P关于OA,OB的对称点C,D,连接OC,OD。
则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长。
根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解。
解答:作P关于OA,OB的对称点C,D,连接OC,OD。
则当M,N是CD与OA,OB的交点时,△XXX的周长最短,最短的值是CD的长。
PC关于OA对称,∴∠COP=2∠AOP,OC=OP。
同理,∠DOP=2∠BOP,OP=OD。
COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD。
COD是等腰直角三角形。
则CD=2OC=2×32=64.分析】首先,把题目中的图形画出来,理清楚纸片折叠后的几何关系。
然后,可以利用勾股定理求出三角形的边长,再根据两点之间线段最短的原理,确定点A′在BC边上可移动的最大距离。
初中数学最值问题典型例题(含答案分析)
中考数学最【1】值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
(2、代数计算最值问题 3、二次函数中最值问题)问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直”几何基本模型:条件:如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA PB+的值最小.方法:作点A关于直线l的对称点A',连结A B'交l于点P,则PA PB A B'+=的值最小例1、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长。
例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.ABA'′Pl(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。
初中数学二元一次方程组经典例题及相关答案
一、路程问题1、公式:路程=时间×速度(s=v×t,s:路程、v:速度、t:时间)公式变形:时间=路程÷速度(t=s/v)速度=路程÷时间(v=s/t)2、模型:相遇模型:两者所走的路程之和=两者原相距路程追击问题:快者所行路程-慢者所行路程=两者原相距路程3、例题:例1、某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km.求两车速度?答案:解:设甲乙两车的速度分别为 x km/h、y km/h根据题意,得5y=6x x=50(km/h)4y=4x+30+10 y=60(km/h)解析:若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车 6x=5y若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km. 4y=4x+30+10例2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?答案:解:设汽车、拖拉机两车的速度分别为 x km/h 、y km/h根据题意,得(x+y )*34=160 x=90 (km/h ) 21x=23y y=30 (km/h )汽车行驶的路程:(2134+)*90=165 km 拖拉机行驶的路程:(2334+)*30=85 km 解析:汽车、拖拉机同时由甲、乙两地相向而行,1小时20分相遇,即汽车、拖拉机同时出发行驶1小时20分钟两车行驶的路程相加为160km 。
(x+y )*34=160相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机。
即拖拉机行驶23小时的路程,同汽车行驶21小时的路程相同。
初中数学整式的乘法与因式分解例题解析
初中数学整式的乘法与因式分解例题解析一、整式的乘法例题例1:计算:a2·(-a)3·(-a);x n·x n+1·x n-1·x;(x-2y)2·(2y-x)3解:原式=a2·(-a)3·a1=-a2·a3·a4=-a9;原式=x n+n+1+n-1+1=x3n+1;方法一:原式=(x-2y)2·[-(x-2y)]3=-(x-2y)5方法二:原式=(2y-x)2·(2y-x)3=(2y-x)5例2:下列运算中正确的是()A.a2+a3=a5B.a2·a3=a6C.a2+a3=aD.(a2)3=a6解析:a2与a3不是同类项,不能合并,A错误;a2·a3=a2+3=a5≠a6,B错误;a3与a2不是同类项,不能合并,C错误;D正确;(a2)3=a2×3=a6。
答案:D例3:已知a m=4,a n=10,求a2m+n的值。
解析:将代数式a2m+n变形为含a m、a n的代数式,依据是幂的运算法则。
解:a2m+n=a2m·a n=(a m)2·a n=42×10=160.例4:计算:(-x2y)3·3xy2·(2xy2)2;-6m2n·(x-y)3·mn2(y-x)2.解:原式=-x6y3×3xy2×4x2y4=-x9y9.原式=-6×m3n3(x-y)5=-2m3n3(x-y)5.例5:计算:(-2ab)(3a2-2ab-4b2);5ax(a2+2a+1)-(2a +3)(a-5)解:原式=-6a3b+4a2b2+8ab3原式=5a3x+10a2x+5ax-(2a2-10a+3a-15)=5a3x+10a2x+5ax-2a2+7a+15例6:计算:(5mn2-4m2n)(-2mn);(x+7)(x-6)-(x-2)(x+1)解:原式=-10m2n3+8m3n2.原式=x2-6x+7x-42-x2-x+2x+2=2x-40二、因式分解例题例7:下列式子中,从左到右变形属于因式分解的是()A.a2+4a-21=a(a+4)-21B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21D.a2+4a-21=(a+2)2-25解析:根据因式分解的概念,只有B选项满足:等号左边是多项式,等号右边是几个整式的积的形式,并且经检验运算过程正确,故选B.答案 B例8:若代数式x2+ax可以分解因式,则常数a不可以取( )解析:因为代数式x2+ax可以分解因式,所以常数a不可以取0.例9:下面分解因式正确的是()A.x2+2x+1=x(x+2)+1B.(x2-4)x=x3-4xC.ax+bx=(a+b)xD.m2-2mn+n2=(m+n)2解析:根据因式分解的概念,A项、B项不是分解因式;C项是提公因式法分解因式;D项虽是分解因式,但错误,应是m2-2m +n2=(m-n)2答案:C例10:把下列各式分解因式:-16x4y6+24x3y5-9x2y4;4(x+y)2-4(x+y) ·z+z2;(a-b)3-2(b-a)2+(a-b);9(x+a)2+30(x+a)(x+b)+25(x+b)2解:原式=-x2y4(16x2y2-24xy+9)=-x2y4(4xy-3)2;原式=[2(x+y)]2-2×2(x+y)·z+z2=[2(x+y)-z]2=(2x+2y-z)2;原式=(a-b)[(a-b)2-2(a-b)+1]=(a-b)[(a-b)-1]2=(a-b)(a-b-1)2;原式=[3(x+a)]2+2·3(x+a)·5(x+b)+[5(x+b)]2=[3(x+a)+5(x+b)]2=(3x+3a+5x+5b)2=(8x+3a+5b)2.关键提醒:因式分解的步骤:(1)先看各项有没有公因式,若有公因式,则先提取公因式.(2)再看能否使用公式法.(3)用分组分解法,即通过分组后再提出公因式或运用公式法来达到分解的目的.(4)因式分解的最后结果,必须是几个整式的积.(5)因式分解的结果必须进行到每个因式不能再分解为止。
七天课堂:初中数学经典例题解析
初中数学经典例题解析【例1】如图10,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,E 为BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE ,DF 。
(1) 求证:ΔBEF ∽ΔCEG .(2) 当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由.(3)设BE =x ,△DEF 的面积为y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少?解析过程及每步分值1) 因为四边形ABCD 是平行四边形, 所以AB DG ············ 1分图10MB DC E FGx A所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△ ························· 3分 (2)BEF CEG △与△的周长之和为定值.················· 4分 理由一:过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH由 BC =10,AB =5,AM =4,可得CH =8,BH =6,所以BC +CH +BH =24 ·························· 6分 理由二:由AB =5,AM =4,可知在Rt△BEF 与Rt△GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====,所以,△BEF 的周长是125BE , △ECG 的周长是125CE又BE +CE =10,因此BEF CEG 与的周长之和是24. ··········· 6分(3)设BE =x ,则43,(10)55EF x GC x ==- 所以21143622[(10)5]2255255y EF DG x x x x ==-+=-- ········· 8分配方得:2655121()2566y x =--+. 所以,当556x =时,y 有最大值. ····················· 9分最大值为1216. ······························ 10分A M xH GFED CB【例2】如图二次函数y=ax2+bx+c(a>0)与坐标轴交于点A B C且OA=1 OB=OC=3 .(1)求此二次函数的解析式.(2)写出顶点坐标和对称轴方程.(3)点M N在y=ax2+bx+c的图像上(点N在点M的右边) 且MN∥x轴求以MN为直径且与x轴相切的圆的半径.解析过程及每步分值(1)依题意(10)(30)(03)A B C --,,,,,分别代入2y ax bx c =++········ 1分 解方程组得所求解析式为223y x x =-- ··················· 4分(2)2223(1)4y x x x =--=-- ······················ 5分 ∴顶点坐标(14)-,,对称轴1x = ······················ 7分 (3)设圆半径为r ,当MN 在x 轴下方时,N 点坐标为(1)r r +-,········ 8分 把N 点代入223y x x =--得1172r -+=·················· 9分 同理可得另一种情形1172r +=∴117-+117+ 10分【例3】已知两个关于x 的二次函数1y 与当x k =时,217y =;且二次函数2y 的图象的对称轴是直222112()2(0)612y y a x k k y y x x =-+>+=++,,线1x =-. (1)求k 的值;(2)求函数12y y ,的表达式;(3)在同一直角坐标系内,问函数1y 的图象与2y 的图象是否有交点?请说明理由.解析过程及每步分值(1)由22112()2612y a x k y y x x =-++=++,得22222121()612()2610()y y y y x x a x k x x a x k =+-=++---=++--.又因为当x k =时,217y =,即261017k k ++=,解得11k =,或27k =-(舍去),故k 的值为1.(2)由1k =,得2222610(1)(1)(26)10y x x a x a x a x a =++--=-+++-,所以函数2y 的图象的对称轴为262(1)a x a +=--,于是,有2612(1)a a +-=--,解得1a =-,所以2212212411y x x y x x =-++=++,.(3)由21(1)2y x =--+,得函数1y 的图象为抛物线,其开口向下,顶点坐标为(12),; 由22224112(1)9y x x x =++=++,得函数2y 的图象为抛物线,其开口向上,顶点坐标为(19)-,;故在同一直角坐标系内,函数1y 的图象与2y 的图象没有交点.【例4】如图,抛物线24y x x =+与x 轴分别相交于点B 、O,它的顶点为A,连接AB,把AB所的直线沿y 轴向上平移,使它经过原点O,得到直线l,设P 是直线l 上一动点. (1)求点A 的坐标;(2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3)设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当462682S +≤≤+时,求x 的取值范围.解析过程及每步分值解:(1)∵4)2(422-+=+=x x x y ∴A(-2,-4)(2)四边形ABP 1O 为菱形时,P 1(-2,4)四边形ABOP 2为等腰梯形时,P 1(5452-,) 四边形ABP 3O 为直角梯形时,P 1(5854,-)四边形ABOP 4为直角梯形时,P 1(51256-,)(3)由已知条件可求得AB 所在直线的函数关系式是y=-2x-8,所以直线l 的函数关系式是y=-2x①当点P 在第二象限时,x<0,△POB 的面积x x S POB 4)2(421-=-⨯⨯=∆ ∵△AOB 的面积84421=⨯⨯=∆AOB S ,∴)0(84<+-=+=∆∆x x S S S POB AOB ∵286264+≤≤+S , ∴⎪⎩⎪⎨⎧+≤+≥286264S S即⎪⎩⎪⎨⎧+≤+-+≥+-2868426484x x ∴⎪⎪⎩⎪⎪⎨⎧-≤-≥22412232S x∴x 的取值范围是22322241-≤≤-x②当点P 在第四象限是,x>0,过点A 、P 分别作x 轴的垂线,垂足为A ′、P ′ 则四边形POA ′A 的面积44)2(21)2(224+=⋅⋅-+⋅+=-='∆'''x x x x x S S S O P P A A P 梯形P A A PO ∵△AA ′B 的面积42421=⨯⨯='∆B A A S ∴)0(84>+=+='∆'x x S S S B A A A A PO ∵286264+≤≤+S ,∴⎪⎩⎪⎨⎧+≤+≥286264S S 即⎪⎩⎪⎨⎧+≤++≥+2868426484x x ∴⎪⎪⎩⎪⎪⎨⎧-≤-≥21242223S x ∴x 的取值范围是21242223-≤≤-x【例4】随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。
初中数学经典例题
勾股定理的应用1、如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160m 。
假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?,那么学校受影响的时间为多少秒?思路点拨:(1)要判断拖拉机的噪音是否影响学校A ,实质上是看A 到公路的距离是否小于100m, 小于100m 则受影响,大于100m 则不受影响,故作垂线段AB 并计算其长度。
(2)要求出学校受影响的时间,实质是要求拖拉机对学校A 的影响所行驶的路程。
因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。
须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。
解析:作AB ⊥MN ,垂足为B 。
在 Rt ΔABP 中,∵∠ABP =90°,∠APB =30°,°, AP =160,∴ AB =AP =80。
(在直角三角形中,30°所对的直角边等于斜边的一半)°所对的直角边等于斜边的一半) ∵点∵点 A 到直线MN 的距离小于100m, ∴这所中学会受到噪声的影响。
∴这所中学会受到噪声的影响。
如图,假设拖拉机在公路MN 上沿PN 方向行驶到点C 处学校开始受到影响,那么AC =100(m),由勾股定理得:由勾股定理得: BC 2=1002-802=3600,∴ BC =60。
同理,拖拉机行驶到点D 处学校开始脱离影响,处学校开始脱离影响,那么,那么,AD =100(m),BD =60(m), ∴CD =120(m)。
拖拉机行驶的速度为拖拉机行驶的速度为 : 18km/h =5m/s t =120m ÷5m/s =24s 。
答:拖拉机在公路拖拉机在公路 MN 上沿PN 方向行驶时,方向行驶时,学校会受到噪声影响,学校会受到噪声影响,学校会受到噪声影响,学校受影响的时间学校受影响的时间为24秒。
初中数学有理数典型例题及答题技巧
初中数学有理数典型例题及答题技巧填空题1、数字0.064精确到了_____位.答案:千分解析:根据近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.解:数字0.064精确到了千分位,所以答案是:千分.小提示:此题考查了近似数,掌握近似数精确到哪一位,应当看末位数字实际在哪一位是本题的关键,是一道基础题.2、已知a,b互为相反数,则a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b=________.答案:0解析:根据相反数的概念,得到a+b=0,继而可得出答案.解:∵a,b互为相反数,∴a+b=0.∴a+2a+3a+...+49a+50a+50b+49b+...+3b+2b+b=(a+b)+2(a+b)+3(a+b)+...+50(a+b)=0.所以答案是:0.小提示:本题考查了相反数的概念,属于基础题,注意掌握相反数的概念是关键.3、已知a与b的和为2,b与c互为相反数,若|c|=1,则a=__________.答案:1或3解析:根据已经得到:a+b=2 b+c=0 且c=±1,便可求出a.解:根据已知有:b+c=0 且c=±1,当c=1时,b=-1,则a=3当c=-1时,b=1,则a=1综上a=1或者3小提示:本题考查绝对值的定义,应当分类讨论求值.4、若a、b互为相反数,c、d互为倒数,则(a+b)2−2cd=_______.答案:-2解析:利用相反数,倒数的性质确定出a+b,cd的值,代入原式计算即可求出值.解:根据题意得:a+b=0,cd=1,则原式=0-2=-2.所以答案是:-2.小提示:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5、小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,−1,+0.5,−0.75,小红快速准确地算出了4筐白菜的总质量为__________千克.答案:99解析:(+0.25)+(−1)+0.5+(−0.75)+25×4=-1+100=99.故答案为99.解答题6、列式计算:与2.5的和所得差是多少?(1)−3减去−512(2)3,−5,−6的和比这三个数和的绝对值大多少?答案:(1)0;(2)-16解析:(1)先列出算式,再根据有理数的加法和有理数的减法运算法则进行计算即可得解;(2)先列出算式,再根据有理数的加法和有理数的乘方的定义以及有理数的减法运算法则和绝对值的性质进行计算即可得解.+2.5)解:(1)(−3)−(−512=(−3)−(−3)=(−3)+3=0;(2)[3+(−5)+(−6)]−|3+(−5)+(−6)|=(−8)−8=(−8)+(−8)=−16.小提示:本题考查了有理数的减法,绝对值的性质,有理数的加法,熟记运算法则并准确列出算式是解题的关键.7、某巡警车在一条南北大道上巡逻,某天巡警车从岗亭O处出发,规定向北方向为正,当天行驶记录如下:(单位:千米)+10,−9,+7,−15,+6,−5,+4,−2(1)最终巡警车是否回到岗亭O处?若没有,在岗亭何方,距岗亭多远?(2)在巡逻过程中,最远处离出发点有多远?(3)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?答案:(1)最终巡警车没有回到岗亭O处,在岗亭南4千米处;(2)在巡逻过程中,最远处离出发点有10千米远;(3)途中还需补充1.6升油解析:(1)计算出八次行车里程的和,看其结果正负情况即可判断位置;(2)直接通过计算比较即可得出在巡逻过程中,最远处离出发点有多远(3)求出所记录的八次行车里程的绝对值的和,再计算油耗,经过比较即可得出答案.(1)(+10)+(−9)+(+7)+(−15)+(+6)+(−5)+(+4)+(−2)=−4,故最终巡警车没有回到岗亭O处,在岗亭南4千米处.(2)|+10|=10,10-9=1(千米),1+7=8(千米),8-15=-7(千米),-7+6=-1(千米),-1-5=-6(千米),-6+4=-2(千米),-2-2=-4(千米).故在巡逻过程中,最远处离出发点有10千米远.(3)共行驶路程:10+9+7+15+6+5+4+2=58(千米),需要油量为:58×0.2=11.6(升),则还需要补充的油量为11.6−10=1.6(升).故不够,途中还需补充1.6升油.小提示:本题考查用正负数表示的相反意义的量的应用题,关键理解基准量,和正负数表示的意义,会计算相反意义的量和,会解释结果正负表示的意义,理解相反意义的量的绝对值是解题关键.8、一辆出租车一天上午以某商场为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:km)如下:+9,−3,−5,+4,−8,+6,−3,−6,−4,+10.(1)将最后一名乘客送到目的地时,相对于商场,出租车的位置在哪里?________;(2)这天上午出租车总共行驶了________km;(3)已知出租车每行驶1km耗油0.08L,每升汽油的售价为6.5元.如果不计其他成本,出租车平均每千米收费2.5元,那么这半天出租车盈利(或亏损)了多少元?答案:(1)商场;(2)58;(3)114.84元解析:(1)根据有理数的加法运算,看其结果的正负即可判断其位置;(2)根据绝对值的定义列式计算即可;(3)根据题意列式计算即可.解:(1)9−3−5+4−8+6−3−6−4+10=0(km),所以将最后一名乘客送到目的地,出租车回到了商场.故答案为商场.(2)|+9|+|−3|+|−5|+|+4|+|−8|+|+6|+|−3|+|−6|+|−4|+|+10|=58(km),即这天上午出租车总共行驶了58km.故答案为58.(3)58×2.5−58×0.08×6.5=114.84(元).答:这半天出租车盈利了114.84元.小提示:本题主要考查有理数的加减运算,注意正负数的意义,熟练掌握运算法则是解题的关键.9、计算:(1)(﹣4120)×1.25×(﹣8);(2)56×(﹣2.4)×35;(3)(﹣14)×(﹣100)×(﹣6)×0.01;(4)91819×15.答案:(1)40.5;(2)−65;(3)-84;(4)149419解析:(1)原式变形后,约分即可得到结果;(2)原式变形后,约分即可得到结果;(3)原式利用乘法法则计算即可得到结果;(4)原式变形后,利用乘法分配律计算即可得到结果.解:(1)原式=8120×54×8=40.5;(2)原式=−56×125×35=−65; (3)原式=﹣(14×6)×(100×0.01)=﹣84;(4)原式=(10−119)×15=150−1519=149419.10、请你观察:11×2=1−12;12×3=12−13;13×4=13−14;⋯11×2+12×3+13×4=11−12+12−13+13−14=1−14=34;⋯ (1)从上述运算得到启发,请你填空:11×2+12×3+13×4+14×5=_______; (2)计算:11×2+12×3+13×4+14×5+⋯+12017×2018.答案:(1)45;(2)20172018解析:(1)参照所给的方法进行求解即可;(2)参照所给的方法进行求解即可;解:(1)11×2+12×3+13×4+14×5, =1−12+12−13+13−14+14−15,=1−15, =45;所以答案是:45(2)11×2+12×3+13×4+14×5+⋯+12017×2018,=1−12+12−13+13−14+14−15+⋯+12017−12018,=1−12018,=20172018;小提示:本题主要考查规律型:数字的变化类,有理数的混合运算,解答的关键是对裂项相消求和法的理解与应用.。