过程控制实验报告8
北京科技大学过程控制实验报告
实验报告课程名称:过程控制系统实验项目名称:被控对象特性测试实验日期与时间: 2022.07 指导教师:班级:姓名:学号:成绩:一、实验目的要求1.了解控制对象特性的基本形式。
2.掌握实验测试对象特性的方法,并求取对象特性参数二、实验内容本节实验内容主要完成测试对象特性,包含以下两部分内容:1.被控对象特性的实验测定本实验采用飞升曲线法(阶跃向应曲线法)测取对象的动特性。
飞升曲线是指输入为阶跃信号时的输出量变化的曲线。
实验时,系统处于开环状态,被控对象在某一状态下稳定一段时间后,输入一阶跃信号,使被控对象达到另一个稳定状态,得到被控对象的飞升曲线。
在实验时应注意以下的一些问题:1)测试前系统应处于正常工作状态,也就是说系统应该是平衡的。
采取一切措施防止其他干扰的发生,否则将影响实验结果。
2)在测试工作中要特别注意工作点与阶跃幅度的选取。
作为测试对象特性的工作点,应该选择正常工作状态,也就是在额定负荷及正常的其他干扰下,因为整个控制过程将在此工作点附近进行。
阶跃作用的取值范围为其额定值的 5-10%。
如果取值太小,由于测量误差及其它干扰的影响,会使实验结果不够准确。
如果取值过大,则非线性影响将扭曲实验结果。
不能获得应有的反应曲线,同时还将使生产长期处于不正常的工作状态,特别是有进入危险区域的可能性,这是生产所不能允许的。
3)实验时,必须特别注意的是,应准确地记录加入阶跃作用的计时起点,注意被调量离开起始点时的情况,以便计算对象滞后的大小,这对以后整定控制器参数具有重要的意义。
4)每次实验应在相同的条件下进行两次以上,如果能够重合才算合格。
为了校验线性,宜作正负两种阶跃进行比较。
也可作不同阶跃量的实验。
2.飞升曲线数据处理在飞升曲线测得以后,可以用多种方法来计算出所测对象的微分方程式,数据处理方法有面积法、图解法、近似法等。
面积法较复杂,计算工作量较大。
近似法误差较大,图解法较方便,误差比近似法小。
过程控制实验报告【范本模板】
过程控制实验实验报告班级:自动化1202姓名:杨益伟学号:1209003212015年10月信息科学与技术学院实验一 过程控制系统建模作业题目一:常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simul ink 中建立相应模型,并求单位阶跃响应曲线.答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。
通常的模型有一阶惯性模型,二阶模型等. 单容过程模型1、无自衡单容过程的阶跃响应实例已知两个无自衡单容过程的模型分别为s s G 5.01)(=和se ss G 55.01)(-=,试在Simuli nk 中建立模型,并求单位阶跃响应曲线。
Simul ink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:2、自衡单容过程的阶跃响应实例已知两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 5122)(-+=,试在Simu link 中建立模型,并求单位阶跃响应曲线.Simu link 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:多容过程模型3、有相互影响的多容过程的阶跃响应实例已知有相互影响的多容过程的模型为121)(22++=Ts s T s G ξ,当参数1=T , 2.1 ,1 ,3.0 ,0=ξ时,试在S imulink 中建立模型,并求单位阶跃响应曲线在Simu lin k中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:4、无相互影响的多容过程的阶跃响应实例已知两个无相互影响的多容过程的模型为)1)(12(1)(++=s s s G (多容有自衡能力的对象)和)12(1)(+=s s s G (多容无自衡能力的对象),试在Simulink 中建立模型,并求单位阶跃响应曲线。
在Simu lin k中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:作业题目二:某二阶系统的模型为2() 224nG s s s n nϖζϖϖ=++,二阶系统的性能主要取决于ζ,n ϖ两个参数。
过程控制实验的实训报告
一、实训目的通过本次过程控制实验实训,使我对过程控制的基本原理、系统组成、控制策略以及实际应用等方面有一个全面的认识,提高我运用理论知识解决实际问题的能力。
同时,通过实验操作,掌握实验设备的使用方法,培养我的动手能力和团队协作精神。
二、实训内容1. 实验设备本次实验使用的设备包括:过程控制系统实验台、传感器、执行器、控制器、计算机等。
2. 实验内容(1)过程控制系统基本原理及组成(2)传感器特性及测量方法(3)执行器特性及控制方法(4)控制器特性及控制策略(5)过程控制系统设计及应用三、实验步骤1. 观察实验设备,了解其组成及功能。
2. 搭建实验系统,连接传感器、执行器、控制器等。
3. 根据实验要求,设置控制器参数,实现过程控制。
4. 观察实验现象,分析实验结果,调整控制器参数,优化控制效果。
5. 实验结束后,整理实验数据,撰写实验报告。
四、实验结果与分析1. 实验现象通过搭建实验系统,观察实验现象,发现当控制器参数设置合理时,系统能够实现稳定的控制效果。
2. 实验结果(1)传感器输出信号与被测参数之间的关系符合线性关系。
(2)执行器响应速度快,控制精度高。
(3)控制器参数对系统控制效果有显著影响。
3. 实验分析(1)传感器在过程控制系统中起到采集被测参数的作用,其输出信号与被测参数之间的关系符合线性关系,为后续控制策略的制定提供了基础。
(2)执行器作为控制系统的输出环节,其响应速度快、控制精度高,对系统控制效果有重要影响。
(3)控制器参数的设置对系统控制效果有显著影响,合理设置控制器参数可以提高控制效果。
五、实训体会1. 通过本次实训,我对过程控制的基本原理、系统组成、控制策略以及实际应用等方面有了更深入的了解。
2. 实验过程中,我掌握了实验设备的使用方法,提高了自己的动手能力。
3. 实验过程中,我学会了与团队成员沟通协作,提高了自己的团队协作精神。
4. 实验过程中,我认识到理论知识与实际应用之间的联系,为今后学习和工作打下了基础。
过程控制实验报告
过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。
本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。
一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。
二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。
温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。
三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。
2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。
3. 打开控制器,开始实验。
观察温度的变化过程,并记录实验数据。
4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。
5. 重复步骤3和4,直到达到满意的控制效果。
四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。
通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。
五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。
实践操作使我们更加熟悉了过程控制的过程和技巧。
同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。
六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。
未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。
结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。
通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。
希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。
过程控制实验报告
过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。
2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。
过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。
过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。
3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。
实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。
(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。
(3) 将执行器与控制器连接,并调试执行器的控制参数。
(4) 在控制软件中设置控制策略和控制目标,并启动控制器。
(5) 监测被控制物理过程的状态,并记录相关数据。
(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。
4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。
实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。
5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。
通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。
在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。
《过程控制系统》实验报告
《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。
它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。
在工业生产中,过程控制系统起到了至关重要的作用。
本实验旨在了解过程控制系统的基本原理、组成以及操作。
二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。
三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。
四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。
在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。
通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。
当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。
在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。
实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。
通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。
五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。
我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。
实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。
然而,本次实验还存在一些不足之处。
首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。
其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。
《过程控制系统》实验报告
《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。
二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。
2、计算机及相关软件用于编程、监控和数据采集分析。
三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。
其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。
常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。
四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。
(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。
(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。
(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。
2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。
设置温度设定值和控制算法参数。
(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。
五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。
(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。
快速性分析:计算液位达到设定值所需的时间。
过程控制实验报告.doc
实验报告专业:自动化姓名:学号:实验一、计算机控制系统实验一、实验目的1、了解计算机控制系统的基本构成。
2、掌握本装置计算机实时监控软件的使用3、熟悉计算机控制算法。
4、掌握计算机控制的参数整定方法。
二、实验设备1、THKGK-1过程控制实验装置:GK-02 GK-03 GK-072、计算机及上位机监控软件三、实验原理与常规仪表控制系统相比,计算机控制系统的最大区别就是用微型机和A/D、D/A转换卡来代替常规的调节器。
基本构成框图如下:计算机根据测量值与设定值的偏差,按程序设定的算法进行运算,并将结果经D/A转换器输出。
控制算法有位置式,增量式和速度式。
为了使采样时间间隔内,输出保持在相应的数值,在D/A卡上设有零阶保持器。
四、实验步骤(一)、监控软件的使用及安装说明:1、计算机硬件要求:CPU:486以上。
内存:32MB或更多。
硬盘:1GB。
操作系统:Windows98/2000/XP。
显示器:1024×768。
串行口:COM12、软件安装安装过程已经在上位机光盘里面。
(二)、登录后选择PID算法对上水箱液位进行控制1、将计算机与单片机控制屏结合使用,对上水箱液位进行直接数字DDC控制实验。
系统连接图自拟。
(单片机控制屏仅起A/D、D/A转换的作用)2、设置适当的作图时间间隔和给定值,调整PID参数K、、Ti、Td、直到得到较好的过程控制实时曲线。
3、对不同PID参数下的实时控制曲线进行比较,分析各参数变化对控制质量的影响。
4、自行选择其他控制算法进行实验,了解不同算法的控制质量。
五、实验小结1、将上述实验结果整理好,写出参数整定的具体步骤及整定数值,整理出系统的结构图。
Kp=2 Ki=6 K=5 阀门开度为60%2、简述PID参数对系统性能的影响。
PID调节器分别对应比例、积分和微分作用1、比例参数KP的作用是加快系统的响应速度,提高系统的调节精度。
随着KP的增大系统的响应速度越快,系统的调节精度越高,但是系统易产生超调,系统的稳定性变差,甚至会导致系统不稳定。
过程控制实验报告
过程控制实验报告1. 背景过程控制是一种控制技术,用于监测和调整工业过程中的变量,以确保产品的质量和效率。
在工业生产中,过程控制对于提高产品质量、降低生产成本和提高生产效率起着至关重要的作用。
本实验旨在通过模拟一个简单的工业过程,了解过程控制的基本原理和方法。
通过对过程中的变量进行监测和调整,我们可以在不同条件下优化过程,并得出相应的结论和建议。
2. 实验设备和方法2.1 实验设备•控制器:使用PID控制器进行过程控制。
•传感器:使用温度传感器、压力传感器和流量传感器等监测过程中的变量。
•执行器:使用阀门、电机等对过程进行调整。
2.2 实验方法1.设定控制目标:根据实验要求,确定需要控制的变量和目标值。
2.连接传感器和执行器:将传感器和执行器与控制器连接,确保数据的传输和命令的执行。
3.数据采集和处理:通过传感器获取过程中的数据,并将其输入到控制器中进行处理。
4.控制策略选择:选择合适的控制策略,如比例控制、积分控制、微分控制等。
5.调整参数:根据实际情况,调整控制器的参数,以达到控制目标。
6.系统监测和优化:实时监测过程中的变量,并根据实验结果进行系统优化。
3. 实验结果经过实验,我们获得了以下结果:•利用PID控制器进行温度控制实验,成功将温度稳定在目标温度范围内,并保持稳定不变。
•利用PID控制器进行压力控制实验,成功将压力稳定在目标压力范围内,并保持稳定不变。
•利用PID控制器进行流量控制实验,成功将流量控制在目标流量范围内,并保持稳定不变。
通过数据分析和结果对比,我们得出以下结论:•PID控制器具有较好的控制性能,能够实现对温度、压力和流量等变量的精确控制。
•过程控制的关键在于选择合适的控制策略和参数调整,通过不断优化可以实现更好的控制效果。
•实时监测对于控制系统的稳定性和可靠性具有至关重要的作用,可以及时发现问题并进行修正。
4. 建议根据实验结果和分析,我们提出以下建议:1.在实际工业生产中,可以采用PID控制器对关键的工艺变量进行控制,以提高产品质量和生产效率。
过程控制系统实验报告
过程控制系统实验报告实验⼀过程控制系统的组成认识实验过程控制及检测装置硬件结构组成认识,控制⽅案的组成及控制系统连接⼀、过程控制实验装置简介过程控制是指⾃动控制系统中被控量为温度、压⼒、流量、液位等变量在⼯业⽣产过程中的⾃动化控制。
本系统设计本着培养⼯程化、参数化、现代化、开放性、综合性⼈才为出发点。
实验对象采⽤当今⼯业现场常⽤的对象,如⽔箱、锅炉等。
仪表采⽤具有⼈⼯智能算法及通讯接⼝的智能调节仪,上位机监控软件采⽤MCGS⼯控组态软件。
对象系统还留有扩展连接⼝,扩展信号接⼝便于控制系统⼆次开发,如PLC控制、DCS控制开发等。
学⽣通过对该系统的了解和使⽤,进⼊企业后能很快地适应环境并进⼊⾓⾊。
同时该系统也为教师和研究⽣提供⼀个⾼⽔平的学习和研究开发的平台。
⼆、过程控制实验装置组成本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。
1、被控对象由上、下⼆个有机玻璃⽔箱和不锈钢储⽔箱串接,4.5千⽡电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压⼒容器组成。
⽔箱:包括上、下⽔箱和储⽔箱。
上、下⽔箱采⽤透明长⽅体有机玻璃,坚实耐⽤,透明度⾼,有利于学⽣直接观察液位的变化和记录结果。
⽔箱结构新颖,内有三个槽,分别是缓冲槽、⼯作槽、出⽔槽,还设有溢流⼝。
⼆个⽔箱可以组成⼀阶、⼆阶单回路液位控制实验和双闭环液位定值控制等实验。
模拟锅炉:锅炉采⽤不锈钢精致⽽成,由两层组成:加热层(内胆)和冷却层(夹套)。
做温度定值实验时,可⽤冷却循环⽔帮助散热。
加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、⽐值控制、解耦控制等实验。
压⼒容器:采⽤不锈钢做成,⼀⼤⼀⼩两个连通的容器,可以组成⼀阶、⼆阶单回路压⼒控制实验和双闭环串级定值控制等实验。
管道:整个系统管道采⽤不锈钢管连接⽽成,彻底避免了管道⽣锈的可能性。
为了提⾼实验装置的使⽤年限,储⽔箱换⽔可⽤箱底的出⽔阀进⾏。
过程控制实验报告
过程控制实验报告实验七、单容水箱液位PID控制1、在开环状态下,利用调节器的手操器的手动操作开关把被控制量“手动”调到给定值(一般是将液位高度控制在水箱高度的50%),被调参数基本稳定后将调节器转换为纯比例自动工作状态,让系统投入闭环运行。
以下是调节过程的截图。
2、比例积分PI调节器控制(1)P值不变,不同Ti时的调节Ti较小时:Ti处于中间位置时:Ti较大时:通过观察不同Ti时的曲线可以发现,当P不变时,Ti越小系统消除余差的能力越强,系统越趋向于不稳定,波动就越大。
这是因为PI环节的幅频特性在低频段为斜率-20的一条斜线,在高频段为斜率为0的直线,相频特性为-90度到0度的一条曲线,因此PI控制器度变化很慢的偏差有很强的调节能力,但之后角度也大,所以当P不变时,Ti越小系统消除余差的能力越强,系统越趋向于不稳定。
(2)Ti值不变,不同P时的调节TI不变P大TI不变P中TI不变P小通过观察不同P时的曲线可以发现,当Ti不变时,比例放大倍数Kc从小到大变化,系统将由稳定想振荡发展,系统的稳定性变差,但Kc增大,控制精度提高,余差减小。
实验参考数据:把上水箱液位作为被控变量,上水箱出水阀开度在70%左右;P:旋钮旋至30%左右;I:0.06X10档;给定电压为1.5V实验八、双容水箱液位PID控制1、同实验七一样,在开环状态下,利用调节器的手操器的手动操作开关把被控制量“手动”调到给定值(一般是将液位高度控制在水箱高度的50%),被调参数基本稳定后将调节器转换为纯比例自动工作状态,让系统投入闭环运行。
以下是调节过程的截图。
手动参数:p:大i:0*10 d:0自动参数p:小i:0*10 d:0自动参数p:大i:0*10 d:0P:大I :0.8*10 d:0临界比例度整定:观察实验曲线可知,当比例放大倍数增大时,系统的稳态误差不断减小,响应时间加快,并出现振荡;加入积分作用后虽可消除余差,但加入积分调节可视系统稳定性降低,甚至出现不稳定情况,同时动态响应变慢,调节时间变大。
过程控制控实验报告
实验一 单容自衡水箱特性的测试一、实验目的1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。
二、实验设备1. A3000高级过程控制实验系统2. 计算机及相关软件 三、实验原理由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。
手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。
根据物料平衡关系,在平衡状态时:0Q Q 2010=- (1) 动态时则有: dtdVQ Q 21=- (2) 式中V 为水箱的贮水容积,dtdV为水贮存量的变化率,它与h 的关系为Adh dV =,即:dtdhA dt dV = (3) A 为水箱的底面积。
把式(3)代入式(2)得:QV116V104V103h∆h QV105QV102P102LT103LICA 103FV101MQ 1Q 2图2.1单容水箱特性测试结构图图2.2 单容水箱的单调上升指数曲线dtdhA=-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dtdhA R h Q S =-1,即:或写作:1)()(1+=TS Ks Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。
式(5)就是单容水箱的传递函数。
若令SR s Q 01)(=,R 0=常数,则式(5)可改为: TS KR S R K S R T S T K s H 0011/)(0+-=⨯+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T0-= (6)当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入输出稳态值。
当t=T 时,则)h(KR )e-(1KR h(T) 001∞===-0.6320.632。
式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。
过程控制综合实验报告
过程控制综合实验报告目录1.流量比值控制系统 (2)2.液位和进口流量串级控制 (5)3.流量-液位前馈反馈控制91 流量比值控制系统1.1 流量比值控制系统描述流量比值控制系统控制流程图如图1.1所示:图1.1 流量比值控制流程图流量比值控制测点清单如表1.1所示:表1.1流量比值控制控制测点清单水介质一路(简称为I路)由泵P101(变频器驱动, 手动控制作为给定值)从水箱V104中加压获得压头, 经电磁阀XV-101进入V103, 水流量可通过变频器或者手阀QV-106来调节;另一路(简称为II路)由泵P102从水箱V104加压获得压头, 经由调节阀FV-101.水箱V103.手阀QV-116回流至水箱V104形成水循环, 通过调节阀FV-101调节此路的水流量;其中, I路水流量通过涡轮流量计FT-101测得, II 路水流量通过电磁流量计FT-102测得。
本题为比值调节系统, 调节阀FV-101为操纵变量, FT-102的测量值与FT-101的测量值经除法器运算后结果作为FTC-101的测量值, FT-102是被控变量。
1.2 控制算法和编程这是一个单闭环流量比值控制系统, 流量计FT-101流量与流量计FT-102成比例控制, 如图1.2所示。
1.3 操作过程和调试编写控制器算法程序, 下装调试;编写测试组态工程, 连接控制器, 进行联合调试。
2.在现场系统上, 打开手阀QV-102.QV-105, QV115, QV106, 电磁阀XV101直接打开(面板上DOCOM接24V, XV101接GND)。
3.在控制系统上, 将支路1流量变送器(FT-101)输出连接到控制器AI1, 将支路2流量变送器(FT-102)输出连接到控制器AI0, 变频器控制端连接到AO0, 调节阀FV-101控制端连接到AO1, 且变频器手动控制。
4.打开设备电源, 包括调节阀电源, 变频器电源, 变频器设为外部信号操作模式。
过程控制实验报告
过程控制实验报告引言过程控制是工程领域中一项重要的技术,其通过监测和控制生产过程中的各种变量,以最大程度地提高生产效率和质量。
本文将介绍一项涉及过程控制的实验,并分析实验结果以及对于工业生产的意义。
实验目的本次实验的目的是通过模拟实际工业生产过程,在实验室环境中对过程控制进行验证和学习。
该实验旨在通过控制设备和监测仪器,了解过程控制在工业生产中的应用,并且掌握相关的理论知识和实际操作经验。
实验设备和材料本次实验使用的设备包括温度传感器、压力传感器、流量计、控制阀和数据采集系统等。
实验所需材料有水、气体和一种特定化学品。
实验步骤1. 实验前准备:清洁实验设备,确保其正常工作状态。
检查传感器和控制阀的准确性和灵敏度。
2. 确定实验参数:选择要监测和控制的变量,比如温度、压力和流量。
根据设计要求设置合理的上限和下限。
3. 运行实验:通过控制阀控制流量和压力,同时记录设备的实际参数。
4. 数据采集:使用数据采集系统实时记录和保存实验过程中的各种参数数据。
5. 数据分析:将实验中收集到的数据进行整理和分析,比较设定值和实际值之间的偏差,并进行统计学处理。
实验结果和讨论根据实验数据的分析,我们可以得出以下结论:1. 过程控制对于维持稳定的生产工艺非常重要。
通过对温度、压力和流量的控制,我们可以确保产品的质量和一致性。
2. 传感器的精确度对过程控制的结果有直接影响。
不准确的传感器可能导致控制误差,从而影响产品的质量。
3. 过程控制需要根据实际情况进行调整和优化。
在实验中,我们可以通过改变控制阀的开度和调整设定值来实现更好的控制效果。
4. 数据采集和分析的重要性不可忽视。
通过收集和分析实验数据,我们可以及时发现问题并采取措施进行调整,从而提高系统的稳定性和可靠性。
总结通过本次实验,我们对过程控制的原理和应用有了更深入的了解。
过程控制在工业生产中起着关键作用,它可以提高生产效率、降低生产成本、改善产品质量,并且减少对环境的影响。
中南大学自动检测与控制实验报告8
8、按如图17-3所示接成双容液位控制系统,再按照前面的步骤进行实验,并记录相关的数据。
五、实验结果及处理
六、讨论
3、通过对单/双容小水箱液位PID调节组态软件的使用,熟悉PLC的编程及MCGS软件的组态方法。
二、实验设备
1、THKGK-1型过程控制实验装置
GK-02、GK-07、GK-08
2、计算机、MCGS软件PPI/PC电缆线一根
三、实验原理
测量值信号由S7-200PLC的模拟量输入通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC的AO通道输出。用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。S7-200PLC和上位机进行通讯,并利用上位机MCGS组态软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
4、点击“thkgk-1.mcg”,进入THKGK-1型单容(上水箱)液位控制演示程序控制界面,下图所示。
5、分别在P、PI、PID三种控制方式做实验,整定相应的PID控制参数。
6、运行:在设定好给定值后,即可进入自动运行状态。彩色柱状图直观的显示了给定值SV、测量值PV、输出值OP的动态变化值。实时曲线所记录的是当前实验的数据,实时数据将自动保存在历史曲线数据库里,供以后查询。
17-1 PLC的单容水箱液位控制系统
四、实验步骤:
1、利用S7-200PLC(带模拟量输入/输出模块)、上位机及组态软件MCGS、交流变频器、THKGK-1型实验装置等按图15-1组成一个单回路水位控制系统。
过程控制实验报告
过程控制实验报告液位控制系统参数整定实验概述⼀、PID调节器中各参数对控制结果的影响1 ⽐例作⽤⽐例作⽤即成⽐例的反应控制系统的偏差信号,⼀旦有偏差产⽣,控制器⽴即产⽣控制作⽤,使偏差向减⼩的趋势变化。
⽐例系数的作⽤在于加快系统的响应速度,提⾼系统调节精度。
越⼤,系统的响应速度越快,系统的调节精度越⾼,也就是对偏差的分辨率(重视程度)越⾼,将会产⽣超调,甚⾄导致系统不稳定。
取值过⼩,则会降低调节精度,尤其是使响应速度缓慢,从⽽延长调节时间,使系统静态、动态环节变坏。
2 积分作⽤积分作⽤的强弱取决于积分时间常数。
越⼤,积分作⽤越弱,反之则越强。
积分环节的作⽤在于消除系统的稳态误差,提⾼系统的⽆差度。
积分作⽤系数越⼤,系统静态误差消除越⼤,但积分作⽤系数过⼤,在响应过程的初期会产⽣积分饱和现象,从⽽引起响应过程的较⼤超调。
若积分作⽤系数过⼩,将使系统的静态误差难以消除,影响系统的调节精度。
3 微分作⽤微分环节是响应系统偏差变化的环节,其作⽤主要是在响应过程中抑制偏差向任何⽅向的变化,并能在偏差信号的值变得太⼤之前,在系统中引⼊⼀个有效的早期修正信号,从⽽加快系统的动作速度,减⼩调节时间,对偏差变化进⾏提前预报。
但微分作⽤太强,会引起被控参数⼤幅度变动,使过程产⽣振荡,微分作⽤太弱,导致静差较⼤。
因此,适当的加⼊微分作⽤不但会增加控制过程的稳定性,⽽且能使静差减⼩。
上⾯的分析表明,⽐例、积分、微分三者之间的关系是相互改善⼜相互制约的。
⽐例、积分、微分环节的综合作⽤使PID控制具有结构简单、物理意义明确、鲁棒性强及稳态⽆静差等优点。
因此,PID控制算法在⼯业控制中处于主导地位。
随着科学技术的发展特别是计算机的诞⽣和发展,涌现出许多新的控制⽅式,然⽽直到现在,PID控制仍有⾮常⼴泛的应⽤。
⼆、参数整定实验原理调节器在控制系统中将被调参数的测量值与给定值进⾏⽐较,得到偏差值,根据偏差进⾏逻辑判断和数学运算,产⽣⼀个使偏差减⼩甚⾄为零的控制信号,参数整定的实验⽬的就是根据被控过程的特性确定PID调节器的⽐例度δ,积分时间TI及微分时间TD的⼤⼩,以达到较好的控制效果在简单的过程控制系统中,调节器参数整定通常以系统瞬态响应的衰减率为主要指标,保证系统具有⼀定的稳定裕量。
过程控制系统实验报告
过程控制系统实验报告
控制系统是指自动地完成规定的工作,用来保证生产过程的安全、正常进行。
它包括检测设备、反馈装置以及输入信号和操纵控制阀门等部件组成。
现代化的生产设备越来越多采用自动化仪表及设施,并由此发展成为一个自动控制系统。
因此,人们将这些自动控制装置称之为“自动控制系统”。
一般地说,凡是具有确切的被控变量、测量值、反馈值和控制值(即控制对象)的独立的随动系统,都可看做是控制系统。
本次实验课是以 PID 控制系统为例,对 PID 控制系统做深入探讨,从而使学生能够理论联系实际,真正提高分析问题和解决问题的能力,培养严谨求实的科学态度。
过程控制系统中主要有:1、被控对象参数测量单元2、控制器3、执行器4、检测装置与反馈装置5、通讯网络与计算机控制系统分为
闭环控制和开环控制两大类。
开环控制系统只依靠输出量测量结果来校正偏差,然后利用调节手段去修正被控量,直到满足给定值。
开环控制适应性强,但抗干扰能力弱;闭环控制则相反。
最简单的闭环控制方法就是比例-积分控制( P—微分—比例+积分)。
也叫 PID 控制或比例-积分式控制。
- 1 -。
《仪表及过程控制》
《仪表及过程控制》实验报告册班级:姓名:学号:唐山学院电工电子实验教学中心2009年3月《仪表及过程控制》课程实验报告(一)实验名称单容自衡水箱液位特性测试实验实验时间年月日实验地点姓名合作者实验人学号实验小组第组实验性质□验证性□设计性□综合性□应用性实验成绩:评阅教师签名:一.实验测试结果1. 画出单容水箱液位特性测试实验的系统结构框图(根据实际被控对象结构绘制)。
2. 记录实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。
《仪表及过程控制》课程实验报告(二)4.比较不同PID参数对系统的性能产生的影响。
5.分析P、PI、PD、PID四种控制规律对本实验系统的作用。
《仪表及过程控制》课程实验报告(三)3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。
4.比较不同PID参数对系统性能产生的影响。
5.分析P、PI、PD、PID四种控制方式对本实验系统的作用。
《仪表及过程控制》课程实验报告(四)3.根据扰动分别作用于主、副对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。
4.分析主、副调节器采用不同PID参数时对系统性能产生的影响。
《仪表及过程控制》课程实验报告(五)3.根据输出的阶跃响应曲线,确定滞后的时间τ4.根据3个测试点所得的响应曲线,分析滞后时间τ的大小对系统动态性能的影响。
《仪表及过程控制》课程实验报告(六)3.根据输出响应响应曲线。
4.系统组态软件的设计。
(组态界面)《仪表及过程控制》课程实验报告(七)实验名称双容水箱液位特性测试实验实验时间年月日实验地点姓名合作者实验人学号实验小组第组实验性质□验证性□设计性□综合性□应用性实验成绩:评阅教师签名:一.实验测试结果1.画出双容水箱液位特性测试实验的系统结构框图(根据实际被控对象结构绘制)。
2.记录实验得到的数据及曲线,分析并计算出双容水箱液位对象的参数及传递函数。
《仪表及过程控制》课程实验报告(八)3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。
过程控制实验报告
过程控制实验报告一、实验目的本次实验的主要目的是了解过程控制的基本概念和方法,学习使用PLC编程软件进行程序设计和调试,掌握PID控制算法及其在工业生产中的应用。
二、实验器材1. PLC编程软件2. 工业自动化控制箱3. 电机驱动器4. 温度传感器三、实验原理1. 过程控制:指对某一物理或化学过程进行监测和调节,以达到预期的结果。
2. PID控制算法:PID是比例、积分、微分三个英文单词的缩写。
PID 控制算法通过对反馈信号进行处理,计算出误差值,并根据误差值来调整输出信号,从而达到对被控对象进行精确调节的目的。
四、实验步骤1. 搭建实验装置:将温度传感器安装在被测物体上,并将电机驱动器与被测物体相连。
2. 编写PLC程序:使用PLC编程软件编写程序,对温度传感器采集到的数据进行处理并输出给电机驱动器。
3. 调试程序:在调试模式下运行程序,观察温度变化情况,并根据实际情况进行调整,使温度保持在设定值范围内。
4. 记录实验数据:记录温度传感器采集到的数据及程序调试过程中的各种参数和结果。
五、实验结果分析通过本次实验,我们成功地搭建了一个过程控制装置,并使用PID控制算法对被测物体进行了精确控制。
在调试程序的过程中,我们发现PID控制算法具有较高的精度和稳定性,在工业生产中得到了广泛的应用。
六、实验总结本次实验通过对过程控制和PID控制算法的学习,让我们更加深入地了解了工业自动化生产中的相关知识。
同时,也让我们对PLC编程软件有了更深入的认识,并学会了如何使用它来进行程序设计和调试。
通过本次实验,我们不仅获得了理论知识,还锻炼了动手能力和分析问题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:过程控制
实验名称:单回路控制系统的参数整定专业:自动化专业
姓名:
学号:
2013 /2014 学年第 2 学期
实验一单回路控制系统的参数整定
2014年4月28日
一、实验要求
1、了解调节器特性的实验测试方法;
2、掌握依据飞升特性曲线求取对象动态特性参数和调节器参数的方法;
3、熟悉单回路控制系统的工程整定方法。
二、实验内容
测得某工业过程的单位阶跃响应数据,如附表所示;单位阶跃响应曲线,如图1所示:
0.2
0.4
0.6
0.8
1
1.2
t/s
y
(
t
)
0.2
0.4
0.6
0.8
1
1.2
t/s
y
(
t
)
图1 单位阶跃响应曲线
1、试用高阶传递函数描述该过程的动态特性;
G(s)=K/(Ts+1) ²=1.25/(25.9s+1) ²*e^-10s
2、在Simulink中搭建解算出的被控对象单回路控制系统;
3、采用稳定边界法整定调节器参数,并给出P、PI、PID三种调节器的控制曲线;
Kp=5,Pm=1/Kp=0.2时,等幅振荡,Tm80。
P: 2Pm=0.4
PI: 2.2Pm=0.44 0.85Tm=68
PID: 1.7Pm=0.34 0.5Tm=40 0.125Tm=10
三种调节器的控制曲线:
4、比较、分析实验结果
P调节器稳态产生了静差;PI调节器相对P调节器稳态无静差,但是调节时间延长;PID 调节器相对前两者无论上升时间还是调节时间都变短了,稳态也无静差。
实验报告
课程名称:过程控制
实验名称:串级控制系统专业:自动化专业
姓名:
学号:
2013 /2014 学年第 2 学期
实验二 串级控制系统实验
2014年5月5日
一、实验要求
1、了解串级控制系统组成原理,串级控制调节器参数的整定与投运方法。
2、掌握控制系统采用不同控制方案的实现过程,并与单回路控制相比较。
二、实验内容
测得某工业过程构成如图所示的串级控制系统如图1所示,假设Gv(s)=1,Gm(s)=1,
G o2(s )G c2(s )G o1(s )
G c1(s )X (s )
Y (s )
其中,主对象的传递函数()2o11.03011253)(+⋅+=
s s s G ,副对象的传递函数1
.0109
.0)(o2
+=s s G 。
该系统为定值控制系统,输入为单位阶跃信号。
1、 试在Simulink 中搭建被控对象串级控制仿真系统;
2、 试采用两步法整定主、副控制器的PID 参数;
(1)Kp2=0.00122,P2s=1/Kp=1/0.00122,T2s=1300-200=1100
(2)Kp1=1,P1s=1,T2s=1750-650=1100
(3)副回路(P):
P: P2s=1/0.00122
主回路(PID):
PID: 0.8P1s=0.8 0.3T1s=330 0.1T1s=110 控制曲线:
3、比较试验:试对同样的被控过程采用单回路控制方案,利用稳定边界法整定调节器
参数,并给出PID控制的输出曲线。
(1)单回路控制系统:
Kp=0.00288,Pm=1/Kp=1/0.00288,Tm=1350-500=850
PID: 1.7Pm=590.28 0.5Tm=425 0.125Tm=106.25
(2)对比控制曲线:
4、比较、分析实验结果
单回路控制系统的上升时间与调节时间均快于串级控制系统。
实验报告
课程名称:过程控制
实验名称:调节器参数变化对控制过程的影响专业:自动化专业
姓名:
学号:
2013 /2014 学年第 2 学期
实验三 调节器参数变化对控制过程的影响
2014年5月12日
一、实验要求
1. 掌握PID 控制器对系统的影响;
2. 巩固和加深对理论知识的理解,获得分析、验证系统性能的技巧。
二、实验内容
某工业过程的传递函数为()()2
1151)(+⋅+=s s s G o ,假设1)(=s G v ,1)(=s G m ,调节器为PID 控制策略。
该系统为定值、简单控制系统,期望输入为单位阶跃信号。
1. 试在Simulink 中搭建解被控对象的仿真系统,利用临界比例度法整定
Kp=72,Pm=1/Kp=1/72,Tm=2.88-1.06=1.83
2.结合教材P195的表6-1给出P、PI、PID三种控制方案的输出响应比较曲线,并简要分
析该现象;
P: 2Pm=1/36
PI: 2.2Pm=11/360 0.85Tm=1.56
PID: 1.7Pm=17/720 0.50Tm=0.915 0.125Tm=0.229
由图可见,黄色的P 调节器曲线稳态时产生静差;紫色的PI 调节器曲线调节时间较长,稳态时无静差;蓝色的PID 调节器曲线调节时间短,稳态时也不存在静差。
3. 在比例P 控制方案中,分别给出0.01671=P 、0278.02=P 、1000.03=P 三种情况下的输
出响应比较曲线,并简要分析该现象;
由图可见,P 越大、调节时间越短、调节速度越快、稳态静差也越大。
4. 在比例-微分PI 控制方案中,分别给出⎪⎩⎪⎨⎧==1.30720.030611i T P 、⎪⎩⎪⎨⎧==1.6235 0.030622i T P 、⎪⎩⎪⎨⎧==0
268.30.030633i T P 三种情况下的输出响应比较曲线,并简要分析该现象;
由图可见,PI 调节器在参数P 一定时,参数I 越大调节时间越短、振荡越小。
5. 在比例-微分-积分PID 控制方案中,分别给出⎪⎪⎩⎪⎪⎨⎧===0.11800.95500.0236111d i T T P 、⎪⎪⎩⎪⎪⎨⎧===0.23870.9550 0.0236222d i T T P 、⎪⎪⎩⎪⎪⎨⎧===0.3540
0.9550
0.0236333d i T T P 三种情况下的输出响应比较曲线,并简要分析该现象。
由图可见,PID调节器在P、I参数一定的条件下,D参数越大、上升时间越短、调节时间越短、振荡越小。