吴望一《流体力学》第1-4章习题参考答案(1)
吴望一《流体力学》第1-4章习题参考答案
4 4 4 3 r (9) div(r r ) r r r rc 3r 4r r 7 r 4 r
r (10) r w r r ( w r ) (w r ) r r x ( ijk w j xk ) (w r ) r i
2x j x j
x x
j j
3
2
2
x x
j j
1
2
2 r
r 1 3 1 r 3 1 2 rc 3 r 或 grad rc 2 r r r r r r r r r r r rc
两式相减得到 (a ) b a ( b ) (a )b a b
(a ) r a ( r ) (a )r a r (5) r 3, r 0,( a ) r a (a ) r 2a
( a ) b b ( a ) (b )a (bc )a ac ( b ) a ( b ) (a )b (a )b a rotb rota b adivb
10 以下各式中下角标 c 代表对该矢量或标量不求导 基本公式: a (b c ) b ( a c ) c (a b ), a (b c ) c ( a b ) b ( c a ) ,
流体力学第1、2、3、4章课后习题答案
解: 平板受力如图。
沿s 轴投影,有: sin 200G T ?-= sin 20U TAGµ δ =?=? ∴3 2sin 2059.807sin 200.610 5.0100.60.40.84 G U A δµ--??????===????(kg m s ?) 答:油的动力黏度2 5.010 µ-=?kg m s ?。 1.13 为了进行绝缘处理,将导线从充满绝缘涂料的模具中间拉过。已知导线直径为0.8mm ; 涂料的黏度µ=0.02Pa s ?,模具的直径为0.9mm ,长度为20mm ,导线的牵拉速度为50/m s ,试求所需牵拉力。
解: ∵V V V T α?= ? ∴0.000518500.204V V V T α?=?=??=(m 3) 答:膨胀水箱的最小容积0.204 m 3。
流体力学课后答案
流体力学课后答案第1章绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==??=?? 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===? 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==??1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===??1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du(1250y 50)dy τμρν==-+ y=0cm 时,221510N /m τ-=?;y=2cm 时,222 2.510N /m τ-=?;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。
流体力学第1、2、3、4章课后习题答案
第一章习题答案选择题 (单选题)1.1按连续介质的概念,流体质点是指:( d )( a )流体的分子; ( b )流体内的固体颗粒; ( c )几何的点;( d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2作用于流体的质量力包括: ( c )( a )压力;(b )摩擦阻力;( c )重力;( d )表面张力。
1.3 单位质量力的国际单位是: ( d )( a ) N ;( b ) Pa ;( c ) N / kg ;(d ) m / s 2 。
1.4与牛顿内摩擦定律直接有关的因素是:( b )( a )剪应力和压强; ( b )剪应力和剪应变率; ( c )剪应力和剪应变; ( d )剪应力和流速。
1.5 水的动力黏度 μ 随温度的升高: ( b )( a )增大;(b )减小;( c )不变;( d )不定。
1.6 流体运动黏度的国际单位是: ( a )222( a )) N / m ;( );( ) N s/ m 。
bc kg / m d1.7 无黏性流体的特征是: ( c )( a )黏度是常数; ( b )不可压缩;(c )无黏性;( d )符合pRT 。
1.8 当水的压强增加 1 个大气压时,水的密度增大约为:( a )( a ) 1/20000;( b ) 1/10000;( c ) 1/4000 ;( d ) 1/2000。
1.9 水的密度为 1000 kg/m 3 ,2L 水的质量和重量是多少?解:m V 1000 ( kg )0. 002Gmg2 9.80719.614 ( N )答: 2L 水的质量是 2 kg ,重量是 19.614N 。
1.10 体积为 0.5 m 3的油料,重量为 4410N ,试求该油料的密度是多少?解:m G g 4 4 1 0 9 . 8 0879 9 . 3 (58kg/m 3)V V0 . 5答:该油料的密度是899.358 kg/m 3。
吴望一《流体力学》第四章习题参考答案
15.初始流体静止,因而流体初始无旋。该流动满足理想、正压、体力有势条件,根据涡旋 不生不灭定理,初始无旋则永远无旋。 16. 流动满足理想、不可压缩、体力有势条件,根据亥姆霍兹方程有:
K K K dΩ − ( Ω ⋅∇ ) V = 0 。 dt K K K K K K ∂V ∂V 设流动在 x − y 平面上,则涡度 Ω = Ωk ,且 = 0 ,于是 ( Ω ⋅∇ ) V = Ω =0 ∂z ∂z K dΩ 所以 = 0 ,即沿轨迹涡度不变。 dt
通过全平面的涡通量 lim Γ = lim Γ 0 (1 − e
R →∞ R →∞
−
R2 4 vt
) = Γ0 。
K K K K
11.解: 取平面内流线切向 τ 、法向 n 和平面的法向 k 作为三个正交单位向量,τ ,n 和 k 组成笛卡尔坐标系。
K
K
K rotV =
其中
1 ⎡ ∂ ( vn H n ) ∂ ( vτ Hτ ) ⎤ K − ⎢ ⎥k , ∂n ⎦ H n Hτ ⎣ ∂τ
涡线为
2
K j ∂ ∂y xy 2 z
K k K K K ∂ = ( xz 2 − xy 2 ) i + ( xy 2 − yz 2 ) j + ( zy 2 − zx 2 ) k ∂z xyz 2
dx dy dz 。 = = 2 2 2 2 x ( z − y ) y ( x − z ) z ( y − x2 )
z0 是常量。它的原本对于该流动某横截面上的涡通量的贡献为 Ω ( r ) S ,其中 S 代表该横截
面在球形流体内截出的圆面积。设球形流体固化后的角速度为 ω ′ ,则小球所在位置处的涡 度 = 2ω ′ 。由该横截面上涡通量守恒可知,固化前后球形流体内的截面 S 上的涡通量相等, 即 2ω ′S = Ω S ,可得 ω ′ =
高等教育-《流体力学》课后习题答案
高等教育 --流体力学课后习题答案习题【1】1-1 解:已知:120t =℃,1395p kPa '=,250t =℃ 120273293T K =+=,250273323T K =+= 据p RT ρ=,有:11p RT ρ'=,22p RT ρ'= 得:2211p T p T '=',则2211323395435293T p p kPa T ''=⋅=⨯=1-2 解:受到的质量力有两个,一个是重力,一个是惯性力。
重力方向竖直向下,大小为mg ;惯性力方向和重力加速度方向相反为竖直向上,大小为mg ,其合力为0,受到的单位质量力为01-3 解:已知:V=10m 3,50T ∆=℃,0.0005V α=℃-1根据1V V V Tα∆=⋅∆,得:30.000510500.25m V V V T α∆=⋅⋅∆=⨯⨯=1-4 解:已知:419.806710Pa p '=⨯,52 5.884010Pa p '=⨯,150t =℃,278t =℃ 得:1127350273323T t K =+=+=,2227378273351T t K =+=+= 根据mRT p V =,有:111mRT p V '=,222mRT p V '=G =mg自由落体: 加速度a =g得:421251219.8067103510.185.884010323V p T V p T '⨯=⋅=⨯='⨯,即210.18V V = 体积减小了()10.18100%82%-⨯=1-5 解:已知:40mm δ=,0.7Pa s μ=⋅,a =60mm ,u =15m/s ,h =10mm根据牛顿内摩擦力定律:uT Ayμ∆=∆ 设平板宽度为b ,则平板面积0.06A a b b =⋅= 上表面单位宽度受到的内摩擦力:1100.70.06150210.040.01T A u b N b b h b μτδ-⨯-==⋅=⨯=--/m ,方向水平向左 下表面单位宽度受到的内摩擦力:2200.70.061506300.010T A u b N b b h b μτ-⨯-==⋅=⨯=--/m ,方向水平向左 平板单位宽度上受到的阻力:12216384N τττ=+=+=,方向水平向左。
[工程流体力学(水力学)]1-4章习题解答
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
吴望一《流体力学》第三章习题参考答案
吴望一《流体力学》第三章习题参考答案1.解:CV CS d V s dt tτϕϕδτδτϕδ∂=+⋅∂⎰⎰⎰ 由于t 时刻该物质系统为流管,因而侧面上ϕ的通量=0,于是(1)定常流动0t ϕ∂=∂,222111dV d V d dt τϕδτϕσϕσ=-⎰,设流速正方向从1端指向2端。
(2)非定常流动222111CV d V d V d dt t τϕϕδτδτϕσϕσ∂=+-∂⎰⎰2.解:取一流体微团,设其运动方程为(,,,)(,,,)(,,,)x x a b c t y y a b c t z z a b c t =⎧⎪=⎨⎪=⎩,由质量守恒得,在0t =和t 时刻()(),,,0,,,a b c dadbdc a b c t dxdydz ρρ=利用积分变换可知()(),,,,x y z dxdydzJ dadbdc a b c ∂==∂(雅可比行列式),于是 ()(),,(,,,0)(,,,),,x y z a b c dadbdc a b c t dadbdc a b c ρρ∂=∂()()()(),,,,,0,,,,,x y z a b c a b c t a b c ρρ∂=∂3.(控制体内流体质量的增加率)=-(其表面上的质量通量)(2)球坐标系下选取空间体元(控制体)2sin r r δτθδδθδϕ=。
单位时间内该空间内流体质量的增量为2sin r r t tρρδτθδδθδϕ∂∂=∂∂ 该控制体表面上的质量通量:以r e 和-r e 为法向的两个面元上的质量通量为()2sin |sin |sin r r r r r r v r v r r v r r r rδρρδθθδϕρδθθδϕδδθδϕθ+∂-+=∂以e θ和-e θ为法向的两个面元上的质量通量为()sin sin |sin |v v rr v rr r r θθθθθδθρθρδθδϕρδθδϕδδθδϕθ+∂-+=∂以e ϕ和-e ϕ为法向的两个面元上的质量通量为()||v v r r v r r r r ϕϕϕϕϕδϕρρδθδρδθδδδθδϕϕ+∂-+=∂ 所以()()()22sin sin sin 0r v r v vr r r t rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂即()()()22sin 110sin sin r v r v v t r r r rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ (3)柱坐标系下选取空间体元(控制体)r r z δτδθδδ= 单位时间内该空间内流体质量的增量为 ()r r z r r z t tρδδθδρδδθδ∂∂=∂∂该控制体表面上的质量通量为()()()r z rv v v r z r z r r z r zθρρρδδθδδδθδδδθδθ∂∂∂++∂∂∂ 所以()()()0r z rv v v r r t r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 即()()()0r z v r v v t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ (4)极坐标系下选取面元(控制体)s r r δδθδ=,可认为该面元对应以该面元为底面的单位高度的柱体。
《流体力学》课后习题答案
习题【1】1-1 解:已知:120t =℃,1395p kPa '=,250t =℃ 120273293T K =+=,250273323T K =+= 据p RT ρ=,有:11p RT ρ'=,22p RT ρ'= 得:2211p T p T '=',则2211323395435293T p p kPa T ''=⋅=⨯=1-2 解:受到的质量力有两个,一个是重力,一个是惯性力。
重力方向竖直向下,大小为mg ;惯性力方向和重力加速度方向相反为竖直向上,大小为mg ,其合力为0,受到的单位质量力为01-3 解:已知:V=10m 3,50T ∆=℃,0.0005V α=℃-1根据1V V V Tα∆=⋅∆,得:30.000510500.25m V V V T α∆=⋅⋅∆=⨯⨯=1-4 解:已知:419.806710Pa p '=⨯,52 5.884010Pa p '=⨯,150t =℃,278t =℃ 得:1127350273323T t K =+=+=,2227378273351T t K =+=+= 根据mRTp V=,有:111mRT p V '=,222mRT p V '=得:421251219.8067103510.185.884010323V p T V p T '⨯=⋅=⨯='⨯,即210.18V V =体积减小了()10.18100%82%-⨯=G =mg自由落体: 加速度a =g1-5 解:已知:40mm δ=,0.7Pa s μ=⋅,a =60mm ,u =15m/s ,h =10mm根据牛顿内摩擦力定律:u T Ayμ∆=∆ 设平板宽度为b ,则平板面积0.06A a b b =⋅= 上表面单位宽度受到的内摩擦力:1100.70.06150210.040.01T A u b N b b h b μτδ-⨯-==⋅=⨯=--/m ,方向水平向左 下表面单位宽度受到的内摩擦力:2200.70.061506300.010T A u b N b b h b μτ-⨯-==⋅=⨯=--/m ,方向水平向左 平板单位宽度上受到的阻力:12216384N τττ=+=+=,方向水平向左。
吴望一《流体力学》第二章部份习题参考答案
吴望一《流体力学》第二章部份习题参考答案一、基本概念1.连续介质假设适用条件:在研究流体的宏观运动时,如果所研究问题的空间尺度远远大于分子平均间距,例如研究河流、空气流动等;或者在研究流体与其他物体(固体)的相互作用时,物体的尺度要远远大于分子平均间距,例如水绕流桥墩、飞机在空中的飞行(空气绕流飞机)。
若不满足上述要求,连续介质假设不再适用。
如在分析空间飞行器和高层稀薄大气的相互作用时,飞行器尺度与空气分子平均自由程尺度相当。
此时单个分子运动的微观行为对宏观运动有直接的影响,分子运动论才是解决问题的正确方法。
2.(1)不可;(2)可以,因为地球直径远大于稀薄空气分子平均间距,同时与地球发生相互作用的是大量空气分子。
3.流体密度在压强和温度变化时会发生改变,这个性质被称作流体的可压缩性。
流体力学中谈到流体可压缩还是不可压缩一般要结合具体流动。
如果流动过程中,压力和温度变化较小,流体密度的变化可以忽略,就可以认为流体不可压缩。
随高度的增加而减少只能说明密度的空间分布非均匀。
判断流体是否不可压缩要看速度场的散度V ∇⋅ 。
空气上升运动属可压缩流动,小区域内的水平运动一般是不可压缩运动。
4.没有, 没有, 不是。
5 三个式子的物理意义分别是:流体加速度为零;流动是定常的;流动是均匀的。
6 欧拉观点:(),0d r t dt ρ= ,拉格朗日观点:(),,,0a b c t tρ∂=∂ 7 1)0=∇ρ,2)const =ρ,3) 0=∂∂tρ 8 不能。
要想由()t r a , 唯一确定()t r v ,还需要速度场的边界条件和初始条件。
9 物理意义分别为:初始坐标为(,)a b 的质点在任意时刻的速度;任意时刻场内任意点(,)x y 处的速度。
10 1)V s ∂∂ ,3)V V V⋅∇ 11 见讲义。
12 分别是迹线和脉线。
13 两者皆不是。
该曲线可视为从某点流出的质点在某一时刻的位置连线,即脉线。
流体力学课后作业答案
流 体 力 学
yD 2
(1.8 / sin 60 ) 1 (2 / sin 60 )
2.292m
由力矩平衡
yD F1 yD1 F2 ( yD 2 (1 0.8) / sin 60 ) F
油 h1 F1 F yD2 θ
yD1 yD
2.35m
F2 水 h2
46
解: 阀关时,由静力学方程
z1 p1
流 体 力 学
g
z2
p2
g
5mH 2O
阀开时,由伯努利方程
1 1 2 2
z1
p1
g
v1
2
2g
z2
p2
g
v
2
v2
2
2g
hl
5 0 0.1
1
2g
v 8.74m/s
50
3.28 管末端喷嘴d =10cm,D =40cm,Q=0.4m3/s,12 个螺栓固定法兰,不计质量,求每个螺栓的受力。 解:v1
l
hf
13.6 0.92
2
h 1.24m
又 h l v f
0.92
0.2
d 2g 设为层流 Re 64 320 2000 成立
h
vd Re
1 0.025 320
7.8 10 m /s
2
5
若反向流动,Q不变,Re不变,λ不变,hf不变, 所以h不变,只是反向高差为9cm。
第一章习题解答
1-3 水的密度ρ=1000kg/m3,μ=0.599×10-3Pa· s,求运动粘 度ν。 解: / 0.599 103 /1000 5.99 106 m2 /s 1-7 20º C的空气在直径为2.5cm的管中流动,距管壁上1mm 处的空气速度为3cm/s。求作用于单位长度管壁上的粘性切 力为多少? 解:T=20º C时, μ=0.0183×10-3Pa· s 空气层厚度很小(1mm),速度可认为是线性分布
吴望一流体力学习题及测试题答案
3)定常运动:
0 , ( x, y, z ) ,空间各点的密度不随时间变化 t
2 2
11.设流体运动以 Euler 观点给出 u ax t , v by t , w 0, 换到 Lagrange 观点中去,并用两种观点分别求加速度
(a b 0) ,将此转
(1) Q (r )
v nr
2
sin d d d v r r sin d
0
2
r r r sin d 4 ,故求得 Q( R ) 4 r3 2 c (2)因 θ0 与 r 垂直, Q( r ) d θ0 r r sin d 0 , 故 Q( R) 0 0 r
u 1 u v Pxx P 2 , x 3 x y v 1 u v Pyy P 2 , y 3 x y u v Pxy x y 本构方程:
v ds , v
v dr 0 ,故 n v
l
v
0 ,即在该截面的
任一点上有 v rotv 0 2. 速度场给定如下
(1)
v
r 2 2 2 r 3 ,其中 r x y z
c v θ0 r ,其中 θ0 为球坐标中 θ 方向的单位矢量。 (2)
先证明充分性:设在直角坐标下的速度场为 v (r, t ) (u , v, w) ,其中分量都是空间和时间的 函数。在任意 t 时刻流线的方程为
dx dy dz ,或者 u (r, t ) v(r, t ) w(r, t ) dz w(r, t ) , dx u (r, t )
流体力学课后习题答案
流体力学课后习题答案第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ?。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少?解:10000.0022m V ρ==?=(kg )29.80719.614G mg ==?=(N )答:2L 水的质量是2 kg ,重量是。
体积为3m 的油料,重量为4410N ,试求该油料的密度是多少?解:44109.807899.3580.5m G g V V ρ====(kg/m 3)答:该油料的密度是 kg/m 3。
1.11 某液体的动力黏度为Pa s ?,其密度为8503/kg m ,试求其运动黏度。
解:60.005 5.88210850μνρ-===?(m 2/s )答:其运动黏度为65.88210-? m 2/s 。
《流体力学》课后习题详细解答
1-8解:
或,由 积分得
1-9解:法一:5atm
10atm
=0.537 x 10-9x (10-5) x98.07 x 103= 0.026%
法二: ,积分得
1-10解:水在玻璃管中上升高度
h =
水银在玻璃管中下降的高度
H= mm
第二章流体静力学
2-1解:已知液体所受质量力的x向分量为–a ,z向分量为-g。液体平衡方程为
重心C位于浮心之上,偏心距
沉箱绕长度方向的对称轴y轴倾斜时稳定性最差。浮面面积A=15m2。浮面关于y
轴的惯性矩和体积排量为
定倾半径
可见, >e,定倾中心高于重心,沉箱是稳定的。
第三章流体运动学
3-1解:质点的运动速度
质点的轨迹方程
3-Байду номын сангаас解:
由 和 ,得
故
3-3解:当t=1s时,点A(1,2)处的流速
线速度u = 0r,速度环量
(2)半径r+dr的圆周封闭流线的速度环量为
得
忽略高阶项2 0dr2,得d
(3)设涡量为 ,它在半径r和r+dr两条圆周封闭流线之间的圆环域上的积分为d 。因为 在圆环域上可看作均匀分布,得
将圆环域的面积dA=2 rdr代入该式,得
可解出 =2 + dr/r。忽略无穷小量 dr/r,最后的涡量
沉箱绕长度方向的对称轴y倾斜时稳定性最差。浮面面积A=15m2.浮面关于y轴的惯性矩和体积排量为
定倾半径
可见, ,定倾中心低于重心,沉箱是不稳定的。
(2)沉箱的混凝土体积
沉箱的重量
沉箱水平截面面积
设吃水深度为h,取水的密度 =1000kg/m3.浮力F等于重量G。有
流体力学课后习题部分1~4章
《流体力学》课后部分答案2.14密闭容器,压力表的示值为4900N/m 2,压力表中心比A 点高0.4m ,A 点在水下1.5m ,,求水面压强。
p 0A1.5m0.4m解: 0 1.1a p p p g ρ=+-4900 1.110009.807a p =+-⨯⨯ 5.888a p =-(kPa )相对压强为: 5.888-kPa 。
绝对压强为:95.437kPa 。
答:水面相对压强为 5.888-kPa ,绝对压强为95.437kPa 。
2.16 盛满水的容器,顶口装有活塞A ,直径d=0.4m,容器底的直径D=1.0m,高h=1.8m,如活塞上加力2520N (包括活塞自重),求容器底的压强和总压力。
2.17用多管水银测压计测压,图中标高的单位为m ,试求水面的压强0p 。
水Δ3.0p 0水Δ1.4Δ2.5Δ1.2Δ2.3汞解: ()04 3.0 1.4p p g ρ=--()()5 2.5 1.4 3.0 1.4Hg p g g ρρ=+---()()()()2.3 1.2 2.5 1.2 2.5 1.4 3.0 1.4a Hg Hg p g g g g ρρρρ=+---+--- ()()2.3 2.5 1.2 1.4 2.5 3.0 1.2 1.4a Hg p g g ρρ=++---+--()()2.3 2.5 1.2 1.413.6 2.5 3.0 1.2 1.4a p g g ρρ=++--⨯-+--⎡⎤⎣⎦265.00a p =+(kPa )答:水面的压强0p 265.00=kPa 。
2.24矩形平板闸门AB ,一侧挡水,已知长l =2m ,宽b =1m ,形心点水深c h =2m ,倾角α=︒45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力,试求开启闸门所需拉力T 。
lbαB ATh c解:(1)解析法。
10009.80721239.228C C P p A h g bl ρ=⋅=⋅=⨯⨯⨯⨯=(kN )322221222 2.946122sin sin 4512sin 45sin C C D C C C bl I h y y h y A blαα=+=+=+=+=⨯⋅(m )对A 点取矩,当开启闸门时,拉力T 满足:()cos 0D A P y y T l θ--⋅=()212sin sin 2sin cos cos C C CD A h h l l P h P y y T l l αααθθ⎡⎤⎛⎫⎢⎥+-- ⎪⎢⎥⋅⎝⎭⋅-⎢⎥⎣⎦==⋅ 212221sin 123.9228cos 2cos 45C l lP h l αθ⎛⎫ ⎪+ ⎪⋅ ⎪+⎝⎭==⨯⋅⨯ 31.007=(kN )当31.007T ≥kN 时,可以开启闸门。
吴望一流体力学习题及测试题答案汇编
dz w(r, t)
,或者
dy dx
v(r, t) u(r, t)
,
dz dx
w(r, t) u(r, t)
,
因为流线定常,必定有 v F (r), w G(r) ,因此 u, v, w 可以分离变量为
u
u
u U (r)T (t)
v V (r)T (t)
w W (r)T (t)
此时,流线方程
解:成为不可压缩流体可能运动的条件是
u x
u y
u z
a1
b2
c3
0
。
15.假定流管形状不随时间变化,设 A 为流管的横截面积,且在 A 断面上的流动物理量是
均匀的。试证明连续方程具有下述形式
( A) ( Au) 0
t
s
式中 u 是速度, ds 是流动方向的微元弧长。
证明:在流管上选取长为 s 的一段作为研究对象,则其质量的随体导数满足
定常运动
解: 1) 0, (t) , 空间各点的密度相同。
2) 不可压缩: d 0 , 也就是 v 0 , 均质 0 ; 于是对于不可
dt
t
压均质流体 0 , 0 ,也就是 const ,密度为常数。 t
3)定常运动: 0 , (x, y, z) ,空间各点的密度不随时间变化 t
y2 2
C
所以
流线形状为椭圆形。 五 其他
1.试证明,如果流管中存在与流线垂直的横截面,则在该横截面上必然存在 v rotv 0
证:在流管的截面上由于流线与截面垂直,故过其上任一点有面积微元 ds nds
v v
ds ,
且 ds dr 0 ,即 v dr 0
该面积微元的周线为 l ,由于 Ω nds
流体力学第1、2、3、4章课后习题答案
GAGGAGAGGAFFFFAFAF第一章習題答案選擇題(單選題)1.1按連續介質的概念,流體質點是指:(d )(a )流體的分子;(b )流體內的固體顆粒;(c )幾何的點;(d )幾何尺寸同流動空間相比是極小量,又含有大量分子的微元體。
1.2作用于流體的質量力包括:(c )(a )壓力;(b )摩擦阻力;(c )重力;(d )表面張力。
1.3單位質量力的國際單位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4與牛頓內摩擦定律直接有關的因素是:(b )(a )剪應力和壓強;(b )剪應力和剪應變率;(c )剪應力和剪應變;(d )剪應力和流速。
1.5水的動力黏度μ隨溫度的升高:(b )(a )增大;(b )減小;(c )不變;(d )不定。
1.6流體運動黏度ν的國際單位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7無黏性流體的特征是:(c )(a )黏度是常數;(b )不可壓縮;(c )無黏性;(d )符合RT p =ρ。
GAGGAGAGGAFFFFAFAF1.8當水的壓強增加1個大氣壓時,水的密度增大約為:(a ) (a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度為10003kg/m ,2L 水的質量和重量是多少?解: 10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的質量是2 kg ,重量是19.614N 。
1.10 體積為0.53m 的油料,重量為4410N ,試求該油料的密度是多少? 解: 44109.807899.3580.5m Gg VVρ====(kg/m 3)答:該油料的密度是899.358 kg/m 3。
1.11某液體的動力黏度為0.005Pa s ⋅,其密度為8503/kg m ,試求其運動黏度。