生物化学核酸降解与核苷酸代谢共80页

合集下载

核酸降解与核苷酸代谢

核酸降解与核苷酸代谢

嘧啶碱的分解
不同生物嘧啶碱的分解过程也不 一样,一般情况下含氨基的嘧啶要 先水解脱去氨基,脱氨基也可以在 核苷或核苷酸水平上进行。
2.嘧啶碱的分解
NH 2 N
N
O
H
-NH2
β-丙氨酸
O
NH
二氢尿嘧啶
N
O
H
(开环)
H2O
H2O
β-脲基丙酸
嘧啶还原途径的分解
-CH3
嘧啶分解
• 其中二氧化碳经呼吸道排出体外,氨在
AMP激酶
AMP + ATP —— 2ADP
glycolytic enzymes or oxidative phosphorylation
ADP —— ATP
2 .ATP通过核苷单磷酸激酶生成其他NDP
ATP + NMP —— ADP + NDP
3.NTP的生成
核苷二磷酸激酶
XTP + NDP
XDP + NTP
肠黏膜细胞中还有核苷酸酶 (磷酸单 酯酶),水解核苷酸为核苷和Pi。
脾、肝等组织中的核苷酶进一步水解 核苷为戊糖和碱基。
核酸酶
核酸
核苷酸酶
核苷酸
磷酸
核苷酶
核苷
戊糖
碱基
(嘌呤碱,嘧啶碱)
核酸酶(Nuclease)
核酸酶是作用于核酸磷酸二酯键的水 解酶,包括核糖核酸酶(RNase)和脱氧核 糖核酸酶(DNase),其中能水解核酸分子 内磷酸二酯键的酶又称为核酸内切酶 (endonuclease),从核酸的一端逐个水解 下核苷酸的酶称为核酸外切酶 (exonuclease)。
NH 2 N
N
N H
N

生物化学 第十二章 核酸降解及核苷酸代谢

生物化学 第十二章 核酸降解及核苷酸代谢
的过程
利用磷酸核糖、
氨基酸、甲酸 盐及CO2等简 单物质为原料,
经过一系列酶
促反应,合成
核糖核苷酸的 途径
(一)嘌呤核苷酸的从头合成
AMP
GMP
嘌呤碱合成的元素来源
CO2
Gly
Asp
甲酰基 (一碳单位)
甲酰基 (一碳单位)
Gln (酰胺基)
合成过程
1. 在PRPP基础上逐步合成嘌呤环, 首先合成IMP(IMP合成);
核酸酶内切酶
核糖核酸酶(RNase)
RNase:作用于RNA内部的磷酸二酯键,主要有RNaseA; 产物:5′-OH末端和3′-磷酸基末端的寡核苷酸片段。
Py Pu Py Py G A C U G A
p
p
p
p
p
p
p
p
p
p
OH


RNase A
A A RNase T1
A A T1
RNase对RNA的水解位点示意图 (Pu:嘌呤 Py:嘧啶)

Alu I Bam H I Bgl I EcoR I Hind Ⅲ Sal I Sma I
常用的DNA限制性内切酶的专一性
辨认的序列和切口
说明
‥ ‥A G C T ‥‥ ‥ ‥T C G A ‥ ‥
四核苷酸,平端切口
‥ ‥G G A T C C ‥‥ ‥ ‥C C T A G G ‥‥
六核苷酸,粘端切口
GMP
嘌呤核苷酸从头合成特点
Ø嘌呤核苷酸是在5-磷酸核糖基础上进行的; Ø由IMP转化产生AMP或GMP; ØIMP的合成需5个ATP,6个高能磷酸键; ØAMP或GMP的合成又需1个GTP或ATP。

第九章核酸的降解与核苷酸代谢-课件

第九章核酸的降解与核苷酸代谢-课件

第三节 核苷酸的生物合成
一 总论
二 “从头合成”中碱基各原子来源
通过放射性同位素法推断
天冬氨酸
CN CN CC NN C 一碳单位
CO2 甘氨酸
6
1
5
23 4
7 8
9
一碳单位
嘌 呤 碱
谷氨酰胺 磷酸核糖C1上逐个安插成嘌呤碱成分,形成A(G)MP。
“补救”途径 “从头合成”途径(通常情况下占95%)
A. 天门冬氨酸、谷氨酰胺、 CO2 B. 谷氨酸、谷氨酰胺、天门冬氨酸
C. 天冬氨酸、CO2、甘氨酸 D. CO2、谷氨酰胺、苯丙氨酸 8. 嘌呤环上的四个氮原子来源于
A.天门冬氨酸、谷氨酰胺、甘氨酸
B.天门冬氨酸、谷氨酰胺、氨
C.天门冬氨酸、甘氨酸
D.甘氨酸、谷氨酰胺、氨
E. 尿素、氨
The end
(脑和骨髓)
核糖、氨基酸、CO2、NH3、Pi
内源酸解主脏抑理外核分,要制紧常发物张因导生甚各致在至碱核肝种生其基糖、Pi 中的某些酶缺 乏,影响细胞 生长。 脱氧核糖
辅酶
核糖核苷酸 脱氧核糖核苷酸
RNA
核酸类补品原理所在 可提高康复速度
DNA
记忆法
甘氨坐中间,谷氮站两边; 左手开天门,头顶二氧碳; 两个碳单位,一边分一个。
3.嘌呤从头合成的关键步骤是
A. 由PRPP与谷氨酸合成磷酸核糖胺
B.由PRPP与谷氨酰胺合成磷酸核糖胺
C.谷氨酰胺全部加入到磷酸核糖单位中
D.N5N10甲炔四氢叶酸提供的甲酰基与甘氨酰胺核苷酸形成甲酰甘 氨酰胺核苷酸
E. CO2与氨基咪唑核苷酸生成5-氨基咪唑-4-羧酸核苷酸
4. 人类,嘌呤的主要分解产物是

生物化学_09 核酸降解和核苷酸的代谢

生物化学_09 核酸降解和核苷酸的代谢

IMP转变为GMP和 转变为GMP (3)IMP转变为GMP和AMP
2、 补救途径
(利用已有的碱基和核苷合成核苷酸) (1) 磷酸核糖转移酶途径(重要途径)
核苷磷酸化酶
嘌呤核苷 + 磷酸 腺嘌呤 + 5-PRPP
次黄嘌呤(鸟嘌呤) 磷酸核糖转移酶
嘌呤碱 + 戊糖-1-磷酸 AMP + PPi
腺嘌呤磷酸核糖转移酶
基因组DNA 基因组 不被切割
限制—修饰的酶学假说 限制 修饰的酶学假说 1968年,Meselson 和Yuan发现了 型限制性核酸内切酶 年 发现了I型限制性核酸内切酶 发现了 1970年,Smith和Wilcox从流感嗜血杆菌中分离纯化了 年 和 从流感嗜血杆菌中分离纯化了 第一个II型限制性核酸内切酶 第一个 型限制性核酸内切酶Hind II 型限制性核酸内切酶
(2)尿嘧啶核苷酸的合成 )
天冬氨酸转氨甲酰酶 二氢乳清酸酶
乳清苷酸焦磷酸化酶/Mg2+ 二氢乳清酸脱氢酶
乳清苷酸脱羧酶
(3) 胞嘧啶核苷酸的合成
尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(动物) 细菌) 尿嘧啶核苷三磷酸可直接与 (动物) 反应,生成胞嘧啶核苷三磷酸。 反应,生成胞嘧啶核苷三磷酸。
二、脱氧核糖核酸酶
只能水解DNA磷酸二酯键的酶。 只能水解DNA磷酸二酯键的酶。 DNA磷酸二酯键的酶 牛胰脱氧核糖核酸酶(DNaseⅠ) 牛胰脱氧核糖核酸酶(DNaseⅠ): 可切割双链和单链DNA 降解产物为3 DNA, 可切割双链和单链 DNA, 降解产物为 3’ - 磷酸 为末端的寡核苷酸。 为末端的寡核苷酸。 限制性核酸内切酶: 限制性核酸内切酶: 细菌产生的、能识别并特异切割外源DNA DNA特定 细菌产生的 、 能识别并特异切割外源 DNA 特定 中的磷酸二脂键( 序列中的磷酸二脂键 对碱基序列专一) 序列中的磷酸二脂键(对碱基序列专一)的核酸内 切酶。 切酶。

生物化学下-第33章 核酸的降解与核苷酸代谢

生物化学下-第33章  核酸的降解与核苷酸代谢
腺苷酸琥珀酸 合成酶
磷酸核糖焦磷 酸激酶 转酰胺酶
次黄嘌呤核苷 酸脱氢酶
➢ 嘌呤核苷酸合成的抗代谢物
抗代谢物的概念:在化学结构上与正常代谢物(底物 或辅酶)结构相似,具有竞争性拮抗正常代谢的 物质。
机制:竞争性抑制或“以假乱真”方式干扰或阻断核 苷酸的合成代谢,进而阻止核酸及蛋白质的生物 合成。
尿囊酸酶
尿囊素酶
尿囊酸 (硬骨鱼类)
小 AMP 结
GMP
嘌呤碱的最终 代谢产物
I
H 黄嘌呤氧化酶
X
G
黄嘌呤氧化酶
OH
N
N
OH
HO
N
N H
尿 酸 (uric acid)
3、代谢产物
•排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类 •排尿囊素动物:哺乳动物(灵长类除外)、腹足类 •排尿囊酸动物:硬骨鱼类 •排尿素动物:大多数鱼类、两栖类 •某些低等动物能将尿素进一步分解成NH3和CO2排出。 •植物分解嘌呤的途径与动物相似,产生各种中间产物 (尿囊素、尿囊酸、尿素、NH3)。 •微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲 酸、乙酸、乳酸、等)。
Lesch-Nyhan综合症(莱-尼综合症):也称为自毁容貌 症,是由于次黄嘌呤-鸟嘌呤磷酸核糖转移酶的遗传缺陷 引起的。缺乏该酶使得次黄嘌呤和鸟嘌呤不能转换为 IMP和GMP,而是降解为尿酸,过量尿酸将导致LeschNyhan综合症。手舞足蹈,咬指咬唇强迫自残。
5、嘌呤核苷酸 生物合成的调节
(二)嘌呤核苷酸的合成
1、 从头合成的概念及部位
①定义
利用磷酸核糖、氨基酸、一碳单位及二氧化碳 等简单物质为原料,经过一系列酶促反应,合成 嘌呤核苷酸的途径。
②合成部位

生物化学考研 核酸的降解和核苷酸代谢

生物化学考研 核酸的降解和核苷酸代谢
• 选择性杀伤淋巴细胞
– 对象是B- 和 T-细胞 – 阻碍免疫反应
• 腺苷脱氨酶缺乏症Adenosine deaminase deficiency (ADA) :一种严重的免疫缺陷症, 腺苷脱氨酶的缺乏可使T淋巴细胞因代谢 产物的累积而死亡,从而导致严重的联合 性免疫缺陷症(SCID)。通常导致婴儿 出生几个月后死亡。
还开了药物别嘌呤醇.
• 几天以后,情况已解决并且已经停止服用嘌呤 醇了。重新测定尿酸水平(7.1毫克/升)。医生 给他一些关于改变生活方式的建议。
痛风
尿酸排泄的削弱与过量产生导致发病 尿酸结晶沉淀在关节(痛风性关节炎),肾脏, 输尿管(结石) 黄嘌呤氧化酶抑制剂可以抑制尿酸产生, 用来治 疗痛风药物治疗–次黄嘌呤类似物结合黄嘌呤氧 化酶降低尿酸的生成
次黄嘌呤
黄嘌呤
H2O+O2 H2O2 黄嘌 H2O+O2
尿囊素
呤氧
尿酸氧化酶 H2O化2酶 尿酸
H2O 尿囊 CO2+H2O2 2H2O+O2
素酶
尿囊酸
尿囊酸尿酶素 + 乙醛酸
H2O
脲酶
4NH3 + 2CO2
嘌呤的分解代谢
NH2
N
N
N H
N
Adenine
+H2O 腺嘌呤脱氨酶
O
N
NH
N H
N
NH2
核苷
•把一个嘌呤或嘧啶基与糖通过N-糖苷键的产物
• 嘌呤的N9原子与糖的C1形成糖苷键 • 嘧啶的 N1原子与糖的C1 形成糖苷键
磷酸基团 • 单-,二-或三磷酸
磷酸基团可接合到糖的C3或C5原子
核苷酸
• 一个或更多的磷酸基团通过酯化反应结合的核苷在 分子的5′端的产物

生物化学第33章核酸的降解和核苷酸代谢

生物化学第33章核酸的降解和核苷酸代谢

THANK YOU
感谢聆听
01
02
03
04
药物治疗
针对核酸降解和核苷酸代谢异 常的疾病,可采用药物治疗, 如使用核酸酶抑制剂、核苷酸 类似物等。
基因治疗
对于由基因突变引起的核酸降 解和核苷酸代谢异常疾病,基 因治疗是一种潜在的治疗方法 ,如通过基因编辑技术修复突 变基因。
饮食调整
饮食调整可帮助改善核苷酸代 谢异常,如减少高嘌呤食物的 摄入以降低血尿酸水平。
调节代谢
核酸降解产生的核苷酸及其代谢产物可以调节细胞 内核苷酸代谢相关酶的活性,从而影响核苷酸代谢 的速率和方向。
维持平衡
核酸降解与核苷酸代谢之间的动态平衡对于维持细 胞内核苷酸稳态至关重要,核酸降解的异常可能导 致核苷酸代谢紊乱。
核苷酸代谢对核酸降解的反馈作用
80%
产物反馈
核苷酸代谢产生的某些产物可以 反馈抑制核酸降解相关酶的活性 ,从而调节核酸降解的速率。
嘧啶核苷酸的ቤተ መጻሕፍቲ ባይዱ谢
嘧啶核苷酸的合成
先合成嘧啶环,再与磷酸核糖相连生 成嘧啶核苷酸。合成的部位主要在肝 和小肠黏膜中。
嘧啶核苷酸的分解
嘧啶碱基分解代谢是先去除环外氨基生 成嘧啶,再氧化开环,最终生成CO2、 β-丙氨酸及β-氨基异丁酸等。
核苷酸代谢的调控与意义
核苷酸代谢的调控
核苷酸代谢受到多种因素的调控,包括底物浓度、酶活性、基因表达等。此外, 核苷酸代谢还与细胞周期、细胞增殖和分化等生理过程密切相关。
核苷酸代谢的意义
核苷酸是生物体内重要的组成成分,参与遗传信息的传递和表达。同时,核苷 酸也是多种生物活性物质的合成前体,如辅酶、激素等。因此,核苷酸代谢对 于维持生物体的正常生理功能具有重要意义。

第九章核酸降解和核苷酸代谢优秀课件

第九章核酸降解和核苷酸代谢优秀课件
➢ 不同种类生物降解嘌呤碱基的能力不同,代谢产物 的形式也各不相同。人类、灵长类、鸟类、爬虫类 以及大多数昆虫体内缺乏尿酸酶,故嘌呤代谢的最 终产物是尿酸。
➢ 嘧啶的降解:嘧啶碱的分解过程比较复杂,包括水 解脱氨基作用、氨化、还原、水解和脱羧基作用等。
嘌 呤 核 苷 酸 分 解
人体嘌呤分解代谢的特点
H2N CH2 CH2 COOH
β -丙氨酸
CO2 + NH3
H2N CH2 CH COOH CH3
β -氨基异丁酸
核苷酸的生物合成
生物体内的核苷酸,可以直接利用细胞中自由存在 的碱基和核苷合成(补救途径),也可以利用氨基 酸和某些小分子物质为原料,经一系列酶促反应从 头合成核苷酸(从头合成途径)。
RNA酶A 逆转录酶
降解RNA 补平反应,合成cDNA或制探针
碱性磷酸酶
切除核酸末端磷酸基
核苷酸的进一步水解
H2
核苷酸 O
H2 O
5-Pi-戊糖+碱基
仅在E.Coli和棕 色固氮菌中发现
碱基+戊糖 仅对植物和微生
物的核糖核苷酸
H2 O
核苷+ Pi Pi
碱基+1-Pi-戊糖
核苷酸分解代谢
➢ 核苷酸水解,产生磷酸和核苷。核苷可在核苷酶的 作用下进一步分解为戊糖和碱基。
限制性内切酶的命名
限制酶由三部分构成,即菌种名(斜写)、菌系 编号、分离顺序。
HindⅢ前三个字母来自于菌种名称H. influenzae, “d”表示菌系为d型血清型;“Ⅲ”表示分离到的 第三个限制酶。
EcoRI—Escherichia coli RI HindⅢ—Haemophilus influensae d Ⅲ SacI (II)—Streptomyces achromagenes I (Ⅱ)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档