最新微分几何答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分几何答案

第二章曲面论

§1曲面的概念

1.求正螺面={ u ,u , bv }的坐标曲线.

解 u-曲线为={u ,u ,bv }={0,0,bv}+u {,,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线.

2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。

证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2}表示过点{ a, b,0}以{a,b,2}为方向向量的直线;

v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a,

b,0)以{a,-b,2}为方向向量的直线。

3.求球面=上任意点的切平面和法线方程。

解 = ,=

任意点的切平面方程为

即 xcoscos + ycossin + zsin - a = 0 ;

法线方程为。

4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。

解椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为:

,即x bcos + y asin - a b = 0

此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。

5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。

证,。切平面方程为:。

与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为:

是常数。

§2曲面的第一基本形式

1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式.

,

∴ I = 2。

2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。

解,,,,∴I =,∵F=0,∴坐标曲线互相垂直。

3.在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。

解由条件,沿曲线u = v有du=dv ,将其代入得=,ds = coshvdv , 在曲线u = v上,从到的弧长为。

4.设曲面的第一基本形式为I = ,求它上面两条曲线u + v = 0 ,u–v = 0的交角。

分析由于曲面上曲线的交角是曲线的内蕴量,即等距不变量,而求等距不变量只须知道曲面的第一基本形式,不需知道曲线的方程。

解由曲面的第一基本形式知曲面的第一类基本量,,,曲线u + v = 0与u – v = 0的交点为u = 0, v = 0,交点处的第一类基本量为,,。曲线u + v = 0的方向为du = -dv , u – v = 0的方向为δu=δv , 设两曲线的夹角为,则有

cos= 。

5.求曲面z = axy上坐标曲线x = x ,y =的交角.

解曲面的向量表示为={x,y,axy}, 坐标曲线x = x的向量表示为

={ x,y,axy } ,其切向量={0,1,ax};坐标曲线y =的向量表示为={x , ,ax},其切向量={1,0,a},设两曲线x = x与y =的夹角为,则有cos =

6. 求u-曲线和v-曲线的正交轨线的方程.

解对于u-曲线dv = 0,设其正交轨线的方向为δu:δv ,则有

Eduδu + F(duδv + dvδu)+ G d vδv = 0,将dv =0代入并消去du得u-曲线的正交轨线的微分方程为Eδu + Fδv = 0 .

同理可得v-曲线的正交轨线的微分方程为Fδu + Gδv = 0 .

7. 在曲面上一点,含du ,dv的二次方程P+ 2Q dudv + R=0,确定两个切方向(du :dv)和(δu :δv),证明这两个方向垂直的充要条件是ER-2FQ + GP=0.

证明因为du,dv不同时为零,假定dv0,则所给二次方程可写成为P+ 2Q+ R=0 ,设其二根,, 则=,+=……①又根据二方向垂直的条件知E + F(+)+ G = 0 ……②

将①代入②则得 ER - 2FQ + GP = 0 .

8. 证明曲面的坐标曲线的二等分角线的微分方程为E=G.

证用分别用δ、、d表示沿u-曲线,v-曲线及其二等分角线的微分符号,即沿u-曲线δu0,δv=0,沿v-曲线u=0,v0.沿二等分角轨线方向为du:dv ,根据题设条件,又交角公式得

,即。

展开并化简得E(EG-)=G(EG-),而EG->0,消去EG-得坐标曲线的二等分角线的微分方程为E=G.

9.设曲面的第一基本形式为I = ,求曲面上三条曲线u = v, v =1相交所成的三角形的面积。

解三曲线在平面上的图形(如图)所示。曲线围城的三角形的面积是

S=

=2=2

=

= 。

10.求球面=的面积。

解 = ,=

E ==,F== 0 , G = = .球面的面积为:

S = .

11.证明螺面={ucosv,usinv,u+v}和旋转曲面={tcos,tsin,}

(t>1, 0<<2)之间可建立等距映射 =arctgu + v , t= .

分析根据等距对应的充分条件,要证以上两曲面可建立等距映射 = arctgu + v ,

t=,可在一个曲面譬如在旋转曲面上作一参数变换使两曲面在对应点有相同的参数,然后证明

在新的参数下,两曲面具有相同的第一基本形式.

证明螺面的第一基本形式为I=2+2 dudv+(+1), 旋转曲面的第一基本形式为I= ,

在旋转曲面上作一参数变换 =arctgu + v , t = , 则其第一基本形式为:

==2+2 dudv+(+1)= I .

所以螺面和旋转曲面之间可建立等距映射 =arctgu + v , t = .

§3曲面的第二基本形式

1.计算悬链面={coshucosv,coshusinv,u}的第一基本形式,第二基本形式.

解 ={sinhucosv,sinhusinv,1},={-coshusinv,coshucosv,0}

={coshucosv,coshusinv,0},={-sinhusinv,sinhucosv,0},

={-coshucosv,-coshusinv,0},= coshu,=0,=coshu.

所以I = coshu+ coshu .

==,

L=, M=0, N==1 .

所以II = -+ 。

2.计算抛物面在原点的第一基本形式,第二基本形式.

解曲面的向量表示为,

,,,

,, E = 1, F = 0 , G = 1 ,L = 5 , M = 2 , N =2 ,

I=, II=.

3.证明对于正螺面={u,u,bv},-∞

解,={0,0,0},

={-uucosv,cosv,0},={-ucosv,-usinv,0},,,, L= 0, M = , N = 0 .

所以有EN - 2FM + GL= 0 .

4.求出抛物面在(0,0)点沿方向(dx:dy)的法曲率.

解 ,,,

,E=1,F=0,G=1,L=a,M=0,N=b,沿方向dx:dy的法曲率.

5.已知平面到单位球面(S)的中心距离为d(0

解设平面与(S) 的交线为(C), 则(C)的半径为,即(C)的曲率为

,又(C)的主法向量与球面的法向量的夹角的余弦等于,所以(C)的法曲率为=1 .

相关文档
最新文档