-圆周运动习题基础

合集下载

圆周运动题型总汇 超全

圆周运动题型总汇   超全

圆周运动练习题1.下列关于圆周运动的说法正确的是A.做匀速圆周运动的物体,所受的合外力一定指向圆心B.做匀速圆周运动的物体,其加速度可能不指向圆心C.作圆周运动的物体,其加速度不一定指向圆心D.作圆周运动的物体,所受合外力一定与其速度方向垂直2.关于匀速圆周运动,下列说法正确的是A.匀速圆周运动就是匀速运动B.匀速圆周运动是匀加速运动C.匀速圆周运动是一种变加速运动D.匀速圆周运动的物体处于平衡状态3.下列关于离心现象的说法正确的是A.当物体所受的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动4.下列关于向心力的说法中,正确的是A.做匀速圆周运动的质点会产生一个向心力B.做匀速圆周运动的质点所受各力中包括一个向心力C.做匀速圆周运动的质点所受各力的合力是向心力D.做匀速圆周运动的质点所受的向心力大小是恒定不变的5.关于物体做圆周运动的说法正确的是A.匀速圆周运动是匀速运动B.物体在恒力作用下不可能做匀速圆周运动C.向心加速度越大,物体的角速度变化越快D.匀速圆周运动中向心加速度是一恒量6.关于向心力的说法正确的是A.向心力不改变做圆周运动物体速度的大小B.做匀速圆周运动的物体受到的向心力即为物体受到的合力C.做匀速圆周运动的物体的向心力是不变的D.物体由于做圆周运动而产生了一个向心力7.下列说法正确的是A.因为物体做圆周运动,所以才产生向心力B.因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动C.因为向心力的方向与线速度方向垂直,所以向心力对做圆周运动的物体不做功D.向心力是圆周运动物体所受的合外力8.小球m用细线通过光滑水平板上的光滑小孔与砝码M相连,且正在做匀速圆周运动。

圆周运动典型基础练习题大全

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1 :2,转动半径之比为1 :2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A. 1 :4B. 2 :3C. 4 :9D. 9 :162.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在。

点,有"‘夕'两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小厂―-弋环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()(,1A. (2m+2M)gB. Mg一2mv2/R \/C. 2m(g+v2/R)+MgD. 2m(v2/R-g)+Mg 13.下列各种运动中,属于匀变速运动的有()A.匀速直线运动B.匀速圆周运动C.平抛运动D.竖直上抛运动4.关于匀速圆周运动的向心力,下列说法正确的是()A.向心力是指向圆心方向的合力,是根据力的作用效果命名的B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力C.对稳定的圆周运动,向心力是一个恒力D.向心力的效果是改变质点的线速度大小5. 一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v = 0.2m/s ,那么,它的向心加速度为m/s2 ,它的周期为s。

6.在一段半径为R = 15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的u = 0.70倍,则汽车拐弯时的最大速度是______ m/s7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直一可—方向的夹角为0,试求小球做圆周运动的周期。

:"\8如图所示,质量m = 1 kg的小球用细线拴住,线长l=0.5 m,细线所受拉力达到F =18 N时就会被拉断。

当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。

若此时小球距水平地面的高度h = 5 m,重力加速度g =10 m/s2,求小球落小地处到地面上P 点的距离?求落地速度? S点在悬点的正下方)20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同速率进入管内,A 通过最高点C 时,对管壁上部的压力为3mg, B 通过最高点C 时,对管壁下部的压力为0. 75mg.求A 、B 两球落地点间的距离.21、如图所示,将一质量为m 的摆球用长为L 的细绳吊起,上端固定,使摆球在水平面内 做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆。

第四章 第3讲 圆周运动 高三新高考练习题及答案解析

 第四章 第3讲 圆周运动 高三新高考练习题及答案解析

第3讲 圆周运动一、非选择题1.(2022·河北高三月考)国家雪车雪橇中心位于北京延庆区西北部,赛道全长1 975 m ,垂直落差121 m ,由16个角度、倾斜度都不同的弯道组成,其中全长179 m 的回旋弯赛道是全球首个360°回旋弯道。

2022年北京冬奥会期间,国家雪车雪橇中心将承担雪车、钢架雪车、雪橇三个项目的全部比赛,其中钢架雪车比赛惊险刺激,深受观众喜爱。

测试赛上,一钢架雪车选手单手扶车,助跑加速30 m 之后,迅速跳跃车上,以俯卧姿态滑行。

该选手推车助跑时间为4.98 s ,运动员质量为80 kg ,通过回旋弯道某点时的速度为108 km/h ,到达终点时的速度为124 km/h 。

该选手推车助跑过程视为匀加速直线运动,回旋弯道可近似看作水平面,重力加速度g 取10 m/s 2,结果保留两位有效数字。

求该选手:(1)助跑加速的末速度;(2)以108 km/h 的速度通过回旋弯道某点时钢架雪车对运动员作用力的大小。

[答案] (1)12 m/s (2)2.6×103 N[解析] (1)运动员助跑加速的末速度为v 1,可知s =12v 1t 代入数据,解得v 1=12 m/s 。

(2)回旋弯道全长179 m ,L =2πr ,运动员通过回旋弯道某点时,钢架雪车对运动员作用力设为F ,F y =mg ,F x =m v 2r,代入数据,解得F =F 2x +F 2y =2.6×103N 。

2.(2022·山东新泰月考)如图所示,水平传送带与水平轨道在B 点平滑连接,传送带AB 长度L 0=2.0 m ,一半径R =0.2 m 的竖直圆形光滑轨道与水平轨道相切于C 点,水平轨道CD 长度L =1.0 m ,在D 点固定一竖直挡板。

小物块与传送带AB 间的动摩擦因数μ1=0.9,BC 段光滑,CD 段动摩擦因数为μ2。

当传送带以v 0=6 m/s 沿顺时针方向匀速转动时,将质量m =1 kg 的可视为质点的小物块轻放在传送带左端A 点,小物块通过传送带、水平轨道、圆形轨道、水平轨道后与挡板碰撞,并以原速率弹回,经水平轨道CD 返回圆形轨道。

6.1 圆周运动 习题—2020-2021学年人教版(2019)高中物理必修第二册

6.1 圆周运动 习题—2020-2021学年人教版(2019)高中物理必修第二册

一、圆周运动分题型练习同轴转动1.汽车后备箱盖一般都有可伸缩的液压杆,如图甲所示,图乙为简易侧视示意图,液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O点的固定铰链转动,在合上后备箱的过程中()甲乙A.A点相对于O′点做圆周运动B.B点相对于O′点做圆周运动C.A与B相对于O点线速度大小相同D.A与B相对于O点角速度大小相同2.如图所示是一个玩具陀螺.a、b和c是陀螺外表面上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大3.(多选)甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是()A.它们的半径之比为2∶9B.B.它们的半径之比为1∶2C.它们的周期之比为2∶3D.D.它们的周期之比为1∶34.如图所示,两个小球固定在一根长为l的杆的两端,绕杆上的O点做圆周运动。

当小球A的速度为v A时,小球B的速度为v B,则轴心O到小球A的距离是()A.v A(v A+v B)l B.vAlvA+v BC.vA+v B lvAD.vA+v B lvB5.如图所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮边缘上的两个点,则偏心轮转动过程中a、b两点()A.角速度大小相同B.线速度大小相同C.周期大小不同D.转速大小不同6.如图所示,圆环以直径AB为轴匀速转动,已知其半径R=0.5 m,转动周期T=4 s,求环上P点和Q点的角速度和线速度总结:同轴转动的各点角速度、转速、周期相等,线速度与半径成正比。

传动装置7.(多选)-如图所示为某一皮带传动装置。

主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是( )A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为r 1 r 2 nD.从动轮的转速为r2r1n8.如图所示为锥形齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则() A.ω1<ω2,v1=v2B.ω1>ω2,v1=v2C.ω1=ω2,v1>v2D.ω1=ω2,v1<v29.(多选)变速自行车靠变换齿轮组合来改变行驶速度,如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则() A.该车可变换两种不同挡位B.该车可变换四种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮角速度之比ωA∶ωD=4∶110.在如图所示的传动装置中,B、C两轮固定在—起绕同—转轴转动。

圆周运动练习题

圆周运动练习题
A B O
【例题】如图所示,在光滑的圆锥顶端,用长为L=2m的细 绳悬一质量为m=1kg的小球,圆锥顶角为2θ=74°。求:(1) 当小球ω=1rad/s的角速度随圆锥体做匀速圆周运动时,细绳上 的拉力。(2)当小球以ω=5rad/s的角速度随圆锥体做匀速圆 周运动时,细绳上的拉力。
【例题】长为L的细线,拴一质量为m的小球,一端固定于O点,让 其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图 所示,当摆线L与竖直方向的夹角是α时,求:(1)线的拉力F;
h R
【例题】(重庆市直属重点中学第2次联考)如图所示,质量为m的 小球由光滑斜轨道自由下滑后,接着又在一个与斜轨道相连的竖直的光 华圆环内侧运动,阻力不计,求
C、到达最低位置时小球线速度最大 D、到达最低位置时绳中的拉 力等于小球的重力 【例题】如图,细杆的一端与一小球相连,可绕过O点的水平轴自由转 动现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的 最低点和最高点,则杆对球的作用力可能是
() A.a处为拉力,b处为拉力 B.a处为拉力,b处为推力 C.a处为推力,b处为拉力 D.a处为推力,b处为推力 【例题】如图所示,半径为R,内径很小的光滑半圆管竖直放置,两
Hale Waihona Puke H A o R B C s(1)小球运动到轨道上的B点时,对轨道的压力多大? (2)小球落地点C与B点水平距离s是多少?
【例题】一内壁光滑的环形细圆管,位于竖直平面内,环的半径 为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的 小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形 圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点 时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那 么m1、m2、R与v0应满足的关系式是______. B A

第六章 圆周运动 章节复习题-2022-2023学年高一下学期物理人教版(2019)必修第二册

第六章 圆周运动 章节复习题-2022-2023学年高一下学期物理人教版(2019)必修第二册

第六章圆周运动章节复习题一、单选题(下列各题均有4个选项,其中只有一个是正确的,请将正确选项的字母代号写在答题卷的相应位置,多选、错选或不选,该小题不得分,每小题3分,共24分)1、下列关于圆周运动的说法中正确的是()A.向心加速度的方向始终指向圆心B.匀速圆周运动是匀变速曲线运动C.在匀速圆周运动中,向心加速度是恒定的D.在匀速圆周运动中,线速度和角速度是不变的2、如图,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮半径的2倍,它们之间靠摩擦传动,接触面不打滑。

下列说法正确的是()A.A与B线速度大小相等 B.B与C线速度大小相等C.A的角速度是C的2倍 D.A与B角速度大小相等3、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是()A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受重力和向心力的作用D.摆球A受拉力和重力的作用4、如图四幅图中,做圆周运动的物体,描述正确的是()A.图甲中,汽车通过拱形桥最高点时,车速越大,车对桥面的压力越大B.图乙中,做圆锥摆运动的物体,转速越大,摆线与竖直方向的夹角越大C.图丙中,火车转弯速度较大时,火车内侧的车轮轮缘挤压内轨D.图丁中,洗衣机脱水时衣物附着在桶内壁上,转速越大,衣物所受筒壁的静摩擦力越大5、如图所示,半径为r的圆筒,绕竖直中心轴OO'转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使小物块a不下滑,则圆筒转动的角速度ω至少为()A.grμB.gμ C.grDgrμ6、如图,A、B两小球沿倒置的光滑圆锥内侧在水平面内做匀速圆周运动。

则()A.A球质量大于B球 B.A球线速度大于B球C.A球转动周期小于B球 D.A球向心加速度小于B球7、智能呼啦圈轻便美观,深受大众喜爱,如图甲,腰带外侧带有轨道,将带有滑轮的短杆(大小忽略不计)穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示,可视为质点的配重质量为0.5kg,绳长为0.5m,悬挂点P到腰带中心点O的距离为0.2m,水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看成不动,重力加速度g取10m/s2,下列说法正确的是()A.若使用者觉得锻炼不够充分,决定增大转速,腰带受到的合力变大B.当使用者掌握好锻炼节奏后能够使θ稳定在37°,此时配重的角速度为5rad/s C.使用者使用一段时间后成功减肥,再次使用时将腰带调小,若仍保持转速不变则θ变小D.当用力转动使θ从37°增加到53°时,配重运动的周期变大8、如图,叠放在水平转台上的物体A、B、C都能随转台一起以角速度ω匀速转动,A、B、C 的质量分别为3m、2m、m,A与B、B与转台间的动摩擦因数为μ,C与转台间的动摩擦因数为2μ,A和B、C离转台中心的距离分别为r、1.5r。

(完整版)圆周运动习题及答案

(完整版)圆周运动习题及答案

《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。

物理圆周运动经典习题(含详细答案)

物理圆周运动经典习题(含详细答案)

1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加速度为g=10 m/s2,若已知女运动员的体重为35 kg,据此可估算该女运动员()A.受到的拉力约为350 2 N B.受到的拉力约为350 NC.向心加速度约为10 m/s2D.向心加速度约为10 2 m/s2图4-2-111. 解析:本题考查了匀速圆周运动的动力学分析.以女运动员为研究对象,受力分析如图.根据题意有G=mg=350 N;则由图易得女运动员受到的拉力约为350 2 N,A正确;向心加速度约为10 m/s2,C正确.答案:AC2.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.¥家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是() A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内(东)高外(西)低D.公路在设计上可能外(西)高内(东)低图4-2-12 2解析:由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项A正确,选项B错误;如果外侧高,卡车所受重力和支持力提供向心力,则卡车不会做离心运动,也不会发生事故,故选项C正确.答案:AC%3. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则()A.该盒子做匀速圆周运动的周期一定小于2πR gB.该盒子做匀速圆周运动的周期一定等于2πR gC.盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD.盒子在最低点时盒子与小球之间的作用力大小可能大于2mg图4-2-133解析:要使在最高点时盒子与小球之间恰好无作用力,则有mg =mv 2R ,解得该盒子做匀速圆周运动的速度v =gR ,该盒子做匀速圆周运动的周期为T =2πR v =2πR g .选项A 错误,B 正确;在最低点时,盒子与小球之间的作用力和小球重力的合力提供小球运动的向心力,由F -mg =mv 2R ,解得F =2mg ,选项C 、D 错误. 答案:B"4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n4解析:本题考查的知识点是圆周运动.因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr 1=2πn 2r 2 n 为频率,2πn 为角速度,得从动轮的转速为n 2=nr 1r 2,选项C 正确D 错误. 答案:BC5.质量为m 的石块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4-2-17所示,那么( )A .因为速率不变,所以石块的加速度为零B .石块下滑过程中受的合外力越来越大,C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加速度大小不变,方向始终指向球心图4-2-175解析:由于石块做匀速圆周运动,只存在向心加速度,大小不变,方向始终指向球心,D 对,A 错.由F 合=F 向=ma 向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不断减小,所以摩擦力不断减小,C 错.答案:D6.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶.如图4-2-18所示,是一种新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 km/h 的速度在水平面内转弯,弯道半径为1.5 km ,则质量为75 kg 的乘客在列车转弯过程中所受到的合外力为( ):A .500 NB .1 000 NC .500 2 ND .0图4-2-186解析:360 km/h =100 m/s ,乘客在列车转弯过程中所受的合外力提供向心力F =mv 2r =75×1002×103 N =500 N.答案:A7.如图4-2-19甲所示,一根细线上端固定在S 点,下端连一小铁球A ,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力).下列说法中正确的是( )A .小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用·B .小球做匀速圆周运动时的角速度一定大于 g l (l 为摆长)C .另有一个圆锥摆,摆长更大一点,两者悬点相同,如图4-2-19乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B 球的角速度大于A 球的角速度D .如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等图4-2-197解析:如下图所示,小铁球做匀速圆周运动时,只受到重力和绳子的拉力,而向心力{是由重力和拉力的合力提供,故A 项错误.根据牛顿第二定律和向心力公式可得:mg tan θ=mlω2sin θ,即ω=g /l cos θ.当小铁球做匀速圆周运动时,θ一定大于零,即cos θ一定小于1,因此,当小铁球做匀速圆周运动时角速度一定大于g /l ,故B 项正确.设点S 到点O 的距离为h ,则mg tan θ=mhω2tan θ,即ω=g /h ,若两圆锥摆的悬点相同,且两者恰好在同一水平面内做匀速圆周运动时,它们的角速度大小一定相等,即C 项错误.如右上图所示,细线受到的拉力大小为F T =mg cos θ,当两个小球的质量相等时,由于θA <θB ,即cos θA >cos θB ,所示A 球受到的拉力小于B 球受到的拉力,进而可以判断两条细线受到的拉力大小不相等,故D 项错误.答案:B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为Ff 甲和Ff 乙.以下说法正确的是( )A .Ff 甲小于Ff 乙B .Ff 甲等于Ff 乙C .Ff 甲大于Ff 乙D .Ff 甲和Ff 乙大小均与汽车速率无关8解析:本题重点考查的是匀速圆周运动中向心力的知识.根据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来提供其做圆周运动的向心力,则F 向=f ,又有向心力的表达式F 向=mv 2r ,因为两车的质量相同,两车运行的速率相同,因此轨道半径大的车的向心力小,即摩擦力小,A 正确.!答案:A9. 在高速公路的拐弯处,通常路面都是外高内低.如图4-2-20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( ) A. gRh L B. gRh d C. gRL h D. gRdh图4-2-209解析:考查向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ,根据牛顿第二定律:F 向=m v 2R ,tan θ=h d ,解得汽车转弯时的车速v = gRh d ,B 对.{答案:B 10.如图4-2-24所示,一个竖直放置的圆锥筒可绕其中心OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半.内壁上有一质量为m 的小物块随圆锥筒一起做匀速转动,则下列说法正确的是( )A .小物块所受合外力指向O 点B .当转动角速度ω=2gH R 时,小物块不受摩擦力作用C .当转动角速度ω> 2gH R 时,小物块受摩擦力沿AO 方向D .当转动角速度ω< 2gH R 时,小物块受摩擦力沿AO 方向{ 图4-2-2410解析:匀速圆周运动物体所受合外力提供向心力,指向物体圆周运动轨迹的圆心,A 项错;当小物块在A 点随圆锥筒做匀速转动,且其所受到的摩擦力为零时,小物块在筒壁A 点时受到重力和支持力的作用,它们的合力提供向心力,设筒转动的角速度为ω,有:mg tan θ=mω2·R 2,由几何关系得:tanθ=H R ,联立以上各式解得ω=2gH R ,B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿AO 方向,其水平方向分力提供部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿OA 方向,抵消部分支持力的水平分力,D 项错.答案:BC11. 如图4-2-25所示,一水平光滑、距地面高为h 、边长为a 的正方形MNPQ 桌面上,用长为L 的不可伸长的轻绳连接质量分别为m A 、m B 的A 、B 两小球,两小球在绳子拉力的作用下,绕绳子上的某点O 以不同的线速度做匀速圆周运动,圆心O 与桌面中心重合,已知m A =0.5 kg ,L =1.2 m ,L AO =0.8 m ,a =2.1 m ,h =1.25 m ,A 球的速度大小v A =0.4 m/s ,重力加速度g 取10 m/s 2,求:(1)绳子上的拉力F 以及B 球的质量m B ;(2)若当绳子与MN 平行时突然断开,则经过 s 两球的水平距离;(与地面撞击后。

物理生活中的圆周运动练习题20篇含解析

物理生活中的圆周运动练习题20篇含解析

物理生活中的圆周运动练习题20篇含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤4.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零;(3)转台从静止开始加速到角速度3ω=.【答案】(1)1gLμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1gLμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.5.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离;()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.【答案】(1)6N (2)0.2m (3)26/m s 【解析】 【分析】(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度. 【详解】(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有2Amv mg R=, 所以,2/A v gR m s ==;那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:2211222B A mv mv mgR =+,所以,2425/B A v v gR m s =+=; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力26BN mv F mg N R=+=,方向竖直向上;故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:221122C B mgL mv mv μ-=-,所以,2/C v m s ==;设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:212h gt =,0.8C x d v t v m +===, 所以,0.2d m =;(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离0.6 1.6m s m ≤≤;故平抛运动的初速度'C s v t== 所以,1.5/'4/C m s v m s ≤≤;又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:()2201122'22C mg R r mgL mv mv μ--=-; 所以,0/v s ==,0//s v s≤≤,所以小弹珠被弹射装置弹出时的最大初速度为/s ; 【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.6.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R7.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =8.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;(2)在(1)问的情况下,求小弹珠落点到C 点的距离?(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2Av r从A 点到B 点由机械能守恒律有:mg×2R =221122B A mv mv 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2Bv R联立以上几式可得:F N =5.5N ,v B 44.1m/s ,(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t 竖直方向:y =H =212gt 又:x =y 解得:v′B =4m/s而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =212gt ,得t =0.8s 则水平方向:x =v B t 421025故小球落地点距c 点的距离:s =22x H + 解得:s =6.2m(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =212gt ' 又:x'=2H 解得:d =0.8m9.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :t =y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =10.如图所示,光滑圆弧的圈心为O ,半径3m R =,圆心角53θ=︒,C 为圆弧的最低点,C 处切线方向水平,与一足够长的水平面相连.从A 点水平抛出一个质量为0.3kg 的小球,恰好从光滑圆弧的B 点的切线方向进人圆弧,进人圆弧时无机械能损失.小球到达圆弧的最低点C 时对轨道的压力为7.9N ,小球离开C 点进人水平面,小球与水平面间的动摩擦因数为0.2.(不计空气阻力,g 取210m/s ,sin530.8︒=,cos530.6︒=),求:(1)小球到达圆弧B 点速度的大小; (2)小球做平抛运动的初速度0v ; (3)小球在水平面上还能滑行多远.【答案】(1)5m/s B v =;(2)03m/s v =;(3)12.25x m = 【解析】 【详解】(1)对C 点小球受力分析,由牛顿第二定律可得:2Cv F mg m R-=解得7m /s c v =从B 到C 由动能定理可得:2211(1)22c B mgR cos mv mv θ-=- 解得:5m /s B v =(2)分解B 点速度0cos 3m /s B v v θ==(3)由C 至最后静止,由动能定理可得:2102c mgx mv μ-=-解得12.25m x =。

高一物理必修二第五章 斜抛运动 圆周运动基础练习题(带参考答案)

高一物理必修二第五章   斜抛运动 圆周运动基础练习题(带参考答案)

一、学习要点1、知道斜抛运动的概念及处理方法,定性了解斜抛运动;2、了解物体做圆周运动的特征,理解线速度、角速度、周期的概念及它们之间的关系。

二、学习内容(一)斜上抛运动 1.斜抛运动的特征(1)初速度方向 ;(2)仅受_________;(3)是一种___________曲线运动。

2.斜抛运动的分解水平方向作________________,竖直方向作______________________。

问题1:如何研究斜抛运动? 例1:(多选题)关于斜抛运动,下列说法正确的是( )A .是匀变速曲线运动B .水平方向的分运动是匀速运动C .是非匀变速运动D .竖直方向的分运动是匀减速直线运动 练习1:关于斜抛运动,下列说法正确的是( )A .加速度不断变化B .速度不断减少C .水平方向的速度先增大后减小D .竖直方向做竖直上抛运动点评:斜抛运动可以分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动。

问题2:物体做斜抛运动,在最高点的速度为零吗? 例2:做斜抛运动的物体,到达最高点时( )A .速度为零,加速度不为零B .速度为零,加速度也为零C .速度不为零,加速度也不为零D .速度不为零,加速度为零 练习2:做斜抛运动的物体到达最高点时( )A .速度为零B .竖直分速度为零C .合力为零D .加速度为零点评:斜抛运动的物体在最高点速度水平,加速度为g 。

问题3:如何理解斜上抛运动的对称性?例3:图1是斜上抛物体的轨迹,C 点是轨迹最高点,A 、B 是轨迹上等高的两个点。

下列关于物体运动的叙述中错误的是(不计空气阻力)( )A .上升时间和下降时间相等B .A 点的速度与在B 点的速度相同C .A 、B 两点的水平分速度等于物体在C 点的速度D .A 、B 、C 三点的加速度都相同 练习3:(多选)做斜抛运动的物体,下列说法正确的是( )A .水平分速度不变B .加速度不变C .在相同高度处具有相同的速度D .经过最高点时速度为零问题4:在斜抛运动中,物体的射程、射高与飞行时间由什么因素决定? 例4:(多选题)关于斜抛运动的射程,下列说法中正确的是( )A .斜抛运动的射程由初速度的大小决定B .斜抛运动的射程由初速度的方向决定C .斜抛运动的射高由初速度决定D .斜抛运动的射高由初速度的竖直分量决定练习4:关于斜抛运动的时间,下列说法中正确的是( )A .斜抛运动的时间由初速度的大小决定B .斜抛运动的时间由初速度的方向决定C .斜抛运动的时间由初速度的水平分量决定D .斜抛运动的时间由初速度的竖直分量决定v 0A B C 图1 高一物理第五章 斜抛运动 圆周运动图 2ab cω 点评:斜抛运动中,物体的射程、射高、飞行时间由初速度(包括大小和方向)来决定。

圆周运动的习题及答案

圆周运动的习题及答案

圆周运动的习题及答案圆周运动的习题及答案圆周运动是物理学中一个重要的概念,涉及到物体在圆周轨道上的运动规律以及相关的力学问题。

在学习圆周运动时,我们常常会遇到一些习题,下面就来介绍一些常见的习题及其答案。

一、圆周运动的基本概念在解答圆周运动的习题之前,我们首先需要了解一些基本概念。

圆周运动是指物体在一个固定半径的圆周轨道上做匀速运动的现象。

在圆周运动中,物体所受的向心力与物体质量和速度的乘积成正比,与物体所绕圆周的半径成反比。

二、习题一:圆周运动的向心力问题:一个质量为0.1kg的物体以每秒2m的速度在半径为0.5m的圆周轨道上运动,求该物体所受的向心力大小。

解答:根据向心力的公式 F = mv^2 / r,其中 F 表示向心力,m 表示物体质量,v 表示物体速度,r 表示圆周半径。

代入已知数据,可得F = 0.1kg × (2m/s)^2 /0.5m = 0.8N。

三、习题二:圆周运动的周期问题:一个物体以每秒4m的速度在半径为2m的圆周轨道上运动,求该物体的运动周期。

解答:圆周运动的周期 T 可以用公式T = 2πr / v 来计算,其中 T 表示周期,r表示圆周半径,v 表示物体速度。

代入已知数据,可得T = 2π × 2m / 4m/s = π s。

四、习题三:圆周运动的角速度问题:一个物体以每秒6m的速度在半径为3m的圆周轨道上运动,求该物体的角速度。

解答:角速度ω 可以用公式ω = v / r 来计算,其中ω 表示角速度,v 表示物体速度,r 表示圆周半径。

代入已知数据,可得ω = 6m/s / 3m = 2 rad/s。

五、习题四:圆周运动的线速度问题:一个物体以每秒10 rad的角速度在半径为4m的圆周轨道上运动,求该物体的线速度。

解答:线速度 v 可以用公式v = ω × r 来计算,其中 v 表示线速度,ω 表示角速度,r 表示圆周半径。

代入已知数据,可得v = 10 rad/s × 4m = 40m/s。

第六章 圆周运动 单元练习 -2023年高一下学期物理人教版(2019)必修第二册

第六章 圆周运动  单元练习 -2023年高一下学期物理人教版(2019)必修第二册

第六章圆周运动同步练习题一、选择题。

1、如图所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮边缘上的两个点,则偏心轮转动过程中,a、b两点()A.角速度大小相同B.线速度大小相同C.周期大小不同D.转速大小不同2、关于向心力的说法正确的是()A.物体由于做圆周运动还受到一个向心力B.向心力可以是任何性质的力C.做匀速圆周运动的物体其向心力是恒力D.做圆周运动的物体所受各力的合力一定指向圆心3、如图所示,M能在水平光滑杆上自由滑动,滑杆连架装在转盘上。

M用绳跨过在圆心处的光滑滑轮与另一质量为m的物体相连。

当转盘以角速度ω转动时,M离轴距离为r,且恰能保持稳定转动。

当转盘转速增至原来的2倍,调整r使之达到新的稳定转动状态,则滑块M()A.所需要的向心力变为原来的4倍B.线速度变为原来的1 2C.半径r变为原来的12 D.M的角速度变为原来的124、(多选)一小球被细绳拴着,在水平面内做半径为R的匀速圆周运动,向心加速度为a,那么()A.角速度ω=aR B.时间t内通过的路程s=t aRC.周期T=Ra D.时间t内可能发生的最大位移为2R5、如图所示,质量为m的小球固定在杆的一端,在竖直面内绕杆的另一端O做圆周运动。

当小球运动到最高点时,瞬时速度为v =12Lg ,L 是球心到O 点的距离,则球对杆的作用力是( )A.12mg 的拉力B.12mg 的压力C.零D.32mg 的压力6、(双选)下列说法正确的是( )A.匀速圆周运动是线速度不变的运动B.匀速圆周运动是角速度不变的运动C.匀速圆周运动是周期不变的运动D.做匀速圆周运动的物体经过相等时间的速度变化量相等7、(双选)变速自行车靠变换齿轮组合来改变行驶速度,如图是某一变速车齿轮转动结构示意图,图中A 轮有48齿,B 轮有42齿,C 轮有18齿,D 轮有12齿,则( )A .该车可变换两种不同挡位B .该车可变换四种不同挡位C .当A 轮与D 轮组合时,两轮的角速度之比ωA ∶ωD =1∶4D .当A 轮与D 轮组合时,两轮角速度之比ωA ∶ωD =4∶18、(双选)在光滑的水平面上,用长为l 的细线拴一质量为m 的小球,以角速度ω做匀速圆周运动,下列说法中正确的是( )A .l 、ω不变,m 越大线越易被拉断B .m 、ω不变,l 越小线越易被拉断C .m 、l 不变,ω越大线越易被拉断D .m 不变,l 减半且角速度加倍时,线的拉力不变9、(双选)如图所示:是甲、乙两球做圆周运动的向心加速度随半径变化的关系图像,下列说法中正确的是()A.甲球线速度大小保持不变B.乙球线速度大小保持不变C.甲球角速度大小保持不变D.乙球角速度大小保持不变10、(多选)如图所示,电风扇在闪光灯下运转,闪光灯每秒闪30次,风扇转轴O 上装有3个扇叶,它们互成120°角,当风扇转动时,观察者感觉扇叶不动,则风扇转速可能是()A.600 r/minB.900 r/minC.1 200 r/minD.3 000 r/min11、(双选)一辆卡车在水平路面上行驶,已知该车轮胎半径为R,轮胎转动的角速度为ω,关于各点的线速度大小,下列说法正确的是()A.相对于地面,轮胎与地面的接触点的速度为ωRB.相对于地面,车轴的速度大小为ωRC.相对于地面,轮胎上缘的速度大小为ωRD.相对于地面,轮胎上缘的速度大小为2ωR*12、两个小球固定在一根长为L的杆的两端,且绕杆上的O点做匀速圆周运动,如图所示.当小球1的速度为v1,小球2的速度为v2时,则转轴O到小球2的距离为()A.v1v1+v2L B.v2v1+v2L C.v1+v2v1L D.v1+v2v2L13、如图所示,某物体沿14光滑圆弧轨道由最高点滑到最低点的过程中,物体的速率逐渐增大,则()A.物体的合力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外) 14、关于向心加速度,下列说法正确的是()A.向心加速度是描述线速度大小变化快慢的物理量B.向心加速度只改变线速度的方向,不改变线速度的大小C.向心加速度的大小恒定,方向时刻改变D.向心加速度是平均加速度,大小可用a=v-v0t来计算15、为了测定子弹的飞行速度,在一根水平放置的轴杆上固定两个薄圆盘A、B,盘A、B平行且相距l=2 m,轴杆的转速为n=3 600 r/min。

圆周运动练习题

圆周运动练习题

圆周运动练习题圆周运动练习题圆周运动是我们在日常生活中经常会遇到的一种运动形式。

从行星绕太阳的运动到地球绕自转轴的运动,都可以看作是圆周运动。

本文将通过一些练习题来帮助读者更好地理解和应用圆周运动的相关概念和公式。

练习题1:地球自转速度计算地球自转一周的时间为24小时,求地球自转的角速度。

解析:角速度是指单位时间内角度的变化量。

地球自转一周的角度为360度,对应的时间为24小时。

因此,地球自转的角速度为360度/24小时,即15度/小时。

练习题2:行星公转速度计算某行星绕太阳公转一周的时间为365天,求该行星的公转角速度。

解析:与地球自转不同,行星的公转是绕太阳运动。

行星公转一周的角度为360度,对应的时间为365天。

将时间换算为小时,365天乘以24小时,即为8760小时。

因此,该行星的公转角速度为360度/8760小时。

练习题3:舞蹈演员的旋转速度某舞蹈演员在表演中以每分钟2圈的速度旋转,求演员的角速度。

解析:题目中给出的速度单位为每分钟,而角速度的单位通常为每秒。

将每分钟转换为每秒,可以将2圈/分钟转换为2圈/60秒。

由于一圈等于360度,因此该演员的角速度为2圈/60秒乘以360度/圈。

练习题4:转盘上物体的离心加速度一个半径为1.5米的转盘以每秒10转的速度旋转,求转盘上物体的离心加速度。

解析:离心加速度是指物体在圆周运动中由于受到向心力而产生的加速度。

向心力的大小与物体的质量和圆周运动的半径有关。

根据公式,离心加速度等于角速度的平方乘以半径。

题目中给出的角速度为每秒10转,转换为每秒20π弧度。

因此,转盘上物体的离心加速度为(20π)^2乘以1.5米。

练习题5:车辆转弯半径计算一辆车以每小时60公里的速度绕半径为10米的圆道路转弯,求车辆的离心加速度。

解析:离心加速度也可以通过速度和转弯半径来计算。

首先,将车辆的速度转换为米/秒,即60公里/小时乘以1000米/3600秒。

然后,根据公式,离心加速度等于速度的平方除以转弯半径。

圆周运动经典练习(有答案详解)

圆周运动经典练习(有答案详解)

《圆周运动》练习题(一)1.A. 线速度不变2. A 和B A. 球AB. 球AC. 球AD. 球A 3. 演,如图5A. 《B. C. D. 4.A. B. C. D. …5.如图1个质量为应为( )A. 5.2cmB. 5.3cmC. 5.0cmD. 5.4cm6. (M>m A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B 【C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D. 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同9. 如图5所示,质量为m :A. B.C. D.10. 一辆质量为4t;11.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB!14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。

)18.^(1(2答案—1.解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。

2. 解析:对小球A 、B 受力分析,两球的向心力都来源于重力mg 和支持力N F 的合力,其合成如图4所示,故两球的向心力αcot mg F F B A ==比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。

比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。

比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。

小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。

点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。

完整版)匀速圆周运动经典练习题

完整版)匀速圆周运动经典练习题

完整版)匀速圆周运动经典练习题1.对于匀速圆周运动的物体,正确的说法是角速度不变,周期不变,线速度大小随半径变化而改变。

2.向心加速度描述的是向心力变化的快慢。

3.由图像可以知道,甲球运动时,线速度大小随半径变化而改变,角速度大小保持不变;乙球运动时,线速度大小保持不变,角速度大小随半径变化而改变。

4.小物体A受力情况是受重力、支持力和向心力。

5.当球第最低点P时,小球速率最大,小球加速度为重力加向心加速度的合力,小球的向心加速度保持不变,摆线上的张力保持不变。

6.小球过最高点时,杆对球的作用力一定跟小球所受重力的方向相反,此时重力大于杆对球的作用力;小球过最高点时的最小速度为√(2gR)。

7.对轨道压力的大小是3mg。

8.当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力。

9.两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内作匀速圆周运动。

根据运动学公式,运动周期与圆周半径和角速度有关,而两个小球的圆周半径和角速度不同,因此它们的运动周期不同。

根据匀速圆周运动的定义,线速度等于圆周半径乘以角速度,因此两个小球的运动线速度不同。

根据向心加速度公式,向心加速度等于圆周半径乘以角速度的平方,再除以重力加速度,因此两个小球的向心加速度不同。

答案为(A)运动周期不同,(B)运动线速度不同,(D)向心加速度不同。

10.一个大轮通过皮带拉着小轮转动,皮带和两轮之间无滑动,大轮的半径是小轮的2倍,大轮上的一点s离转动轴的距离是半径的5/20.根据匀速圆周运动的向心加速度公式,向心加速度等于圆周半径乘以角速度的平方,再除以重力加速度。

大轮上的S点和小轮上的Q点的圆周半径分别是5R/20和R,因此它们的向心加速度分别为10和40 m/s^2.答案为a_S=10m/s^2,a_Q=40 m/s^2.11.半径为r的圆筒绕竖直中心轴OO'转动,小物块A靠在圆筒的内壁上,它与圆筒的静摩擦因数为μ。

圆周运动经典习题

圆周运动经典习题

圆周运动习题一.选择题1.半径为R的光滑半圆球固定在水平面上(如图),顶部有一小物体A,今给它一个水平初速v0=gR,,则物体将()A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.按半径大于R的新的圆弧轨道作圆周运动D.立即离开半圆球做平抛运动2.如图所示,固定在竖直平面内的光滑圆形轨道ABCD,D点为轨道最高点,DB为竖直直径,AE为过圆心的水平面,今使小球自A点正上方某处由静止释放,且从A点内侧进人圆轨道运动,只要适当调节释放点的高度,总能保证小球最终通过最高点D,则小球在通过D点后(不计空气阻力)()A、一定会落在水平面AE上B、一定会再次落到圆轨道上C、可能会落到水平面AED、可能会再次落到圆轨道上。

3.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()A.a处B.b处C.c处D.d处4.地球上,赤道附近的物体A和北京附近的物体B,随地球的自转而做匀速圆周运动.可以判断()A.物体A与物体B的向心力都指向地心B.物体A的线速度的大小小于物体B的线速度的大小C.物体A的角速度的大小小于物体B的角速度的大小D.物体A的向心加速度的大小大于物体B的向心加速度的大小5.用同样材料做成的A、B、C三个物体,放在匀速转动的水平平台上,已知mA=2mB=2mc,各物体到轴的距离rc=2rA=2rB.若它们相对于平台无滑动,则下面说法中不正确的是()A.C的向心加速度最大B.B的摩擦力最小C.转速增大时,C比B先滑动D.转速增大时,B比A先滑动6.物体做匀速圆周运动的条件是()A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用7.如图所示,将完全相同的两小球A、B用长L=0.8m的细绳悬于以速度v=4m/s向右匀速运动的小车顶部,两球与小车的前、后壁接触.由于某种原因,小车突然停止,此时悬线的拉力之比FB:FA为(g取10m/s2)()A.1:1 B.1:2 C.l:3 D.1:48、如图为A、B两物体做匀速圆周运动时向心加速度随半径r变化的图线,由图可知(A)A.A物体的线速度大小不变B.A物体的角速度不变C.B物体的线速度大小不变D.B物体的角速度与半径成正比9.由上海飞往美国洛杉矶的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海面的高度均不变,则以下说法正确的是()A.飞机做的是匀速直线运动B.飞机上的乘客对座椅压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零10.甲、乙两物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A. 1:4B.2:3C.4:9D.9:1611.如图1所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是()A.受重力、拉力、向心力B.受重力、拉力C.受重力D.以上说法都不正确12.冰面对溜冰运动员的最大摩擦力为运动员重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,若依靠摩擦力充当向心力,其安全速度为()13.一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是()A.物体的重力B.筒壁对物体的静摩擦力C.筒壁对物体的弹力D.物体所受重力与弹力的合力二、填空题14、做匀速圆周运动的物体,当质量增大到2倍,周期减小到一半时,其向心力大小是原来的______倍,当质量不变,线速度大小不变,角速度大小增大到2倍时,其向心力大小是原来的______倍。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动练习
1.一质点做圆周运动,速度处处不为零,则:①任何时刻质点所受的合力一定不为零,②任何时刻质点的加速度一定不为零,③质点速度的大小一定不断变化,④质点速度的方向一定不断变化
其中正确的是( )
A .①②③
B .①②④
C .①③④
D .②③④
2.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )
①当以速度v 通过此弯路时,火车重力与轨道支持力的合力提供向心力 ②当以速度v 通过此弯路时,火车重力、轨道支持力和外轨对轮缘弹力的合力提供向心力 ③当速度大于v 时,轮缘挤压外轨 ④当速度小于v 时,轮缘挤压外轨
A.①③
B.①④
C.②③
D.②④
3.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( )
A .两轮的角速度相等
B .两轮边缘的线速度大小相等
C .两轮边缘的向心加速度大小相等
D .两轮转动的周期相同
4.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法正确的是( )
A .小球线速度大小一定时,线越长越容易断
B .小球线速度大小一定时,线越短越容易断
C .小球角速度一定时,线越长越容易断
D .小球角速度一定时,线越短越容易断
5.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2,
则此时轻杆OA 将( ) A .受到6.0N 的拉力 B .受到6.0N 的压力
C .受到24N 的拉力
D .受到24N 的压力
6.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是( )
A .滑块的重力
B .盘面对滑块的弹力
C .盘面对滑块的静摩擦力
D .以上三个力的合力
7.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是( )
A.V A >V B
B.ωA >ωB
C.a A >a B
D.压力N A >N B 8.一个电子钟的秒针角速度为( )
A .πrad/s
B .2πrad/s
C .60π
rad/s D .30π
rad/s
9.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则( )
A .甲的角速度最大、乙的线速度最小
B .丙的角速度最小、甲的线速度最大
C .三个物体的角速度、周期和线速度都相等
D .三个物体的角速度、周期一样,丙的线速度最小 A B
10.如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点。

则杆对球的作用力可能是( )
A.a 处为拉力,b 处为拉力
B.a 处为拉力,b 处为推力
C.a 处为推力,b 处为拉力
D.a 处为推力,b 处推拉力
11.如图2-4-10所示,光滑的水平面上,小球m 在拉力F的作用下做匀速圆周运动,若小球在到达P点时突然发生变化,则下列说法正确的是( )
A.若F 突然消失,小球将沿轨迹a 做离心运动
B.若F 突然变小,小球将沿轨迹a 做离心运动
C.若F 突然变大,小球将沿轨迹b 做离心运动
D.若F 突然变小,小球将沿轨迹c 做近心运动
1.对于做匀速圆周运动的物体,下列说法错误..
的是: A.线速度不变 B.线速度的大小不变 C.转速不变 D.周期不变
2.一质点做圆周运动,速度处处不为零,则
①任何时刻质点所受的合力一定不为零
②任何时刻质点的加速度一定不为零
③质点速度的大小一定不断变化
④质点速度的方向一定不断变化
其中正确的是
A .①②③
B .①②④
C .①③④
D .②③④
3.关于做匀速圆周运动物体的线速度的大小和方向,下列说法中正确的是
A .大小不变,方向也不变
B .大小不断改变,方向不变
C .大小不变,方向不断改变
D .大小不断改变,方向也不断改变
4.做匀速圆周运动的质点是处于
A .平衡状态
B .不平衡状态
C .速度不变的状态
D .加速度不变的状态
5.匀速圆周运动是
A .匀速运动
B .匀加速运动
C .匀减速运动
D .变加速运动
6.下列关于向心加速度的说法中,正确的是
A .向心加速度的方向始终与速度的方向垂直
B .向心加速度的方向可能与速度方向不垂直
C .向心加速度的方向保持不变
D .向心加速度的方向与速度的方向平行
7.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是
A .两轮的角速度相等
B .两轮边缘的线速度大小相等
C .两轮边缘的向心加速度大小相等
D .两轮转动的周期相同
8.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,有下列说法
A B
①小球线速度大小一定时,线越长越容易断
②小球线速度大小一定时,线越短越容易断
③小球角速度一定时,线越长越容易断
④小球角速度一定时,线越短越容易断
其中正确的是
A .①③
B .①④
C .②③
D .②④ 9.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O
点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时
的速度为2m/s ,取g=10m/s 2,则此时轻杆OA 将
A .受到6.0N 的拉力
B .受到6.0N 的压力
C .受到24N 的拉力
D .受到24N 的压力
10.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是
A .滑块的重力
B .盘面对滑块的弹力
C .盘面对滑块的静摩擦力
D .以上三个力的合力
11.一个电钟的秒针角速度为
A .πrad/s
B .2πrad/s
C .60π
rad/s D .30π
rad/s
12.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则
A .甲的角速度最大、乙的线速度最小
B .丙的角速度最小、甲的线速度最大
C .三个物体的角速度、周期和线速度都相等
D .三个物体的角速度、周期一样,丙的线速度最小
13.关于匀速圆周运动,下列说法中不正确的是
A .匀速圆周运动是匀速率圆周运动
B .匀速圆周运动是向心力恒定的运动
C .匀速圆周运动是加速度的方向始终指向圆心的运动
D .匀速圆周运动是变加速运动
14.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是 A.V A >V B B.ωA >ωB C.a A >a B D.压力N A >N B
15.(多选)如图所示,细杆的一端与小球相连,可绕过O
转动,现给小球一初速度,使它做圆周运动,图中a 、b 的最低点和最高点。

则杆对球的作用力可能是
A.a 处为拉力,b 处为拉力
B.a 处为拉力,b 处为推力
C.a 处为推力,b 处为拉力
D.a 处为推力,b 处推拉力
20. A 、B 两小球同时从距地面高为h=15m 处的同一点抛出,初速度大小均为v 0=10s m /.A
球竖直向下抛出,B 球水平抛出,空气阻力不计,重力加速度取g=l0m /s 2.求:
(1)A 球经多长时间落地?
(2)A 球落地时,A 、B 两球间的距离是多少?。

相关文档
最新文档