秀丽隐杆线虫核转位实验
秀丽隐杆线虫
分类号编号烟台大学毕业论文利用秀丽隐杆线虫筛选抗白色念珠菌活性物质Screening anti-Candida albicans substances using Caenorhabditis elegans利用秀丽隐杆线虫筛选抗白色念珠菌活性物质摘要:以秀丽隐杆线虫作为模型生物进展抗菌物质筛选。
用白色念珠菌感染线虫后,采用不同浓度的抗菌药物治疗,观察线虫存活情况,确定适宜用药浓度;采用微拟球藻提取物对白色念珠菌感染线虫治疗,观察线虫存活情况,与抗菌药物作用效果比照,从而筛选出可用于治疗白色念珠菌活性物质。
实验发现,添加10~20mg/L的氟康唑对感染白色念珠菌的秀丽隐杆线虫治疗效果较好,在一定剂量范围内,治疗效果和剂量成线性关联;微拟球藻提取物不具备抗菌活性。
关键词:秀丽隐杆线虫;白色念珠菌;抗菌物质Abstract: In the study, Caenorhabditis elegans were used as model organism to screen antibacterial agents. C.elegans were infected by Candida albicans and treated by different concentrations of antibacterial agents which had been known and extracts from Nannochloropsis OZ-1, observating the survival situation and comparing the effects of the two antibacterial agents, thus, the bioactive substance could be screened which cured the Candida albicans. The result showed that Candida albicans could be treated by 10~20 mg/L Fluconazole, moreover within the scope of the dose, treatment effect and the dose of a linear correlation. And the results showed that extracts from Nannochloropsis OZ-1 did not have antibacterial activity.Key words:C.elegans;Candida albicans;Antibacterial substances目录1 文献综述 (5)1.1 秀丽隐杆线虫 (5)1.2 秀丽隐杆线虫研究进展 (5)1.2.1 环境毒理学的研究 (6)1.2.2 程序性细胞死亡的研究 (6)1.2.3 秀丽隐杆线虫感染模型的建立 (6)1.2.4 抗菌物质作用机制的研究 (6)1.2.5 病菌致病机制和线虫免疫机制的研究 (7)1.3 白色念珠菌 (7)1.4 抗菌物质的筛选 (8)1.5 实验研究意义 (9)2 材料和方法 (10)2.1 材料 (10)2.1.1 实验药品 (10)2.1.2 实验仪器 (10)2.1.3 线虫和菌株 (11)2.1.4 培养基 (11)2.1.5 试剂 (11)2.2 方法 (11)2.2.1 线虫培养和保存 (11)2.2.2 线虫同步化 (11)2.2.3 线虫真菌感染 (12)2.2.4 线虫抗感染治疗 (12)2.2.5 观察 (12)3 实验结果分析 (9)3.1 氟康唑用药浓度的选择 (9)3.2 筛选可用于治疗白色念珠菌的微拟球藻提取物 (9)4 结论 (12)致谢 (13)参考文献 (14)1 文献综述1.1 秀丽隐杆线虫秀丽隐杆线虫[1]〔Caenorhabditis elegans〕〔图1〕是一种多细胞真核生物,个体很小,以细菌为食,可独立生存在温度恒定环境中,对人、动植物没有危害。
秀丽隐杆线虫在高校遗传学实验中的应用
Hereditas (Beijing) 2017年8月, 39(8): 763―768 遗传学教学收稿日期: 2017-03-02; 修回日期: 2017-03-27基金项目:国家自然科学基金面上项目(编号:31471311, 31671409)和深圳市科技创新基金基础研究计划项目(编号:JCYJ20150529152146477)资助[Supported by the National Natural Science Foundation of China (Nos. 31471311, 31671409), Shenzhen Science, Technology and Innovation Fund(No. JCYJ20150529152146477)]作者简介: 马小英,博士,研究方向:植物学和遗传学。
E-mail: maxy@通讯作者:谢宇聪,博士,副教授,研究方向:细胞生物学和遗传学。
E-mail: tseyc@DOI: 10.16288/j.yczz.17-076 网络出版时间: 2017/4/14 18:18:51URI: /kcms/detail/11.1913.R.20170414.1818.002.html秀丽隐杆线虫在高校遗传学实验中的应用马小英,赵颖岚,贾方兴,宋亚坤,谢宇聪南方科技大学生物系,深圳 518000摘要: 秀丽隐杆线虫(Caenorhabditiselegans )是模式生物中的重要成员之一,因其实验成本低,实验周期短,非常适宜用于高校的遗传学实验教学中。
线虫在实验教学中的使用,一方面可以有效地丰富高校实验教学的内容,另一方面也可以很好地激发学生的学习兴趣。
本文介绍了线虫在遗传学实验教学中的应用实例,如生活周期观察、单因子杂交、单核苷酸多态性研究、RNA 干扰(RNAi)实验等;对实验设置、操作要求、实验相关准备工作等进行了较为细致的描述,为线虫在高校遗传学实验教学中的应用提供了详实案例,可为线虫在高校遗传学实验或其他相关实验课程如细胞生物学实验、模式生物与发育生物学实验中的应用提供参考。
秀丽隐杆线虫研究综述
秀丽隐杆线虫研究综述一、本文概述秀丽隐杆线虫(Caenorhabditis elegans,简称C. elegans)是一种微小的、透明的、生活在土壤中的线虫,自20世纪60年代以来,它已成为生物学研究的重要模型生物之一。
由于其生命周期短、繁殖迅速、基因组小且相对简单等特点,秀丽隐杆线虫被广泛用于研究细胞生物学、发育生物学、神经生物学、遗传学、基因组学等多个领域。
本文旨在对秀丽隐杆线虫的研究进行全面的综述,从基础生物学特性、基因组学进展、到其在各个领域的应用研究,以期为读者提供一个清晰、全面的秀丽隐杆线虫研究图景。
二、秀丽隐杆线虫的基本生物学特性秀丽隐杆线虫(Caenorhabditis elegans,简称C. elegans)是一种具有独特生物学特性的小型线虫,其身体长度仅约1毫米,属于线虫动物门、无尾感器纲、小杆目、小杆科。
自1974年被悉尼·布伦纳(Sydney Brenner)选为遗传学研究的模式生物以来,秀丽隐杆线虫已成为生物学和医学领域广泛研究的对象。
生命周期与繁殖:秀丽隐杆线虫的生命周期大约为3天,在适宜的环境下,它们能以极快的速度繁殖。
它们通常以细菌为食,尤其是大肠杆菌(Escherichia coli),并通过摄取这些细菌来获取所需的营养。
成年线虫通过自交或雌雄同体交配繁殖,产生的后代数量巨大,每个成虫一生可以产生多达300个子代。
基因组与遗传学:秀丽隐杆线虫的基因组相对较小,约含有1亿个碱基对,使其成为研究基因功能和基因相互作用的理想模型。
由于其生命周期短、繁殖迅速,科学家能够迅速地进行遗传筛选和基因编辑,以研究特定基因的功能。
神经系统与行为:秀丽隐杆线虫拥有相对简单的神经系统,仅由302个神经元组成。
尽管如此,这些神经元足以控制线虫的各种复杂行为,如觅食、逃避、交配等。
这使得秀丽隐杆线虫成为研究神经生物学和行为学机制的重要工具。
衰老与疾病模型:秀丽隐杆线虫因其短寿命和快速的生理变化而成为研究衰老机制的理想模型。
神奇的模式生物—秀丽隐杆线虫
神奇的模式生物—秀丽隐杆线虫摘要:本文对秀丽隐杆线虫的模式生物一般特征入手,介绍了线虫形态学、生物学特征和繁殖、基因组和遗传学等方面的内容。
关键词:秀丽隐杆线虫模式生物基因组最近,秀丽隐杆线虫用于生物实验材料倍受科学家们的关注。
进入21世纪以来,已经有六位科学家利用秀丽隐杆线虫为实验材料揭开了生命科学领域的重大秘密而获得了诺贝尔奖。
1974年英国科学家悉尼·布雷内(Sydney Brenner)第一次把秀丽隐杆线虫作为模式生物,成功地分离出线虫的各种突变体,发现了在器官发育过程中的基因规则而获得了2002年诺贝尔生理学或医学奖。
与悉尼·布雷内共同分享诺贝尔奖的有两名科学家,其中一位科学家是英国约翰·苏尔斯顿(John E. Sulston),通过显微镜活体观察线虫的胚胎发育和细胞迁移途径,于1983年完成线虫从受精卵到成体的细胞谱系。
另一位科学家是美国的罗伯特·霍维茨(H. Robert Horvitz),是利用秀丽隐杆线虫作为研究对象进行了“细胞程序性死亡”研究。
克雷格·梅洛(Craig C. Mello)和安德鲁·菲尔和(Andrew Z. Fire)利用秀丽隐杆线虫实验发现一种全新的基因调控方式—RNA干扰(RNAi)而获得2006年诺贝尔生理学或医学奖。
此外,Martin Chalfie证明了GFP(绿色荧光蛋白)作为多种生物学现象的发光遗传标记的价值。
在最初的一项实验中,他用GFP使秀丽隐杆线虫的6个单独细胞有了颜色,由此获得了2008年化学奖。
究竟什么原因使秀丽隐杆线虫成为如此富有盛名的实验材料?1.秀丽隐杆线虫一般特征秀丽隐杆线虫是一种食细菌的线形动物,学名是Caenorhabditis elegans,通常缩写成C.elegans其成体长仅1mm,全身透明,以细菌为食,居住在土壤中,被称为“自由生活线虫”。
1.1分类地位秀丽隐杆线虫属于线虫门(Phylum nematoda)、侧尾腺纲(Secernentea)、小杆线虫目(Rhabditida)小杆线虫科(Rhabditidae)小杆线虫属(Caenorhabditis)。
秀丽隐杆菌线虫开放实验报告
秀丽隐杆菌线虫开放实验报告一、实验目的1.了解线虫这一模式生物的生活史和遗传特性。
2.学习利用线虫研究遗传规律的方法和技巧。
3.确定rol突变的显隐性以及是否伴性;判断A双突变体是否连锁,计算遗传距离。
4.提高统筹计划、独立思考、团队合作等能力。
二、实验原理秀丽线虫属于线形动物门,线虫纲,小杆线虫目,广杆线虫属,是一种生活在土壤中的线虫。
它具有生活史短、繁殖率高、饲养方便、容易保存、细胞数目少且可在显微镜下追踪每一个细胞的命运等优点,如今已成为遗传学和发育生物学研究的重要模式生物。
1999年,秀丽杆菌的全基因组测序工作已经完成,其基因组由80Mb组成,包含大约13000个基因,线虫的功能基因组研究为人类相关研究提供了重要的线索。
秀丽线虫是雌雄同体的动物,同一个体既产生精子,也产生卵子,由于体内没有自交不相容系统,所以能自体受精,产生子代。
自体受精产生的子代中,只有0.2%是雄性线虫,其余都是雌雄同体的线虫。
一个典型的雌雄同体线虫可产生200~300个精子和大量卵母细胞,自体受精约产生250个子代,若与雄性交配则可产生1000个以上的子代。
雌雄同体的线虫有两条X染色体和5对常染色体。
偶尔由于X染色体不分离,会产生只有一条X染色体和5对常染色体的雄性线虫。
雄性线虫只产生精子不产生卵子。
当XO型雄性线虫与XX型雌雄同体线虫交配时,产生的子代中,50%是雄体,50%是雌雄同体。
秀丽线虫的模式图及生活史图如下所示:三、实验材料秀丽杆菌品系:正常体型线虫(野生型N2)、滚动型线虫(rol突变)、A类短胖鼓泡型线虫(dpy和unc双突变)四、实验仪器及试剂1.仪器体视显微镜,水浴锅,6mm培养皿,铂金丝棒(picker)。
2.试剂线虫生长培养基,配制方法如下:称取蛋白胨2.5g,琼脂20g,NaCl 3g,置于洁净2000mL玻璃三角瓶,加入蒸馏水975ml,120℃高压蒸汽灭菌30min,之后置于55℃水浴锅中冷却。
神奇的模式生物—秀丽隐杆线虫
神奇的模式生物—秀丽隐杆线虫摘要:本文对秀丽隐杆线虫的模式生物一般特征入手,介绍了线虫形态学、生物学特征和繁殖、基因组和遗传学等方面的内容。
关键词:秀丽隐杆线虫模式生物基因组最近,秀丽隐杆线虫用于生物实验材料倍受科学家们的关注。
进入21世纪以来,已经有六位科学家利用秀丽隐杆线虫为实验材料揭开了生命科学领域的重大秘密而获得了诺贝尔奖。
1974年英国科学家悉尼·布雷内(Sydney Brenner)第一次把秀丽隐杆线虫作为模式生物,成功地分离出线虫的各种突变体,发现了在器官发育过程中的基因规则而获得了2002年诺贝尔生理学或医学奖。
与悉尼·布雷内共同分享诺贝尔奖的有两名科学家,其中一位科学家是英国约翰·苏尔斯顿(John E. Sulston),通过显微镜活体观察线虫的胚胎发育和细胞迁移途径,于1983年完成线虫从受精卵到成体的细胞谱系。
另一位科学家是美国的罗伯特·霍维茨(H. Robert Horvitz),是利用秀丽隐杆线虫作为研究对象进行了“细胞程序性死亡”研究。
克雷格·梅洛(Craig C. Mello)和安德鲁·菲尔和(Andrew Z. Fire)利用秀丽隐杆线虫实验发现一种全新的基因调控方式—RNA干扰(RNAi)而获得2006年诺贝尔生理学或医学奖。
此外,Martin Chalfie证明了GFP(绿色荧光蛋白)作为多种生物学现象的发光遗传标记的价值。
在最初的一项实验中,他用GFP使秀丽隐杆线虫的6个单独细胞有了颜色,由此获得了2008年化学奖。
究竟什么原因使秀丽隐杆线虫成为如此富有盛名的实验材料?1.秀丽隐杆线虫一般特征秀丽隐杆线虫是一种食细菌的线形动物,学名是Caenorhabditis elegans,通常缩写成C.elegans其成体长仅1mm,全身透明,以细菌为食,居住在土壤中,被称为“自由生活线虫”。
1.1分类地位秀丽隐杆线虫属于线虫门(Phylum nematoda)、侧尾腺纲(Secernentea)、小杆线虫目(Rhabditida)小杆线虫科(Rhabditidae)小杆线虫属(Caenorhabditis)。
关于秀丽隐杆线虫的综述
关于秀丽隐杆线虫的综述生物153班刘通宇摘要:本文为关于秀丽隐杆线虫的综述文章,主要介绍了秀丽隐杆线虫的一些基本信息,并结合这些基本信息引出秀丽隐杆线虫的细胞周期、神经系统等方面的研究价值与药物筛选、毒性评价方面的应用价值,并结合以上信息讨论笔者对于秀丽隐杆线虫研究现状的评价以及在药理、进化论等方面的应用与研究展望,并探讨了其在回答生命意义中的价值。
关键词:秀丽隐杆线虫;研究价值;应用价值Abstract: This is a summative article about Caenorhabditis elegans, mainly introduced some of the essential information and then elicit the research value on the cell circle, nervous system, and also applications value on medicine screening, toxicity assessment. At the end, the author gives out his personal assessment about the research that had been conducted, and also introduced his personal prospect about the application and research in pharmacology and evolutionism, etc. It also discussed the Caenorhabditis elegans’ role in answer ing the question for the meaning of life.Key words:Caenorhabditis elegans; research value; application value模式生物是生物学家实验中用于探究某种普遍生命现象的生物物种。
秀丽隐杆线虫中RNA干扰作用的遗传分析
秀丽隐杆线虫中RNA干扰作用的遗传分析姓名摘要:秀丽隐杆线虫是一种常见的.自由生活的小型土壤线虫。
RNA干扰(RNAi)是一种由双链RNA引起的转录后水平的基因沉欢(PTGS)现象,是研究基因功能的一种快速和高通量的方法。
本次实脸通过饲喂的方法,观案外淅RNA分子对秀丽隐•杆线虫发育的衫响,从而了解RNA干扰的原理、特性及其应用。
通过此次实脸,我们达到了实脸目的,取得了良好的实验效果。
关便词:秀丽隐•杆线虫.RNA干扰(RNAi).饲喂法1 •引吉秀丽隐杆线虫是一种常见的.自由生活的小型土壤线虫。
在理想的条件下(充足食物,20 C)生命周期大约为4d。
秀丽隐杆线虫成体长1〜,体宽约70 um,全身透明,以细菌为食,全身共有959个细胞。
研究用的通常是秀丽隐杆线虫野生型(N2)。
从1965年开始,Sydney Brenner以线虫为材料研究发育和神经生物学,现在已经成为经典模式生物之一。
线虫性别是由常染色体和性染色体组的比例决定,有两种性别形式:輝雄同体和雄虫。
雌雄同体的性染色体为XX,而雄虫性染色体为X0。
推雄同体的秀丽隐杆线虫既产生卵,乂产生精子,可以与雄体交配,也可以自体受赭进行繁殖,但雌雄同体之间不能异体受精。
在雌雄同体自交繁殖中以%的频率产生雄体(是城数分裂时性染邑体不分开造成的);而雄体与雌雄同体交配其后代两种性别比例为1:1o线虫有单基因突变形成的表型,例如:运动不协调(uncoord ianated, Unc)、短胖(dumpy, Dpy)、打卷(roller, Rol)等,造成这些表型的基因有很多个,分别分布于各条染邑体上。
这些易于观察的表型作为遗传标记,给线虫的经典遗传学实验带来了极大的便利。
此外,线虫还有许多组织特异性标记的品系。
秀丽隐杆线虫的生命周期很短,20'C仅需4d。
卵在通过受稱囊时受精形成一层坚碇的几丁质的外壳,在母体内就开始分裂。
从母体产出的卵大约处于30个细胞期。
秀丽隐杆线虫
秀丽隐杆线虫简介秀丽隐杆线虫(学名:Caenorhabditis elegans)是一种小型蠕虫,常被用作生物学研究的模式生物。
它体长大约为1毫米,寿命约2-3周,具有透明的身体。
秀丽隐杆线虫是真核生物中细胞发育和生物进化研究的重要模式生物,因其神经系统简单、遗传学研究简便而被广泛应用。
生活史秀丽隐杆线虫的生活史包括蛹化、发育和繁殖三个阶段。
蛹化秀丽隐杆线虫的蛹化是通过摄取外源氧及存在压力性气囊的方式进行的。
在良好的生境中,幼虫吃下细菌的细胞膜,利用其中的外源氧进行蛹化。
而在恶劣环境中,线虫利用体内储存的压力性气囊进行蛹化。
发育秀丽隐杆线虫的体内分为头部、幼体、发育体和成体四个阶段。
线虫在发育过程中会完成胚胎发育、四次蜕皮和器官分化等过程。
线虫的体型发育非常精确,每个个体的结构和功能都高度相似。
繁殖秀丽隐杆线虫的繁殖过程非常简单。
雌性和雄性线虫在特定条件下会产生精子和卵子。
交配后,雌性会在体内产卵并且保护卵的发育。
线虫的卵发育速度相对较快,一般在12-24小时内孵化成幼虫。
实验应用秀丽隐杆线虫因其透明的身体和简单的神经系统而被广泛用于生物学研究中,特别是以下几个方面:发育生物学秀丽隐杆线虫的发育过程非常精确,用户可以通过观察和研究线虫的发育过程,了解细胞分化和器官形成等生物学基本过程。
遗传学秀丽隐杆线虫遗传学研究相对简单,它的基因组含有近2.5万个基因,其中约40%与人类的基因有关。
研究人员可以通过对线虫的基因进行突变,观察其对生物表型的影响,以深入了解基因与表型之间的关系。
神经科学秀丽隐杆线虫的简化神经系统为神经科学研究提供了理想的模型。
由于线虫的神经系统非常简单且易于观察,科学家可以研究线虫的神经元连接、神经活动和行为。
药物筛选由于线虫的生命周期短且容易进行大规模实验,在药物筛选方面具有很高的效率。
许多药物的毒性测试和疗效评估都可以通过线虫进行。
总结秀丽隐杆线虫是一种广泛应用于生物学研究的模式生物。
秀丽隐杆线虫应用及意义
秀丽隐杆线虫应用及意义秀丽隐杆线虫(C. elegans)是一种常见的研究模式生物,在生命科学研究中发挥着重要的作用。
它的研究价值体现在以下多个方面:1. 研究神经系统:秀丽隐杆线虫拥有相对简单的神经系统,只有302个神经元,其中每个神经元的连接都已被详细描绘。
这使得线虫成为研究神经回路和神经发育的理想模型。
通过研究线虫的神经系统,可以揭示神经细胞在生命过程中的功能和调控机制。
2. 生命周期和发育研究:线虫的发育过程非常短暂,从受精卵到成虫仅需3天左右。
而且线虫的发育过程高度保守,几乎每个个体都能在相同的时间和空间上进行相似的发育过程。
这使得线虫成为研究发育的重要模型生物。
通过研究线虫的发育过程,可以揭示发育调控的分子机制和信号网络。
3. 遗传学研究:由于线虫自体受精和生命周期短暂,其遗传研究相对容易。
线虫基因组非常小,仅有大约9700个基因,其中很多基因与人类健康相关。
通过对线虫的遗传实验,可以揭示基因之间的相互作用和遗传调控机制,从而深入理解人类遗传疾病的发生和发展过程。
4. 药物筛选和毒性测试:线虫的生命周期短暂、生殖能力高和体积小,使其成为进行药物筛选和毒性测试的理想模型。
研究人员可以利用线虫来筛选化合物的治疗效果和毒性,从而加速药物研发过程,并避免一些不必要的动物试验。
5. 寿命研究:线虫的寿命相对短暂,约为2-3周,且寿命受到环境条件的影响。
通过研究线虫寿命调控的分子机制,可以揭示生命延长和抗衰老的关键因素,有助于寻找治疗人类老年相关疾病和延缓衰老的方法。
6. 环境适应和应激研究:线虫的基因调控网络对环境因素的改变非常敏感,对一些药物、毒物、温度、胁迫等环境因素产生应激反应。
通过研究线虫的应激反应机制,可以深入理解生物对环境适应的分子基础,以及环境对健康和疾病的影响。
总之,秀丽隐杆线虫作为模式生物,在多个领域的研究中都有重要的应用价值,其研究成果对人类健康和疾病的理解有着重要贡献。
通过线虫的研究,我们可以深入了解生物的基本生理和生化过程,揭示疾病的发生机制,加速药物研发进程,并最终提供更好的健康和医疗服务。
浅析秀丽隐杆线虫被大量用于筛选抗衰老药物的原因和相关实验步骤
浅析秀丽隐杆线虫被大量用于筛选抗衰老药物的原因和相关实验步骤作者:彭宇昀来源:《健康前沿》2019年第04期摘要:秀丽隐杆线虫是研究老化现象的重要模型生物,已经使用了近40年,在对具有延缓衰老作用的相關药物进行初步筛选方面具有重大贡献。
本文通过对有关文献和实验进行分析,就秀丽隐杆线虫被大量应用于筛选抗衰老化合物的原因和有关实验展开研究,分析利用秀丽隐杆线虫进行抗衰老药物筛选的优点,总结相关实验步骤,得出秀丽隐杆线虫细胞数目固定,与人类基因同源性较高且易养殖是其用于进行药物筛选的重要原因。
总结出进行实验时需要充分考虑,排除如待测的相关药物对OP50菌液的抑制性等无关变量对实验结果的影响。
关键词:秀丽隐杆线虫,抗衰老,筛选,原因秀丽隐杆线虫作为模式生物在生命科学的各项研究中使用广泛,大量运用于抗衰老药物的筛选。
[1]近年来,有研究提出诸如阿司匹林,二甲双胍等常用药物成分具有延缓人体衰老的功能,而秀丽隐杆线虫在对这类化合物的筛选过程中起了重要作用。
本文将探究秀丽隐杆线虫被广泛应用于抗衰老化合物筛选的原因。
1 原因分析1.1自身原因1.1.1 细胞数量固定经研究发现,秀丽隐杆线虫在其幼虫时期有556个体细胞和2个原始生殖细胞。
秀丽隐杆线虫的成虫可分为:雄性个体和雌雄同体个体两类,其中雄性成熟个体有1031个体细胞和1000个生殖细胞,雌雄同体成熟个体含有959个体细胞和2000个生殖细胞。
固定的细胞数量使研究人员可以更容易对比不同化合物的作用下,同种细胞在不同个体中在药物作用下的具体变化,减少无关变量的产生,使不同个体(如:用抗衰老药物处理和不用抗衰老药物处理的个体)的同种细胞之间差异性的比较更具有说服力。
同时,可以更好的探究药物在具体细胞中的作用方式、具体效果,探究对应化合物具有抗衰老作用的原因。
1.1.2 生殖能力强,雌雄同体相关文献表明,当秀丽隐杆线虫的雌雄同体成熟个体自体受精时可产生200~300颗卵,而雄性成熟个体与雌雄同体成熟个体交配,发生异体受精时可以产生1000多颗卵。
(完整word版)秀丽隐杆线虫综述
秀丽隐杆线虫综述摘要:随着生命科学研究的不断深入,模式生物的重要性也在不断的体现出来,秀丽隐杆线虫就是其中一种非常重要的生物.对秀丽隐杆线虫的特征、研究进展及未来发展方向进行简要的综述.关键词:秀丽隐杆线虫;研究;前景在20世纪60年代中期S。
Brenner为了研究动物的发育和神经,领先选择了以秀丽隐杆线虫为研究的实验动物[1]。
现今,秀丽隐杆线虫已经成为当今生物学家研究细胞代谢与细胞生长、分化、衰老、凋亡等生命活动的协同与调节机制的重要模式生物之一.1.秀丽隐杆线虫的生物学特征在1998年作为人类基因组测序的一个项目,秀丽隐杆线虫的全部序列完成测定,基因组序列全长9.7×104kb,大约编码19000个基因,其中约有40%的基因与人类的相似[2].其成虫体长约为1mm,由959个体细胞组成.其胚胎发育过程中的细胞分裂分化以及细胞的的衰老凋亡都具有高度的程序性,便于对其进行遗传学的分析。
由于上述原因,秀丽隐杆线虫已经成为现代发育遗传学、遗传学、细胞生物学研究的重要模式生物。
为人类认识细胞打开了一扇新的大门.秀丽隐杆线虫在性成熟之后能够产下三百到三百五十左右的各种各样表型的幼虫。
从卵到成虫只有3.5d,寿命约2~3周,非常适合实验室进行生物学研究。
在发育过程中,秀丽隐杆线虫共生成1090个细胞,其中131个将会死亡,所以,野生型秀丽隐杆线虫成虫有959个细胞,并且每个细胞的位置固定不变。
秀丽隐杆线虫有5对常染色体和1 对性染色体。
它有两种性别:雌雄同体和雄性。
雌雄同体可以自我繁殖,也可以与雄性交配繁殖.自我繁殖的大多是雌雄同体,与雄性交配的后代,50%是雌雄同体,50%是雄性。
可以人为控制繁殖方式,获得理想表型。
秀丽隐杆线虫的突变体非常之多,很多突变体表现出的性状在显微镜下都是清晰易见的。
秀丽隐杆线虫低温冷冻保存的技术,可以将大量野生型、突变型的秀丽隐杆线虫品系保存起来[3].1988 年,人们对秀丽隐杆线虫每个细胞的起源已经完全清楚,使得在多细胞生命体内研究一个完整无缺的单个细胞的发育和形态成为现实,对确定基因如何影响细胞的发育提供了一个重要的研究工具[4]。
秀丽隐杆线虫研究情况
秀丽隐杆线虫研究情况
秀丽隐杆线虫被应用于实验研究至今已逾30年,因为易于实验室培养、基因易处理、解剖学结构简单以及可以提供广泛的遗传学和基因组信息,已成为一种重要的研究细菌和真菌的哺乳动物替代模型。
与黑腹果蝇一样,秀丽隐杆线虫将天然免疫作为防御微生物感染的唯一防线。
Mylonakis等研究发现,一些对哺乳动物起作用的新生隐球菌毒力因子在杀死秀丽隐杆线虫的过程中同样有效,这些基因包括信号转导途径GPA1、PKA1、PKR1、 RAS1和漆酶等;而那些对哺乳动物毒力较低的因子在秀丽隐杆线虫模型中致病性亦较弱。
还有作者通过秀丽隐杆线虫模型研究荚膜、黑色素、调节通路等毒力因子来鉴定毒力减低的新生隐球菌,结果发现rom2基因突变的隐球菌在37℃时失去繁殖及生长的能力,并无法生成细胞壁和难耐高渗。
多数秀丽隐杆线虫是可以自身繁殖的雌雄同体动物,偶尔也可见到雄性单体。
实验结果证实野生雄性线虫较雌雄同体线虫对真菌的抵抗力增强,而且这种抵抗力的增强归因于应激反应激活因子DAF-16的参与,而不是由于行为或生殖方式的不同。
葡萄糖对模拟微重力下秀丽隐杆线虫的转录组测序研究
葡萄糖对模拟微重力下秀丽隐杆线虫的转录组测序研究目录目录摘要 (I)ABSTRACT ......................................................................................................... ...... I II 第1章绪论 . (1)1.1课题来源、背景及研究目的意义 (1)1.2秀丽隐杆线虫研究概述 (2)1.2.1 秀丽隐杆线虫简介 (2)1.2.2 秀丽隐杆线虫在空间微重力条件下的研究进展 (4)1.2.3 秀丽隐杆线虫在空间生物学地基模拟条件下的研究进展 (6)1.2.4 葡萄糖对秀丽隐杆线虫代谢途径的影响研究进展 (8)1.3有参考基因转录组测序概述 (9)1.3.1 转录组测序简介 (9)1.3.2 转录组测序技术发展历程 (9)1.4本文的主要研究内容和技术路线 (11)1.4.1 主要研究内容 (11)1.4.2 本文技术路线 (11)第2章材料与方法 (13)2.1实验材料与仪器 (13)2.1.1 材料与试剂 (13)2.1.2 实验器材 (13)2.2实验方法 (14)2.2.1 培养基及试剂溶液的配置 (14)2.2.2 大肠杆菌OP50的复苏、培养与冻存 (15)2.2.3 秀丽隐杆线虫的培养扩繁与冻存 (16)2.2.4 秀丽隐杆线虫的同步化 (16)2.2.5 秀丽隐杆线虫模拟微重力方法 (17)2.2.6 秀丽隐杆线虫的生存率的测定方法 (17)2.2.7 秀丽隐杆线虫的繁殖能力的测定方法 (18)2.2.8 秀丽隐杆线虫的有参考基因转录组测序方法 (18)第3章葡萄糖对模拟微重力下秀丽隐杆线虫寿命影响及转录组测序差异表达基因筛选 (21)3.1引言 (21)3.2不同浓度葡萄糖饲喂秀丽隐杆线虫对其生存率改变 (21)3.3秀丽隐杆线虫在模拟微重力和饲喂葡萄糖处理下的生存率 (22)3.4秀丽隐杆线虫在模拟微重力和饲喂葡萄糖处理下的产卵量 (22)3.5秀丽隐杆线虫总RNA的提取与质量检测分析 (23)3.6秀丽隐杆线虫转录组测序数据及其质量控制 (24)3.7秀丽隐杆线虫转录组数据与参考基因组序列比对 (25)3.8秀丽隐杆线虫转录组文库质量的评估 (27)3.8.1 mRNA片段化随机性检验 (27)3.8.2 插入片段长度检验 (28)3.8.3 转录组测序数据饱和度检验 (28)3.9本章小结 (29)第4章有参考基因转录组测序生物学分析 (31)4.1引言 (31)4.2秀丽隐杆线虫转录组测序基因表达量分析 (31)4.2.1 基因表达定量分析 (31)4.2.2 不同组别基因表达量的总体分布 (32)4.3秀丽隐杆线虫转录组测序差异基因表达分析 (32)4.4秀丽隐杆线虫在不同处理条件下的差异表达基因分析 (35)4.4.1 秀丽隐杆线虫在模拟微重力条件下差异表达基因GO分类(35)4.4.2 秀丽隐杆线虫在模拟微重力条件下的KEGG pathway分析(36)4.4.3 葡萄糖对模拟微重力下的秀丽隐杆线虫的差异基因GO分类(39)4.4.4 葡萄糖对模拟微重力下的秀丽隐杆线虫的差异基因的KEGG pathway分析 (40)4.5本章小结 (43)结论 (44)参考文献 (46)附录1 模拟微重力组和添加葡萄糖组的ATGC分布图 (52)附录2 模拟微重力组和添加葡萄糖基因组不同区域READS分布图(52)附录3 模拟微重力组和添加葡萄糖处理组的转录组数据饱和模拟图 (53)附录4 模拟微重力组和添加葡萄糖处理组的MAPPED READS在MRNA上的位置分布图 (53)附录5 模拟微重力组和添加葡萄糖处理组的插入片段长度模拟分布图 (54)附录6 葡萄糖对模拟微重力下秀丽线虫的差异表达基因火山图 (54) 目录附录7 对照组和模拟微重力组的部分差异基因表达量 (55)附录8 葡萄糖对模拟微重力下的秀丽隐杆线虫的部分差异基因表达量 (55)攻读硕士学位期间发表的论文及其它成果 (57)哈尔滨工业大学学位论文原创性声明和使用权限 (58)致谢 (59)第1章绪论1.1 课题来源、背景及研究目的意义本论文的课题来源是空间站第一批应用。
线粒体超氧阴离子水平对秀丽隐杆线虫抗粪肠球菌感染的调控及机制研究
线粒体超氧阴离子水平对秀丽隐杆线虫抗粪肠球菌感染的调控及机制研究感染引起的疾病一直威胁着人类的生命安全。
近期研究结果显示线粒体活性氧(mROS)参与宿主防御细菌和病毒的感染。
线粒体电子传递链(mETC)基因isp-1突变,引起线虫体内mROS升高,有助于提高宿主免疫力。
这提示mETC基因突变引起的mROS变化可能参与宿主防御反应,调控机体的免疫力。
事实上,线粒体超氧阴离子处于mROS生成的中心地位,尽管已有实验表明mETC基因突变引起线虫体内的线粒体超氧阴离子含量发生显著改变,但是线粒体超氧阴离子在细菌感染中的作用及机制目前尚不明确。
本论文以秀丽隐杆线虫(C.elegans)-粪肠球菌(E.faecalis)作为宿主-病原感染模型,研究线粒体超氧阴离子抗细菌感染作用及可能的机制。
为了阐明线粒体超氧阴离子在E.faecalis感染过程中所起的作用,本论文采用RNA干扰技术(RNAi)抑制C.elegans中mev-1和isp-1两个基因的表达,进而改变宿主体内线粒体超氧阴离子水平。
结果显示,mev-1和isp-1基因的下调分别显著提高了线虫对E.faecalis感染的敏感性和抗性。
在细菌感染后,mev-1RNAi线虫的抗菌肽基因(C17H12.8,mtl-1和bli-3)表达下调,而isp-1RNAi线虫中,这些抗菌肽基因表达上调。
更重要的是,在感染后的isp-1RNAi线虫中,线粒体超氧阴离子和线粒体sod基因的表达量显著增加;而在mev-1RNAi线虫中,线粒体超氧阴离子和线粒体sod基因的表达量低于空载体对照组。
百草枯(PQ)预处理mev-1RNAi线虫,诱导线虫体内超氧阴离子水平上升,能够显著提高线虫在E.faecalis感染后的存活率。
这些结果表明线粒体超氧阴离子升高有助于线虫抗E.faecalis感染。
为了进一步阐明mev-1RNAi线虫对E.faecalis感染抗性缺陷的分子机制,本论文检测了mev-1RNAi线虫在E.faecalis感染后,体内氧化胁迫反应及转录因子DAF-16参与情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秀丽隐杆线虫核转位实验
秀丽隐杆线虫(C. elegans)是一种常用的模式生物,在生物学研究中具有重要的地位。
其基因组小且具有透明的身体结构,使其成为研究基因功能和发育过程的理想模型。
核转位是一种常见的基因重组现象,指的是DNA片段的移动,导致基因组中的基因位置发生改变。
秀丽隐杆线虫是第一个被用于研究核转位的模式生物之一。
通过观察秀丽隐杆线虫的核转位现象,科学家们可以更好地理解基因组的结构和功能。
秀丽隐杆线虫的核转位实验通常使用转座子(transposon)作为研究工具。
转座子是一种可以移动到基因组中不同位置的DNA片段。
在实验中,科学家会将转座子引入到秀丽隐杆线虫的基因组中,并观察转座子在不同个体间的移动情况。
通过对大量的秀丽隐杆线虫个体进行观察,科学家们发现,转座子的移动是一个随机的过程。
转座子可以在染色体上任意位置插入或删除,从而改变基因的排列顺序。
这种基因重排可以导致不同个体之间的基因差异,进而影响个体的表型特征。
除了观察核转位现象外,科学家们还通过分子生物学技术对转座子进行深入研究。
他们发现,转座子可以通过酶的介导而发生移动。
这些酶包括转座酶,它能够识别特定的DNA序列,并在该序列上切割DNA链。
转座酶的活性使得转座子能够在基因组中移动。
研究者还发现,转座子的移动可以导致基因组的变异和重组。
这些变异可能对生物的适应性和进化起到重要作用。
通过观察秀丽隐杆线虫的核转位现象,科学家们可以更好地理解基因组的进化和适应性机制。
核转位实验还能够为研究其他生物的基因组重组提供参考。
虽然不同物种之间的基因组结构存在差异,但核转位的基本原理是相似的。
通过观察秀丽隐杆线虫的核转位现象,科学家们可以揭示基因组重组的一般规律,为进一步研究其他生物的基因组提供指导。
秀丽隐杆线虫核转位实验是一项重要的研究工具,能够帮助科学家们更好地理解基因组的结构和功能。
通过观察转座子的移动情况,科学家们可以揭示基因组的重排和重组机制,进而深入研究生物的遗传变异和进化过程。
通过秀丽隐杆线虫核转位实验的研究,我们对基因组的理解将更加深入,为生物学领域的研究提供更多的启示。