计量经济学-第11章 异方差性
计量经济学试题异方差性与加权最小二乘法
计量经济学试题异方差性与加权最小二乘法计量经济学试题:异方差性与加权最小二乘法一、引言计量经济学作为经济学的一个重要分支,通过运用数理统计和经济理论的方法,旨在分析经济现象并进行经济政策的评估。
在实证分析中,经常会遇到异方差性的问题,而加权最小二乘法是处理异方差性的一种重要方法。
本文将探讨异方差性的来源、加权最小二乘法的原理与应用。
二、异方差性的来源异方差性是指随着自变量的变化,随机误差的方差也会发生变化。
异方差性可能会导致经验结果不准确、偏离真实情况,并影响对经济现象的解释和预测。
以下是可能导致异方差性的原因:1. 条件异方差性:数据的方差可能与自变量之间的关系存在相关性。
例如,在研究家庭收入对教育支出的影响时,高收入家庭的支出方差可能比低收入家庭更大。
2. 记忆效应:在纵向数据分析中,随着时间的推移,个体经济行为可能受到过去观测结果的影响,进而导致异方差性的存在。
3. 测量误差:数据收集中的测量误差可能会导致异方差性。
例如,对于某些变量,测量误差可能更大,从而导致随机误差的方差不一致。
三、加权最小二乘法的原理加权最小二乘法(Weighted Least Squares, WLS)是一种用于处理异方差性的回归方法,其原理是通过给不同观测值分配不同的权重,以减小异方差的影响。
具体来说,加权最小二乘法的目标是最小化加权残差平方和。
在加权最小二乘法中,权重的选择是关键。
常见的权重选择方法包括:1. 方差稳定化权重:根据方差与自变量的关系,将观测值的权重设置为方差的倒数,以减小方差变化带来的影响。
2. 广义最小方差法权重:将权重设置为具有稳定方差的函数形式,例如Huber权重函数、Andrews权重函数等。
3. 经验权重:根据经验判断,给不同观测值分配权重,以反映其重要性。
四、加权最小二乘法的应用加权最小二乘法在计量经济学中有广泛的应用。
以下是一些常见的应用领域:1. 金融经济学:在金融领域中,异方差性往往普遍存在。
(完整)计量经济学考试重点整理
计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。
计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。
经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。
三者结合起来,就是力量,这种结合便构成了计量经济学。
”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。
P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。
P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究.结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。
计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。
2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。
计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。
对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。
模型理论方法的发展以适应预测的需要。
3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。
异方差性的概念、类型、后果、检验及其修正方法含案例
Yi和Xi分别为第i个家庭的储蓄额和可支配收入。
在该模型中,i的同方差假定往往不符合实际情况。对高收 入家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律 性(如为某一特定目的而储蓄),差异较小。
因此,i的方差往往随Xi的增加而增加,呈单调递增型变化 。
– 在选项中,EViews提供了包含交叉项的怀特检验“White Heteroskedasticity(cross terms)”和没有交叉项的怀特检 验“White Heteroskedasticity(no cross terms)” 这样两个 选择。
• 软件输出结果:最上方显示两个检验统计量:F统计 量和White统计量nR2;下方则显示以OLS的残差平 方为被解释变量的辅助回归方程的回归结果。
随机误差项具有不同的方差,那么: 检验异方差性,也就是检验随机误差项的方差与解
释变量观测值之间的相关性及其相关的“形式”。 • 各种检验方法正是在这个共同思路下发展起来的。
路漫漫其修远兮, 吾将上下而求索
问题在于:用什么来表示随机误差项的方差? 一般的处理方法:
路漫漫其修远兮, 吾将上下而求索
2.图示检验法
路漫漫其修远兮, 吾将上下而求索
3.模型的预测失效
一方面,由于上述后果,使得模型不具有良好的统计性质;
【书上这句话有点问题】
其中 所以,当模型出现异方差性时,Y预测区间的建立将发生困 难,它的预测功能失效。
路漫漫其修远兮, 吾将上下而求索
三、异方差性的检验(教材P111)
1.检验方法的共同思路 • 既然异方差性就是相对于不同的解释变量观测值,
(注意:其中的2完全可以是1)
计量经济学讲义——线性回归模型的异方差问题1
Gleiser检验与Park检验存在同样的弱点。
(9.3) (9.4) (9.5)
9.4 异方差的诊断-方法4:怀特(White)检验法
Yi = B1 + B 2 X 2 i + B3 X 3 i + u i
2、做如下辅助回归: (9.6) (9.7)
1、首先用普通最小二乘法估计方程(9.6),获得残差ei
E(Y|X)=α+β*X Y
+u +u -u -u -u +u
0
同方差(homoscedasticity)
X 0
E(Y|X)=α+β*X
异方差(heteroscedasticity)
X
一元线性回归分析-回归的假定条件
假定5 无自相关假定,即两个误差项之间不相关。 Cov(ui,uj) = 0。
ui
9.2 异方差的性质
例9.1 美国创新研究:销售对研究与开发的影响 ^ R&D = 266.2575 + 0.030878*Sales se=(1002.963) (0.008347) t =(0.265471) (3.699508) p =(0.7940) R2 = 0.461032 从回归结果可以看出: (1)随着销售额的增加,R&D也逐渐增加,即销售 额每增加一百万美元,研发相应的增加3.1 万美元。 (2)随着销售额的增加,R&D支出围绕样本回归线 的波动也逐渐变大,表现出异方差性。 (0.0019)
计量经济学--异方差性讲解
图1:我国税收和GDP
图2:1998年我国制造工业和利润
X-GDP Y-税收
X-销售收入 Y-销售利润
两个散点图有共同的特征,随着自变量增加,因变量也 增加,但是图2中,当X比较小时,数据点相对集中,随 着X增大,数据点变得相对分散。而图1中数据分布却没 有出现这一特征。
异方差的性质
➢经典线形回归模型的一个重要假定是同方差性:
PRF的干扰项 u i 是同方差的(homoscedastic)
即: E(ui2) 2
i 1, 2, , n (3.3.1)
➢异方差性是指,ui 的条件方差(= Yi 的条件方差)
随着X的变化而变化,用符号表示为:
E (ui2
)
2 i
(3.3.2)
Var(Yi ) Var(ui )
异方差产生的主要原因
——这就是GLS方法,得到的是GLS估计量
•模型函数形式存在设定误差 •模型中遗漏了一些重要的解释变量 •随机因素本身的影响
异方差较之 同方差更为
常见
7
异方差的具体理由
➢按照边错边改学习模型(error—learning models),人 们的行为误差随时间而减少。
➢随着收入的增长,人们在支出和储蓄中有更大的灵活
性。在做储蓄对收入的回归中, i2与收入俱增
此时如果仍采用
计算斜率参数的方差,将会
产生估计偏误,偏误的大小取决与因子值的大小。
17
3.t检验的可靠性降低
由于异方差的存在,无法正确估计参数的方差和标 志误差,因此也影响到t检验的效果
4.模型的预测误差增大
模型的预测区间和随机误差项的方差有着紧密联 系,随着随机误差项方差的增大,模型的预测区 间也随之增大,模型的预测误差也会相应增加。
计量经济学:异方差性
计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。
虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。
本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。
第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。
所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。
通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。
计量经济学的异方差性
一、 异方差性1. 中国农村居民人均消费支出主要由人均纯收入来决定。
农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支出收入等。
为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,可使用如下双对数模型:01122ln ln ln Y X X u βββ=+++其中Y 表示农村家庭人均消费支出,1X 表示从事农业经营的收入,2X 表示其他收入。
表4.1.1列出了中国2001年各地区农村居民家庭人均纯收入及消费支出的相关数据。
表4.1.1中国2001年各地区农村居民家庭人均纯收入与消费支出建立工作文件输入数据,输入命令:data y x1 x2 取对数:genr ly=log(y) 回车 Genr lx1=log(x1)回车Genr lx2=log(x2)回车估计参数:lsly c lx1 lx2 回车,得结果如下:用OLS 法进行估计,结果如下:对应的表达式为:12ln 1.6030.325ln 0.507ln Y X X =++(1.86) (3.14) (10.43)20.7965,0.78,0.8117R R RSS ===不同地区农村人均消费支出的差别主要来源于非农经营收入及其他收入的差别,因此,如果存在异方差性,则可能是2X 引起的。
对异方差性的检验:做OLS 回归得到的残差平方项与ln 2X 的散点图:从散点图可以看出,两者存在异方差性。
下面进行统计检验。
采用White异方差检验:EViews提供了包含交叉项和没有交叉项两个选择。
本例选择没有包含交叉项。
得到如下结果:所以辅助回归结果为:2221122ˆ 3.9820.579ln 0.042(ln )0.563ln 0.04(ln )eX X X X =-+-+ (1.38) (-0.63) (0.63) (-2.77) (2.9)其他收入2X 与2X 的平方项的参数的t 检验是显著的,且White 统计量为13.36,在5%的显著性水平下,拒绝同方差性这一原假设,方程确实存在异方差性。
计量经济学习题及答案
计量经济学习题一、名词解释1、普通最小二乘法:为使被解释变量的估计值及观测值在总体上最为接近使Q= 最小,从而求出参数估计量的方法,即之。
2、总平方和、回归平方和、残差平方和的定义:TSS度量Y自身的差异程度,称为总平方和。
TSS除以自由度n-1=因变量的方差,度量因变量自身的变化;RSS度量因变量Y的拟合值自身的差异程度,称为回归平方和,RSS除以自由度〔自变量个数-1〕=回归方差,度量由自变量的变化引起的因变量变化局部;ESS度量实际值及拟合值之间的差异程度,称为残差平方和。
RSS除以自由度〔n-自变量个数-1〕=残差〔误差〕方差,度量由非自变量的变化引起的因变量变化局部。
3、计量经济学:计量经济学是以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系及经济活动数量规律的研究,并以建立和应用经济计量模型为核心的一门经济学科。
而且必须指出,这些经济计量模型是具有随机性特征的。
4、最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限;即样本容量必须不少于模型中解释变量的数目〔包扩常数项〕,即之。
5、序列相关性:模型的随机误差项违背了相互独立的根本假设的情况。
6、多重共线性:在线性回归模型中,如果某两个或多个解释变量之间出现了相关性,那么称为多重共线性。
7、工具变量法:在模型估计过程中被作为工具使用,以替代模型中及随机误差项相关的随机解释变量。
这种估计方法称为工具变量法。
8、时间序列数据:按照时间先后排列的统计数据。
9、截面数据:发生在同一时间截面上的调查数据。
10、相关系数:指两个以上的变量的样本观测值序列之间表现出来的随机数学关系。
11、异方差:对于线性回归模型提出了假设干根本假设,其中包括随机误差项具有同方差;如果对于不同样本点,随机误差项的方差不再是常数,而互不一样,那么认为出现了异方差性。
12、外生变量:外生变量是模型以外决定的变量,作为自变量影响内生变量,外生变量决定内生变量,其参数不是模型系统的元素。
PPT-第11章-二值选择模型-计量经济学及Stata应用
© 陈强,2015年,《计量经济学及Stata应用》,高等教育出版社。
第11章二值选择模型11.1 二值选择模型如果被解释变量y离散,称为“离散选择模型”(discrete choice model)或“定性反应模型”(qualitative response model)。
最常见的离散选择模型是二值选择行为(binary choices)。
比如:考研或不考研;就业或待业;买房或不买房;买保险或不买保险;贷款申请被批准或拒绝;出国或不出国;回国或不回12国;战争或和平;生或死。
假设个体只有两种选择,比如1y =(考研)或0y =(不考研)。
最简单的建模方法为“线性概率模型”(Linear Probability Model ,LPM):1122(1,,)i i i K iK i i i y x x x i n βββεε'=+=+= +++x β (11.1)其中,解释变量12()i i i iK x x x '≡ x ,而参数12()K βββ'≡ β。
LPM 的优点是,计算方便,容易得到边际效应(即回归系数)。
3LPM 的缺点是,虽然y 的取值非0即1,但根据线性概率模型所作的预测值却可能出现ˆ1y>或ˆ0y <的不现实情形。
图11.1 线性概率模型4为使y 的预测值介于[0,1]之间,在给定x 的情况下,考虑y 的两点分布概率:P(1|)(,)P(0|)1(,)y F y F ==⎧⎨==-⎩x x x x ββ (11.2)函数(,)F x β称为“连接函数”(link function) ,因为它将x 与y 连接起来。
y 的取值要么为0,要么为1,故y 肯定服从两点分布。
连接函数的选择具有一定灵活性。
通过选择合适的连接函数(,)F x β(比如,某随机变量的累积分布函数),可保证ˆ01y≤≤,并将ˆy 理解为“1y =”发生的概率,因为5E(|)1P(1|)0P(0|)P(1|)y y y y =⋅=+⋅===x x x x (11.3)如果(,)F x β为标准正态的累积分布函数,则P(1|)(,)()()y F t dt φ'-∞'===Φ≡⎰x x x x βββ (11.4)()φ⋅与()Φ⋅分别为标准正态的密度与累积分布函数;此模型称为“Probit ”。
EViews计量经济学实验报告异方差的诊断及修正
时间 地点 实验题目 异方差的诊断与修正一、实验目的与要求:要求目的:1、用图示法初步判断是否存在异方差,再用White 检验异方差;2、用加权最小二乘法修正异方差。
二、实验内容根据1998年我国重要制造业的销售利润与销售收入数据,运用EV 软件,做回归分析,用图示法,White 检验模型是否存在异方差,如果存在异方差,运用加权最小二乘法修正异方差。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一) 模型设定为了研究我国重要制造业的销售利润与销售收入是否有关,假定销售利润与销售收入之间满足线性约束,则理论模型设定为:i Y =1β+2βi X +i μ其中,i Y 表示销售利润,i X 表示销售收入。
由1998年我国重要制造业的销售收入与销售利润的数据,如图1:1988年我国重要制造业销售收入与销售利润的数据 (单位:亿元)(二) 参数估计1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —异方差数据2.xls ;2、在EV 主页界面的窗口,输入“ls y c x ”,按“Enter ”。
出现OLS 回归结果,如图2:估计样本回归函数Dependent Variable: Y Method: Least Squares Date: 10/19/05 Time: 15:27 Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C 12.03564 19.51779 0.616650 0.5428 X0.1043930.008441 12.366700.0000R-squared0.854696 Mean dependent var 213.4650 Adjusted R-squared 0.849107 S.D. dependent var 146.4895 S.E. of regression 56.90368 Akaike info criterion 10.98935 Sum squared resid 84188.74 Schwarz criterion 11.08450 Log likelihood -151.8508 F-statistic 152.9353 Durbin-Watson stat1.212795 Prob(F-statistic)0.000000估计结果为: iY ˆ = 12.03564 + 0.104393i X (19.51779) (0.008441) t=(0.616650) (12.36670)2R =0.854696 2R =0.849107 S.E.=56.89947 DW=1.212859 F=152.9353这说明在其他因素不变的情况下,销售收入每增长1元,销售利润平均增长0.104393元。
异方差性的概念、类型、后果、检验及其修正方法(含案例)
分别为两个子样对应的随机项方差。
H0成立,意味着同方差; H1成立,意味着异方差。
⑤构造统计量
nc 2 ~ e2i ( 2 k 1) nc nc F ~ F( k 1, k 1) nc 2 2 2 ~ e ( k 1 ) 1i 2
⑥检验。给定显著性水平,确定F分布表中相应的临界值
例4.1.2:以绝对收入假设为理论假设、以分组数据 (将居民按照收入等距离分成n组,取组平均数为样 本观测值)作样本建立居民消费函数:
Ci= 0+1Yi+i 一般情况下:居民收入服从正态分布,处于中等收入组中 的人数最多,处于两端收入组中的人数最少。而人数多的组 平均数的误差小,人数少的组平均数的误差大。所以样本观 测值的观测误差随着解释变量观测值的增大而先减后增。 如果样本观测值的观测误差构成随机误差项的主要部分,那 么对于不同的样本点,随机误差项的方差随着解释变量观测值
并不随解释变量 Xi的变化而变化,不论解释变量 的观测值是大还是小,每个i的方差保持相同, 即 i2 =常数 (i=1,2,…,n)
• 在异方差的情况下,i2已不是常数,它随Xi的
变化而变化,即
i2 =f(Xi) (i=1,2,…,n)
• 异方差一般可以归结为三种类型:
(1)单调递增型: i2=f(Xi)随Xi的增大而增大; (2)单调递减型: i2=f(Xi )随Xi的增大而减小; (3)复杂型: i2=f(Xi )随Xi的变化呈复杂形式。
③对每个子样本分别求回归方程,并计算各自的残差平方
e 2 ,较大的一 和。将两个残差平方和中较小的一个规定为 ~ 1i
nc 2 ~ k 1。 个规定为 e2i 。二者的自由度均为 2
2 2 H0 : 12 2 12 2 ④提出假设: ,H 1 : 2 12 与 2
计量经济学名词解释和简答题
计量经济学第一部分:名词解释第一章1、模型:对现实的描述和模拟。
2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。
3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。
5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
6、残差项:是一随机变量,是针对样本回归函数而言的。
7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。
8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。
9、回归系数的估计量:指用¶µ01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12、估计量的标准差:度量一个变量变化大小的测量值。
13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。
14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。
15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。
计量经济学-名词解释及简答
一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。
3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。
4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。
2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。
3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。
4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。
第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。
2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用2R 表示。
3、修正的可决系数:用自由度修正多重可决系数2R 中的残差平方和与回归平方和。
4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。
5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。
6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。
计量经济学实验报告-异方差问题white分析
4.运用对数方法,消除异方差问题。进行多元线性回归分析并呈现结果,并解释相关变量。
5.运用WLS方法,消除异方差问题。进行多元线性回归分析并呈现结果,并解释相关变量。
实验内容\步骤
1.打开eviews,点击Open a Foreign file,选择桌面上保存好的练习数据,点击选择Quick-Generate Series菜单命令,在弹出的对话框中输入e=resid,生成残差序列。然后选择Quick-Graph菜单命令,在弹出的对话框中输入变量名x e^2,得到散点图。
Std. Error
t-Statistic
Prob.
C
-15.32732
1.507305
-10.16869
0.0000
LOG(X)
2.224390
0.151781
14.65526
0.0000
R-squared
0.881039
Mean dependent var
6.740001
Adjusted R-squared
实验结果分析及讨论(续)
4.运用对数方法,消除异方差结果如下:
Dependent Variable: LOG(Y)
Method: Least Squares
Date: 10/12/21 Time: 20:18
Sample: 1 31
Included observations: 31
Variable
Coefficient
Dependent Variable: Y
Method: Least Squares
Date: 10/12/21 Time: 20:25
(整理)计量经济学-参考答案
(整理)计量经济学-参考答案⼀、解释概念:1、多重共线性:是指在多元线性回归模型中,解释变量之间存在的线性关系。
2、SRF:就是样本回归函数。
即是将样本应变量的条件均值表⽰为解释变量的某种函数。
3、解释变量的边际贡献:在回归模型中新加⼊⼀个解释变量所引起的回归平⽅和或者拟合优度的增加值。
4、⼀阶偏相关系数:反映⼀个经济变量与某个经济变量的线性相关程度时,剔除另⼀个变量对它们的影响的真实相关程度的指标。
5、最⼩⽅差准则:在模型参数估计时,应当选择其抽样分布具有最⼩⽅差的估计式,该原则就是最佳性准则,或者称为最⼩⽅差准则。
6、OLS:普通最⼩⼆乘估计。
是利⽤残差平⽅和为最⼩来求解回归模型参数的参数估计⽅法。
7、偏相关系数:反映⼀个经济变量与某个经济变量的线性相关程度时,剔除其它变量(部分或者全部变量)对它们的影响的真实相关程度的指标。
8、WLS:加权最⼩⼆乘法。
是指估计回归⽅程参数时,按照残差平⽅加权求和最⼩的原则进⾏的估计⽅法。
9、U t⾃相关:即回归模型中随机误差项逐项值之间的相关。
即Cov(U t,U s)≠0 t ≠s。
10、⼆阶偏相关系数:反映⼀个经济变量与某个经济变量的线性相关程度时,剔除另两个变量对它们的影响的真实相关程度的指标。
11、技术⽅程式:根据⽣产技术关系建⽴的计量经济模型。
13、零阶偏相关系数:反映⼀个经济变量与某个经济变量的线性相关程度时,不剔除任何变量对它们的影响的相关程度的指标。
也就是简单相关系数。
14、经验加权法:是根据实际经济问题的特点及经验判断,对滞后经济变量赋予⼀定的权数,利⽤这些权数构成各滞后变量的线性组合,以形成新的变量,再⽤最⼩⼆乘法进⾏参数估计的有限分布滞后模型的修正估计⽅法。
15、虚拟变量:在计量经济学中,我们把取值为0和1 的⼈⼯变量称为虚拟变量,⽤字母D表⽰。
(或称为属性变量、双值变量、类型变量、定性变量、⼆元型变量)16、不完全多重共线性:是指在多元线性回归模型中,解释变量之间存在的近似的线性关系。
经典单方程计量经济学模型(异方差性)
80%
适用范围
对数变换法适用于存在异方差性 的模型,尤其适用于解释变量和 被解释变量之间存在非线性关系 的情况。
04
异方差性与模型选择
异方差性与模型适用性
异方差性是指模型中误差项的 方差不为常数,而是随解释变 量的变化而变化。
在异方差性存在的情况下,经 典的单方程计量经济学模型可 能不再适用,因为模型假设误 差项的方差是恒定的。
为了使模型具有适用性,需要 选择能够处理异方差性的模型 ,例如广义最小二乘法、加权 最小二乘法等。
异方差性与模型预测能力
异方差性的存在会影响模型的预测能力,因为异方差性会导致模 型的残差不再独立同分布,从而影响模型的预测精度。
为了提高模型的预测能力,需要采取措施处理异方差性,例如使 用稳健的标准误、对误差项进行变换等。
在实践中,应该充分考虑异方差性的影响,采取适当 的措施进行修正,以提高模型的预测和推断能力。
02
异方差性的检验
图示检验法
残差图检验
通过绘制残差与拟合值的图形,观察残差的分布情况,判断是否 存在异方差性。如果残差随着拟合值的增加或减少而呈现有规律 的变化,则可能存在异方差性。
杠杆值图检验
将数据按照杠杆值(leverage)进行排序,并绘制杠杆值与残差的 图形。如果图形显示高杠杆值对应的点有异常的残差分布,则可能 存在异方差性。
经典单方程计量经济学模型(异 方差性)
目
CONTENCT
录
• 异方差性简介 • 异方差性的检验 • 异方差性的处理方法 • 异方差性与模型选择 • 经典单方程计量经济学模型中的异
方差性
01
异方差性简介
定义与特性
异方差性是指模型残差的方差不为常数,随着解释 变量的变化而变化。
异方差性检验 计量经济学 EVIEWS建模课件
G-Q检验的步骤:
①将n对样本观察值(Xi,Yi)按观察值Xi的大 小排队;
②将序列中间的c=n/4个观察值除去,并 将剩下的观察值划分为较小与较大的相 同的两个子样本,每个子样的样本容量 均为(n-c)/2;
③对每个子样分别进行OLS回归,并计算各自 的残差平方和∑esi12 与∑esi22 ;
计量经济学模型一旦出现异方差性,如果仍采用 OLS估计模型参数,会产生下列不良后果:
1.参数估计量非有效
OLS估计量仍然具有无偏性,但不具有有效 性。因为在有效性证明中利用了 E(εε’)=2I 。
而且,在大样本情况下,尽管参数估计量具 有一致性,但仍然不具有渐近有效性。
2. 变量的显著性检验失去意义
例如以绝对收入假设为理论假设、以截面数据
为样本建立居民消费函数: Ci=0+1Yi+εi
将居民按照收入等距离分成n组,取组平均数 为样本观测值。 • 一般情况下,居民收入服从正态分布:中等收 入组人数多,两端收入组人数少。而人数多的组 平均数的误差小,人数少的组平均数的误差大。 • 所以样本观测值的观测误差随着解释变量观测 值的不同而不同,往往引起异方差性。
异方差性的检验与修正分析
一、异方差性问题 二、异方差性检验 三、异方差的修正及案例 四、条件异方差模型的建立
⒉ 在同方差情况下: 异 方 差 的 图 示 在异方差情况下: 说 明 :
异方差时
同方差:i2 = 常数 f(Xi) 异方差:i2 = f(Xi)
⒊异方差的类型
异方差一般可归结为三种类型: (1)单调递增型: i2随X的增大而增大 (2)单调递减型: i2随X的增大而减小 (3)复 杂 型: i2与X的变化呈复杂形式
变量的显著性检验中,构造了t统计量
计量经济学-期末考试-名词解释
第一章导论1、截面数据:截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。
2、时间序列数据:时间序列数据是同一观察对象在不同时间点上的取值的统计序列,可理解为随时间变化而生成的数据。
3、虚变量数据:虚拟变量数据是人为设定的虚拟变量的取值。
是表征政策、条件等影响研究对象的定性因素的人工变量,其取值一般只取“0”或“1”。
4、内生变量与外生变量:。
内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定性的变量。
第二章一元线性回归模型1、总体回归函数:是指在给定X i下Y分布的总体均值与X i所形成的函数关系(或者说将总体被解释变量的条件期望表示为解释变量的某种函数)2、最大似然估计法(ML): 又叫最大或然法,指用产生该样本概率最大的原则去确定样本回归函数的方法。
3、OLS估计法:指根据使估计的剩余平方和最小的原则来确定样本回归函数的方法。
4、残差平方和:用RSS表示,用以度量实际值与拟合值之间的差异,是由除解释变量之外的其他因素引起的被解释变量变化的部分。
5、拟合优度检验:指检验模型对样本观测值的拟合程度,用表示,该值越接近1表示拟合程度越好。
第三章多元线性回归模型1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量2、调整的可决系数:又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程度的统计量,克服了随解释变量的增加而增大的缺陷,与的关系为。
3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。
4、正规方程组:采用OLS方法估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为。
第11章异方差性误差方差不是常数会怎样.
ˆ ) Var ( 2
( x )
2 i
s
2
ˆ ) Var( 2
( xi2 ) 2
2 2 x i si
2.
变量的显著性检验失去意义
变量的显著性检验中,构造了t统计量
它是建立在s2 不变而正确估计了参数标 准差 S 的基础之上的。
i
其他检验也是如此。
3.
模型的预测失效
一方面,由于上述后果,使得模型不具有 良好的统计性质;
一般情况下,居民收入服从正态分布:
中等收入组人数多,两端收入组人数少。而人数 多的组的平均数的误差小,人数少的组平均数的 误差大。所以样本观测值的观测误差随着解释变 量观测值的不同而不同,往往引起异方差性。
本例中,i的方差随解释变量X(收入)的观 测值的增大而呈U形变化,是复杂型的一种。
例3,以某一行业的企业为样本建立企业生产 函数模型:
Yi
A K L e
i i i
1
2
3
i
被解释变量:产出量Y
解释变量:资本K、劳动L、技术A,
经验表明:对采用截面数据作样本的计量经济学 问题,由于在不同样本点上解释变量以外的其他 因素的差异较大,所以往往存在异方差。
出现异方差的原因
是因为中包括了测量误差和模型中被省略 的一些因素对因变量的影响。
四、异方差性的后果
计量经济学模型一旦出现异方差性,如果仍采 用OLS估计模型参数,会产生下列不良后果: 1. 参数估计量非有效 OLS估计量仍然具有线性性,无偏性,但不具有 有效性(最小方差)。如: Yi 1 2 X i ui 无异方差: 有异方差:
ˆ 2
xi y i x
X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
White的一般异方差性检验
基本思想:
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
看uˆi2与X
2i
,
X
3i
,
X
2 2i
,
X
2 3i
,
X
2i
X
3i
是否存在
回归关系.
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
(11.2.2) 返回 (11.2.3) 返回
在经典模型的各种假定,包括同方差性假定在 内,全部成立的情形下,OLS估计量是BLUE
其他假定不变,同方差性假定不成立时,OLS 估计量不再是BLUE
OLS估计量仍然是线性的和无偏的,但是,不
再是“最优的”或“有效的”,即2 ,3
,, n
E (u i2
)
2 i
见P388 Fig. 11.2
(11.1.2)
异方差的理由
按照边错边改学习模型(error—learning models), 人们的行为误差随时间而减少。见Fig. 11.3
随着收入的增长,人们在支出和储蓄中有更大的灵
活性。在做储蓄对收入的回归中,
2 i
与收入俱增
其中vi是变换后的干扰项,vi
ui Xi
。可以证明:
2
E(vi2 )
E
ui Xi
1
X
2 i
E(ui2 )
2 利用(11.6.5)
假定2.:
误差方差正比于X
:
i
E(ui2 ) 2 X i
平方根变换:
(11.6.7)
其中vi 可证:
Yi Xi
1
Xi
(11.2.3)所给出的 高估 的真实的 2方差
是va有r(偏2的) ,可能低估或
ˆ 2 uˆi2 /(n 2)不是 2的无偏估计
置信区间,t检验和F检验也将不准确
异方差性的判断
非正式方法
问题的性质
在涉及不均匀(heterogeneous)单元(国家、省 份、企业、家庭)的横截面数据中,异方差性可 能是一种常规,而不是例外
步骤1. 步骤2.
估计(11.5.20),获得残差ˆ uˆi 做辅助回归:
uˆi2
1
2 X 2i
3 X 3i
4
X
2 2i
5
X
2 3i
6 X 2i X 3i vi
(11.5.21)
还可以引入回归元的更高次方。求出R2
步骤3.
设置虚拟假设H
:无异方差性。可证:
0
n
R2
(11.6.9)
Yi E(Yi )
1
E(Yi )
2
Xi E(Yi )
ui E(Yi )
1
E
1 (Yi
)
2
Xi E(Yi )
vi
(11.6.10)
E(Yi )不可知,利用E(Yi )的一致性估计值Yˆi:
Yi Yˆi
1
1 Yˆi
2
在小样本情形下, Glejser检验只能作为一种摸 索异方差性的定性的技巧
Spearman的等级相关检验
Spearman等级相关系数为:
rs
1
6
n(n
d
2 i
2 1)
(11.5.5)
其中 d i 表示第 i 单元或现象的两种不同特性所处的
等级之差,而 n 表示带有级别的单元或现象的个数 侦察异方差性:
第11章 异方差性
异方差的性质
经典线形回归模型的一个重要假定是同方差性:
PRF的干扰项 u i 是同方差的(homoscedastic)
即: E(ui2) 2
i 1,2,, n (11.1.1)
异方差性是指,u i 的条件方差(= Yi 的条件方差)
随着X的变化而变化,用符号表示为:
或:
ln
2 i
ln
2
ln
Xi
vi
其中vi是随机干扰项
由于 i2未知,用uˆi2代替,回归变为:
ln
uˆ
2 i
ln
2
ln
Xi
vi
ln X i vi
(11.5.1) (11.5.2)
如果 显著,则有异方差性;如果它不显著,则接
受同方差性假设
见 P404例子
Xi Yˆi
vi
(11.6.11)
其中vi
ui YˆI
。变换后的(11.6.11)一般具有良好的性质
假定4. : 回归模型:
Yi 1 2 X i ui
通过对数变换,变为:
ln Yi 1 2 ln X i ui
通常能降低异方差性
(11.6.12)
2的OLS 估计量
2
xi yi n X iYi X i Yi
xi2
n
X
2 i
(
Xi )2
异方差假定下,它的方 差为:
var( 2 ) (
xi2
2 i
xi2 ) 2
而同方差假定下,它的方差为:
var( 2 )
2
xi2
(11.2.1)
Glejser检验
Glejser建议,从OLS回归得到残差 uˆ i 之后,用
uˆ
i
的绝对值对被认为与
2 i
密切相关的X变量做回归:
ui 1 2 X i vi
ui 1 2 X i vi
ui
1 2
1 Xi
vi
ui恒有X 0i 1。用 i去除(11.3.2)得:
Yi
i
1
X 0i
i
2
Xi
i
ui
i
进一步,可以写作:
(11.3.3)
Yi
1
X
0i
* 2
X
i
u
i
(11.3.4)
其中
,
1,
表示转换模型的参数。经转
讨论: “小悦悦”事件 2011年10月13日下午,2岁女童悦悦在佛山广佛
五金城连遭两车碾轧,直到被陈贤妹救起,悦悦熬 过了387秒。在这段时间里,18名路人经过,但没人 伸出援手。
本章结束,谢谢!
图解法
在缺乏先验信息或经验的情况下,可对
uˆ
2 i
做检
验,看看是否存在系统模式
见P402的Fig11.8 P403的Fig11.9
Eviews提供了查看残差判断是否存在异方差性 的功能
正式方法
Park检验
Park提出
2 i
是解释变量
Xi
的函数,从而,将图解
法形式化:
2 i
2
X
i
evi
见11.3节,可得到BLUE
Yi
i
ˆ1
(1
i
)
ˆ2
(
Xi
i
)
( uˆi
i
)
当
2为未知
i
假定1.:
误差
方差
正比
于X
2 i
E
(u
2 i
)
2
X
2 i
用X
去除原模型
i
,得
:
Yi Xi
1
Xi
2
ui Xi
1
1 Xi
2
vi
(11.6.1)
(11.6.5) (11.6.6)
2
换有
:
var(ui )
E(ui )2
E
u
i i
2
1
2 i
E(ui2 )
s
in
ce
2 i
is
know
1
2 i
(
2 i
)
sin
ceE(ui2
)
2 i
1
(11.3.5)
即,转换后模型的干扰项满足同方差性假定,再 用OLS方法,就可以得到BLUE估计量
——这就是GLS方法,得到的是GLS估计量
wi )( wi X iYi ) ( wi X i )( wiYi )
(
wi )(
wi
X
2 i
)
(
wi X i ) 2
(11.3.8)
它的方差为:
var( 2 ) (
wi )(
wi
wi
X
2 i
)
(
wi X i )2
其中,wi
1
2 i
(11.3.9)
OLS和GLS的区别
因为:
var(
* 2
)
var(
2