四年级奥数.应用题.一元一次方程解法综合(ABC级).学生版

合集下载

小学奥数2-2-1 一元一次方程解法综合.专项练习

小学奥数2-2-1 一元一次方程解法综合.专项练习

1、认识了解方程及方程命名2、移项、系数、解方程、方程的解等名词的意思一定要让学生了解3、运用等式性质解方程4、会解简单的方程一、方程的起源 方程这个名词,最早见于我国古代算书《九章算术》。

《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章。

在这一章里的所谓“方程”,是指一次方程和方程组。

例如其中的第一个问题实际上就是求解三元一次方程组。

古代解方程的方法是利用算筹。

我国古代数学家刘徽注释《九章算术》说,“程,课程也。

二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式。

一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程。

《九章算术》中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产。

同学们也要好好学习数学,将来争取为数学研究做出新的贡献!二、方程的重要性方程作为一个小学数学的重要工具,是小学向初中过渡的重点也是难点。

渗透方程思想,让学生能用字母表示数字,解决一些比较抽象的数学关系,所以学好方能对于学生以后学习数论等较难专题有很大帮助。

三、相关名词解释1、算式:把数用运算符号与运算顺序符号连接起来是算式2、等式:表示相等关系的式子3、方程:含有未知数的等式4、方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数项最高次数是a 的方程例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程;如:37x +=,71539q +=,222468m ⨯+=(), 一元一次方程的能使一元一次方程左右两边相等的未知数的值;如:4x =是方程37x +=的解,3q =是方程81539q +=的解,教学目标 知识点拨一元一次方程解法综合5、解方程:求方程的解的过程叫解方程。

第三章 一元一次方程专题复习(学生版)

第三章 一元一次方程专题复习(学生版)

第三章 一元一次方程专题复习(学生版)一.知识网络结构二.知识要点剖析知识点一.等式与方程1.等式:表示_____关系的式子.等式的基本性质(方程的同解原理):等式的性质1:等式两边加(或减)___一个数(或式子),结果仍_____。

即:若a=b ,则a ±c =b_____;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个________的数,结果仍相等。

即:若a=b ,则ac=b___, cbc a (c_____0)其它性质:若a=b ,b=c,则a=c (传递性).注意:等式的基本性质是解方程的依据,在使用时要注意式性质成立的条件. 2.方程:含有______的等式叫方程.方程的解:能使方程左右两边________的未知数的值.注意:等式、方程含有等号, 方程是含有未知数的等式; 代数式不含等号;不等式含不等号. 知识点二.一元一次方程(1)定义:只含有_____未知数,并且未知数的次数是_____(次),系数_________的整式方程.(2)一般形式:______________(其中x 是未知数,a,b 是已知数,且a ≠0). 注意:(1)一元一次方程必须满足的3个条件: 只含有一个未知数; 未知数的次数是1次; 整式方程. (2)判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点三.一元一次方程的解法思路:通过对方程变形,把含有未知数的项归到方程的一边,把常数项归到方程的另一边,最终把方程“转化”成x =a 的形式。

解一元一次方程的一般步骤: 知识点四.列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:①审题,②_______,③_________,④解方程,⑤检验,⑥________. 解应用题的书写格式:设→根据题意→解这个方程→答。

注意:(1)在一道应用题中,往往含有几个未知数量,应恰当地选择其中的一个,用字母x 表示出来,即所设的未知数,然后根据数量之间的关系,将其它几个未知数量用含x 的代数式表示。

一元一次方程应用题专题——行程问题——学生版

一元一次方程应用题专题——行程问题——学生版

例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

A、C两地之间的路程为10千米,求A、B两地之间的路程。

分析:这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。

1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。

7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。

7.12..四年级奥数列方程解应用题

7.12..四年级奥数列方程解应用题

列方程解应用题知识框架一、等式的基本性质与计算法则(加、减、乘、除)1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.3、加、减、乘、除的计算法则二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。

三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、审——审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、设——设这个量为x,用含x的代数式来表示题目中的其他量;3、列——找到题目中的等量关系,建立方程;4、解——运用加减法、乘除法的互逆关系解方程;5、答——检验,通过求到的关键量求得题目答案.例题精讲一、直接设未知数解应用题例一、长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【巩固】一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?例二、少先队员种柳树和杨树共216棵,杨树的棵树是柳树的3倍多20棵,两种树各种了多少棵?巩固训练1、学校购买720本图书分给高、中、低三个年段,高年段分得的比低年段的3倍多8本,中年段分得比低年段的2倍多4本。

问高、中、低年段各分得图书多少本?例三、三个建筑队共筑路1360米,甲队筑的米数是乙队的2倍,乙队比丙队多240米,三个队各筑了多少米?(和倍问题)巩固训练1、三个植树队共植树1900棵,甲队植树的棵树是乙队的2倍,乙队比丙队少植300棵,三个队各植了多少棵?2、城东小学共有篮球、足球和排球共95只,其中足球比排球少5只,排球的只数是篮球只数的2倍。

小学四年级奥数

小学四年级奥数

小学四年级奥数第一部分行程第一章小学四年级奥数第二章小学四年级奥数第三章流水行船第四章扶梯问题第二部分计数第一章乘法原理第二章几何计数第三章加法原理第四章排列第五章组合第三部分几何第一章风筝模型和梯形蝴蝶定理第二章三角形等高模型第三章鸟头模型第四章图形的分割与拼接第四部分计算第一章整数小数四则运算第二章多位数计算第三章换元法与常用计算结论第四章平方差公式和完全平方公式第五部分应用题第一章列方程解应用题第二章一元一次方程解法综合第六部分杂题第一章抽屉原理第二章统筹规划第三章游戏与策略第一部分----------------------------------------------------------------------------------------------------------------------行程----------------------------------------------------------------------------------------------------------------------火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度;一个有长度、但没速度;解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度;一个没长度、没速度;解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度;一个没长度、但有速度; (1)、火车+迎面行走的人:相当于相遇问题;解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间; (2)火车+同向行走的人:相当于追及问题;解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;知识框架第一章 火车过桥和火车与人的相遇追及(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度 人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度;一个也有长度、有速度; (1)错车问题:相当于相遇问题;解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间; (2)超车问题:相当于追及问题;解法:快车车长+慢车车长(总路程) = (快车速度—慢车速度) ×错车时间;对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目;在分析题目的时候一定得结合着图来进行。

奥数辅导资料一元一次方程

奥数辅导资料一元一次方程

奥数辅导资料一元一次方程【内容综述】一元一次方程是最简单的方程,它是进一步学习方程、不等式和函数的基础,许多方程都是通过变形后转化为一元一次方程来解的。

本期主要介绍一些解一元一次方程的基本方法和技巧。

只含有一个未知数(又称为一元),且其次数是1的方程叫做一元一次方程,任何一个一元一次方程总可以化为的形式,这是一元一次方程的标准形式(最简形式)。

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式;(5)方程两边同除以未知数的系数,得出方程的解。

【要点讲解】§1 含参量的一元一次方程含有参变量的方程在求解时往往需分类讨论,关于的方程。

因为未注明,所以它的解有下面三种情况:(1)当时,方程有唯一解;(2)当时,方程的解为任意数;(3)当,时,方程无解。

★例1解关于χ的方程。

思路这是含参量的一元一次方程,需分类讨论。

解:把原方程变形为即当,即且时,方程有唯一解;当且,即且时,方程无解;当且,即时,方程的解为任意数。

★★例2若a,b,c是正数,解方程。

解法一:原方程两边乘以abc,得到方程,移项合并同类项得即由,,知,即。

解法2:对原方程左端的每一项减去1,得即∵由,,知∴∴说明通过细心观察方程的自身特点,巧妙地分析为3个,为3个,使原方程易于求解。

★★例3k为何正数时,方程的解是正数?思路当方程有唯一解时,此解的正负可由a,b的取值确定:(1)若b=0时,方程的解是零;反之,若方程的解是零,b=0成立。

(2)若时,则方程的解是正数;反之,若方程的解是正数,则成立。

(3)若时,则方程的解是负数;反之,若方程的解是负数,则成立。

解:按未知数χ整理方程得要使方程的解为正数,需要不等式的左端因为,所以只要或时上式大于零,所以当或时,原方程的解是正数,因此或,即为所求。

§2 含有绝对值符号的一次方程解含有绝对值符号的一次方程时,可利用绝对值的定义脱去绝对值符号,转化为普通的一元一次方程。

小学综合算式专项测题解一元一次方程

小学综合算式专项测题解一元一次方程

小学综合算式专项测题解一元一次方程解一元一次方程是小学数学的重要内容之一,本文将介绍一些小学综合算式专项测题解一元一次方程的方法和技巧。

解一元一次方程是指找出使等式成立的未知数的值。

一元一次方程的一般形式为:ax + b = 0,其中a和b为已知数,x为未知数。

在解一元一次方程时,我们可以使用逆运算的方法来求解。

逆运算就是对方程两边采取相反的操作,从而维持等式的平衡。

下面,让我们通过一些练习题来具体理解解一元一次方程的方法。

题目一:小鸟飞翔一个小鸟从A地点向B地点飞行,飞行速度为10米/秒,经过5秒钟到达B地点。

求A、B两地的距离。

解析:我们可以用变量x表示A、B两地的距离,因为小鸟的飞行速度为10米/秒,所以小鸟在5秒钟内飞行的距离为10 * 5 = 50米。

根据题意可得方程:x = 50。

解方程得到的值就是所求的答案,所以A、B两地的距离为50米。

题目二:小明的年龄小明比他的弟弟大4岁,两年前,小明的年龄是现在弟弟年龄的两倍。

求小明和他的弟弟现在的年龄。

设小明的年龄为x岁,弟弟的年龄为y岁。

根据题意可得方程组:1)x = y + 4;2)x - 2 = 2 * (y - 2)。

将方程组进行整理,得到:x - y = 4 和 x - 2 = 2y - 4。

通过消元法,我们可以将这个方程组解为一元一次方程:2y - y = 4 + 2。

解方程得到的值就是所求的答案,所以小明的年龄为6岁,弟弟的年龄为2岁。

通过以上两个例子,我们可以看出解一元一次方程需要具备以下几个步骤:1. 确定未知数并用变量表示;2. 根据题意列出方程;3. 通过逆运算进行方程的整理;4. 解方程得到答案。

然而,在实际解题中,可能会碰到一些复杂的情况,需要我们用一些其他的技巧来解决。

下面,让我们来看一个稍微复杂一些的例子。

题目三:图书馆的书图书馆有大约6000本书。

如果每天借出10本书,需要多少天才能全部借出?设需要的天数为x天。

一元一次方程典型奥数题

一元一次方程典型奥数题

一元一次方程1.解方程2.若 abc=1,解方程3.若是对于 x 的一元一次方程,且有独一解,解方程。

4.若对于 x 的方程有无数个解,求 K5.解方程6.求合适方程的整数 a7.a、b 、 c、为有理数,且求的值为一元一次方程的应用1.含盐 30%的盐水有 60 千克,蒸发一段时间后,当盐水变成含盐 40%时,盐水的重量是多少千克2. 甲、乙分别从A、 B 两地相向而行,若同时出发,则,经36 分钟后相遇;若甲比乙提前 15 分钟出发,乙出发 30 分钟后,甲乙相遇,求甲由 A 地到 B 地、乙由 B 地到 A 地所用时间。

3. 一艘船从重庆到南京要 5 个日夜,而从南京到重庆要7 个日夜,问:如有一竹排自重庆顺水而下,则需几个日夜才能票到南京简单不等式1.数学比赛中,共 25 道题,对一道得 4 分,错一道扣 1 分,甲同学做了所有的题,考后他预计得分许多于 70 分,他起码做对了多少道题2.解不等式:3.解不等式: a(x-a)> b(x-b)4. 已知对于 x 的不等式的解是,求m5. 若不等式 mx-2 <3x+4 的解为 x>,求m的取值范围6. 已知对于 x 的不等式( 2a-b) x+a-5b> 0 的解为 x<,解不等式3ax+5b> 0一元一次方程1.2.x=1/2 (将 abc=1 带入求解。

)3.x=-56/154.K=1/25.X=3/2 或 -5/46.a=-3、 -2、 -1、 0 (分段求解)7. 0 (设,原式=,得( a+b+c) x=0.)一元一次方程的应用1.45 千克2.甲 90 分钟、乙 60 分钟3.35简单不等式1.19 道2.x> 13.当 a> b 时, x> a+b当 a=b 时,无解当 a< b 时, x< a+b4.M=9/105.m<36.x< -1(求得 2a-b< 0, b=3a/5,2a-b=7a/5< 0,故 a< 0)。

【小学精品奥数】小数四则混合运算--一元一次方程解法

【小学精品奥数】小数四则混合运算--一元一次方程解法

一元一次方程解法1、认识了解方程及方程命名2、移项、系数、解方程、方程的解等名词的意思一定要让学生了解3、运用等式性质解方程4、会解简单的方程一、方程的起源方程这个名词,最早见于我国古代算书《九章算术》。

《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章。

在这一章里的所谓“方程”,是指一次方程和方程组。

例如其中的第一个问题实际上就是求解三元一次方程组。

古代解方程的方法是利用算筹。

我国古代数学家刘徽注释《九章算术》说,“程,课程也。

二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式。

一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程。

《九章算术》中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产。

同学们也要好好学习数学,将来争取为数学研究做出新的贡献!二、方程的重要性方程作为一个小学数学的重要工具,是小学向初中过渡的重点也是难点。

渗透方程思想,让学生能用字母表示数字,解决一些比较抽象的数学关系,所以学好方能对于学生以后学习数论等较难专题有很大帮助。

三、相关名词解释1、算式:把数用运算符号与运算顺序符号连接起来是算式2、等式:表示相等关系的式子3、方程:含有未知数的等式4、方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数项最高次数是a 的方程例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程; 如:37x +=,71539q +=,222468m ⨯+=(),一元一次方程的能使一元一次方程左右两边相等的未知数的值; 如:4x =是方程37x +=的解,3q =是方程81539q +=的解,教学目标知识点拨5、解方程:求方程的解的过程叫解方程。

一元一次方程应用题解法

一元一次方程应用题解法

一元一次方程应用题解法一元一次方程是初等数学中的重要内容,它由一个未知数和一次方程构成。

在实际问题中,我们经常会遇到一些与一元一次方程相关的应用题。

解决这些应用题需要灵活运用一元一次方程的解题方法。

本文将介绍一些常见的一元一次方程应用题,并通过具体实例来演示解题过程。

一、线性方程的基本概念回顾在解答应用题之前,有必要对一元一次方程的基本概念进行回顾。

一个一元一次方程可以表示成如下形式:ax + b = 0,其中a和b为已知数,x为未知数。

解这个方程即求出未知数x的值。

解一元一次方程的基本步骤是:将方程中未知数的系数系数和常数项分别移到方程两边,并进行化简运算,最终得出未知数的解。

解方程的过程实际上就是将方程左右两边进行等式变换,使得未知数从常数项中解脱出来。

二、2.1 例题1:某商店售卖蓝牙耳机,价格为每个99元,现购买n个蓝牙耳机后,需要支付的费用为198元。

问购买了几个蓝牙耳机?解析:我们设购买的蓝牙耳机个数为x个,根据题意,每个蓝牙耳机的价格为99元,则x个蓝牙耳机的总价格应该是99x元。

又知道购买n个蓝牙耳机后需要支付的费用为198元,根据一元一次方程的定义,我们可以得到如下方程:99x = 198。

解方程得:x = 2。

所以,购买了2个蓝牙耳机。

2.2 例题2:甲、乙两人比赛,甲先出发,乙追赶甲的速度为每小时10公里,追赶的时间为2小时,求甲的速度。

解析:我们设甲的速度为x公里/小时,根据题意,乙追赶甲的速度为每小时10公里,追赶的时间为2小时。

根据一元一次方程的定义,我们可以得到如下方程:2(x-10)=0。

解方程得:x = 10。

所以,甲的速度为10公里/小时。

2.3 例题3:甲、乙两个人同时从A地出发,向B地前进。

甲的速度为每小时60公里,乙的速度为每小时80公里。

已知乙比甲晚出发2小时,到达B地时与甲同时到达。

求A到B两地的距离。

解析:设A到B两地的距离为x公里,甲从A地到B地的时间为t 小时,则根据题意,乙从A地到B地的时间为t-2小时。

5[1].1.4一元一次方程的应用.题库学生版

5[1].1.4一元一次方程的应用.题库学生版

黑体小四板块 考试要求 A 级要求B 级要求C 级要求方程 知道方程是刻画数量关系的一个有效的数学模型 能够根据具体问题中的数量关系,列出方程 能运用方程解决有关问题 方程的解 了解方程的解的概念 会用观察、画图等手段估计方程的解一元一次方程 了解一元一次方程的有关概念会根据具体问题列出一元一次方程能运用整式的加减运算对多项式进行变形,进一步解决有关问题一元一次方程的解法理解一元一次方程解法中的各个步骤能熟练掌握一元一次方程的解法;会求含有字母系数(无需讨论)的一元一次方程的解会运用一元一次方程解决简单的实际问题黑体小四应用题是中学数学中的一类重要问题,一般通过对问题中的数量关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.一、设未知数的三种方法 1.直接设未知数直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况. 2.间接设未知数 设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用. 3.引入辅助未知数 设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去. 注意:解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.二、列方程解应用题的步骤知识点睛中考要求一元一次方程的应用的相等关系.要注意题中的相等关系有些是明显的,有些是不明显的,需要结合生活实际来发现;2.设:设未知数,一般求什么,就设什么为x,若有几个未知数,应恰当地选择其中的一个,用字母x表示出来.有时直接设不容易设得话,可采用间接设;3.找:找出能够表示应用题全部意义的一个相等关系;4.列:根据这个相等关系列出方程;5.解:解所列出的方程,求出未知数的值;6.验:检验所求得的解是否符合题意;7.答:检验所求解是否符合题意,写出答案(包括单位名称).一、列方程【题01】根据条件列出方程(1)某数的10倍比9大1;(2)某数的14比这个数小5;(3)某数的30%比这个数的20%小2【题02】某数的23比这个数的34小5,设某数为x,下面列出的方程正确的是()A.23534x x=+B.23534x x+=-C.23534x x=-D.23534x x-=【题03】根据条件列方程:某数的3倍减去9,等于该数的13加上6.【题04】某数的70%与这个数的3倍的差等于11,设某数为m,则列出的方程为.【题05】甲队有32人,乙队有28人,现从乙队抽x人到甲队,使甲队是乙队人数的2倍,依题意,列出方程为.【题06】某工程,甲工程队单独做40天完成,乙工程队单独做需要60天完成,若乙工程队单独做30天后,甲、乙两工程队再合作x天完成.列方程为.二、一元一次方程的应用例题精讲1.和差倍分问题【题07】2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.【题08】北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009 年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?【题09】在环保竞赛中,某校代表队的平均分是88分,其中女生的平均成绩比男生高10%,而男生的人数比女生多10%.试问男、女生的平均成绩各是多少?【题10】十堰市东方食品厂2003年的利润(总产值-总支出)为200万元,2004年总产值比2003年增加了20%,总支出减少了10%.2004年的利润为780万元.问2003年总产值、总支出各是多少万元?【题11】某商场甲、乙两个柜组12月份营业额共64万元,1月份甲增长了20%,乙增长了15%,营业额共达到75万元.试求两柜组1月份各增长多少万元?【题12】据《衢州日报》2009年5月2日报道:“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1726.13元钱,那么他购买这台冰箱节省了元钱.【题13】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.【题14】美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为cm.(保留整数)【题15】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有2吨运不走;若每辆汽车装4吨货物,那么装完这批货物后,还可以装其他货物1吨,问汽车有多少辆?这批货物有多少吨?【题16】某公司有甲乙两个工程队,甲队人数比乙队人数的23多28人.现因任务需要,从乙队调走20人到甲队,这时甲队人数是乙队人数的2倍,则甲乙两队原来的人数分别是多少人?【题17】甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.【题18】甲乙两个圆柱体容器,底面积比为53∶,甲容器水深20cm,乙容器水深10cm,再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?【题19】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的3倍;“朝天龙”的条数是“珍珠”的2倍,且“朝天龙”比“水泡”少1条,这三种金鱼各有几条呢?【题20】某区中学生足球联赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分.试问该队胜了几场?【题21】很久很久以前,有一位穷苦的农民,在路上遇见了一个魔鬼.魔鬼拉住农民的衣服说:“嗨,你的钱多得很啊!”农民答道:“不瞒你说,我穷得丁当响,全部家当,就是这口袋里的几个铜板.”魔鬼说:“我有一个主意,可以让你轻轻松松发大财.只要你从我身后这座桥上走过去,你的钱就会增加1倍.你从桥上再走回来,钱数又会增加1倍.每走过一次桥,你的钱都能增加1倍.但你必须保证,每次在你的钱数加倍以后,你都要给我24个铜板.否则,就要你的命!”农民点点头说:“好吧!”农民过了一次桥,确定钱数增加了1倍,就给了魔鬼24个铜板;第二次过桥,口袋的钱数又增加l倍,他又给了魔鬼24个铜板;第三次过桥,口袋里的钱又照例增加了1倍,不过增加以后总共只有24个铜板,统统被魔鬼抢去,分文不剩.那么农民在遇见魔鬼以前有多少钱呢?【题22】牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?【题23】一个袋中有若干个红色和蓝色的小球,如果从袋中取出一个红色的小球后,袋中剩下的小球数的17是红色的;把这个红色的小球放回袋中,再从袋中取出2个蓝色小球后,袋中剩下的小球数的15是红色的,那么袋中原有多少个小球?【题24】一批树苗按下列方法分给各班:第一班取100棵和余下的110,第二班取200棵和余下的110,……最后树苗全部被取完且各班树苗数都相等.求树苗总数和班级数.2.工程问题【题25】某车间原计划每周装配42台机床,预计若干周完成任务.在装配了三分之一以后,改进操作技术,工效提高了一倍,结果提前一周半完成任务.求这次任务需装配机床总台数.【题26】甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米.两列火车同时开出,相向而行,经过多少小时相遇?【题27】某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少?【题28】某人有急事,预定搭乘一辆小货车从A地赶往B地.实际上,他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知小货车的车速是36千米/小时,求两地间路程.【题29】一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【题30】一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时,一天,小船从早晨6点由A 港出发顺流行至B港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问:(1)若小船按水流速度由A港漂流到B港需多少小时?(2)救生圈是何时掉入水中的?4.浓度问题【题31】有含盐15%的盐水20千克,要使盐水含盐20%,需要加盐多少千克?【题32】现有浓度为20%的盐水300克需配制成浓度为60%的盐水,问还需加盐多少克?5.数字问题【题33】一个两位数,十位数字是个位数字的3倍,如果把十位数字与各位数字交换,所成的新数比原数少54,求原数.【题34】一个两位数,十位数字比个位数字的4倍多1.将两个数字调换位置后,所得的数比原数小63,求原来的两位数.【题35】一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?6.年龄问题【题36】父亲和女儿现在的年龄之和是91岁,当父亲的年龄是女儿现在年龄的2倍时,女儿的年龄是父亲现在年龄的13,求女儿现在的年龄.【题37】小明的爸爸前年存了年利率为2.43%的两年期定期储蓄,今年到期后,扣除利息税(利息的20%),所得利息正好为小明买了一只价值48.6元的计算器.问小明爸爸前年存了多少元?8.商品利润问题【题38】学校准备添置一批课桌椅.原订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.【题39】某商店将彩电的进价提高40%,然后在广告上写“大酬宾,八折优惠”结果每台彩电仍获利270元,求彩电的进价.【题40】某商店以每3盒16元钱的价格购进一批录音带,又从另外一处以每4盒21元的价格购进比前一批数量加倍的录音带,如果以每3盒k元的价格出售可得到所投资的20%的收益,求k的值.【题41】“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原销售价之和为500元.问:这两种商品原销售价分别为多少元?【题42】对某种商品优惠,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1400元,商品的原价是多少元?【题43】若进货价降低8%,而售出价不变,那么利润可由目前的p增加到(10%p),求p.【题44】初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,如右图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,请你分别求出A、B两个超市今年“五一节”期间的销售额.【题45】某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40kg到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品名西红柿豆角批发价(单位:元/kg)1.2 1.6零售价(单位:元/kg)1.8 2.5问:他当天卖完这些西红柿和豆角能赚多少钱?9.方案决策问题对超过限额的部分按2.9元/吨收费.一户三口之家上个月用水12吨,交费22元.求该市对三口之家每月用水所作的限额是多少?【题47】夏季为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高l℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后,两种空调每天各节电多少度?【题48】某音乐厅五月份初决定在暑假期间举办学生音乐专场音乐会,入场券分为团体票和零售票两种,其中团体票是总票数的23,若提前购票,则给予不同程度的优惠,在五月份,团体票每张12元,共售出团体票的35,零售票每张16元,共售出零售票的一半,如果在六月份,团体票每张16元出售,并计划在六月份两种票都完全出售,那么,零售票应按每张多少元出售才能使两个月的票款持平?【题49】团体购买公园门票,票价如下:今有甲乙两个旅游团,若分别购票,两团总计应付门票1314元,若合在一起作为一个团体购票,总计支付门票费1008元,问这两个旅游团各有多少人?【题50】某校科技小组的学生在3名老师带领下,准备前往国家森林公园考察、采集标本.当地有两家旅行社,分别去两个景区.两家旅行社收取的途中费用和相应的景区门票定价都相同,且对师生都有优惠:甲旅行社表示带队老师免费,学生按8折收费;乙旅行社表示师生一律按7折收费.甲景区对师生均收半价,乙景区则规定当人数超过30人时,按4折收费,否则按6折收费.经合算两家旅行社的实际途中收费正好相同.你认为该去何处较合算?若该校在暑假夏令营中,学生数增加了8名,老师不变,则又该去哪个旅行社?【题51】强强在A、B两电子商城发现他看中的4MP的单价相同,U盘的单价也相同.4MP和U盘单价之和是581元,且4MP的单价比U盘单价的5倍少7元.(1)求该同学看中的4MP和U盘的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,电子商城A所有商品打8折销售,电子商城B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了490元钱,如果他只在一家电子商城购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【题52】某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元不超过300元一律九折;③一次性购物超过300元一律八折.(1)小新妈妈购物付款99元.那她购买的物品实际价格为多少元?(2)若购物付款259.2元.那她购买的物品实际价格为多少元?【题53】“中国竹乡”安吉县有丰富的毛竹资源,某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加方案一:将毛竹全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.【题54】某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨.但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜销售或加工完毕.为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?【题55】一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产(同一天内一段时间生产酸奶,另一段时间生产奶粉),为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?。

一元一次方程应用题学生版

一元一次方程应用题学生版

试卷第1页,总3页绝密★启用前2014-2015学年度???学校11月月考卷试卷副标题xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明试卷第2页,总3页第II 卷(非选择题)请点击修改第II 卷的文字说明 一、解答题(题型注释)1.甲乙两人在同一道路上从相距5千米的A 、B 两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少? 2.列方程解应用题:小明和小东两人练习跑步,都从甲地出发跑到乙地,小明每分钟跑250米,小东每分钟跑200米,小明让小东先出发3分钟之后再出发,结果两人同时到达乙地,求甲、乙两地之间的路程是多少米?3.一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?4.某车间原计划每周装配36台机床,预计若干周完成任务,在装配了三分之一后,改进操作技术,功效提高了一倍,结果提前一周半...完成任务.求这次任务需装配的机床总台数.5.完成一项工作,如果由一个人单独做要花45小时,现先由一部分人做一小时,随后增加15人和他们一起又做了两小时,恰好完成.假设每个人的工作效率相同,那么先安排做的人数是多少?6.某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.7.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数8.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数910%,求这件外衣的标10.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?11.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏本,还是不盈不亏?12.某超市开业十周年举行了店庆活动,对A 、B 两种商品实行打折出售.打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元.而店庆期间,购买3件A 商品和8件B 商品仅需72元,求店庆期间超市的折扣是多少? 13.已知A 、B 两家商店的随身听的单价相同,书包的单价也相同,随身听和书包的单价之和为452元,且随身听的单价比书包的单价的4倍少8元. (1)问随身听和书包的单价各是多少元?(2)现在这两家商店搞促销,促销方式如下: 商店A :所有的商品打八折销售;商店B :每购物满100元,立即返还25元(例如,购物205元,则立即返还50元). 小明身上带了400元钱,想买随身听和书包各一个,那么,他应该选择在哪一家商店购买更省钱?14.某中学七年级学生外出进行社会实践活动,如果每辆车坐45人,那么有15个学生试卷第3页,总3页没车坐;如果每辆车坐60人,那么可以空出一辆车。

一元一次方程求解及应用题学生版

一元一次方程求解及应用题学生版

一元一次方程单元复习一、知识网络二、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程的概念:只含有一个未知数,并且未知数的次数都是1的方程叫做一元一次方程。

一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。

2、方程的解:使方程左右两边的值相等的未知数的值叫做方程的解要点诠释:(1)一元一次方程必须满足的3个条件:只含有一个未知数;未知数的次数是1次;整式方程.(2)判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:方程变形——解方程的重要依据1、等式的基本性质(也叫做方程的同解原理):等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

即:如果,那么;(c为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

即:如果,那么;如果,那么2、分数的基本的性质:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为的形式:-=1.6。

方程的右边没有变化。

知识点三:解一元一次方程的一般步骤:1、解一元一次方程的基本思路:通过对方程变形,把含有未知数的项归到方程的一边,把常数项归到方程的另一边,最终把方程“转化”成x=a的形式。

2、解一元一次方程的一般步骤是:注意:(1)解方程时应注意:①解方程时,表中有些变形步骤可能用不到,并且也不一定按照自上而下的顺序,要根据方程形式灵活安排求解步骤。

熟练后,步骤及检验还可以合并简化。

②去分母时,不要漏乘没有分母的项。

去分母是为了简化运算,若不使用,可进行分数运算。

③去括号时,不要漏乘括号内的项,若括号前为“-”号,括号内各项要改变符号。

(2)在方程的变形中易出现的错误有以下几种情况:①移项时忘记改变符号;②去分母时,易忘记将某些整式也乘最简公分母;③分数线兼有括号的作用,在去分母后,易忘记添加括号;3、理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。

小四奥数(一元一次方程)

小四奥数(一元一次方程)

年级:小四辅导科目:奥数课时数:3课题一元一次方程教学目的运用一元一次方程来解决问题,显得十分简便,了解一元一次方程的意义和作用.教学内容我们学过这样填括号的题,如( )+8=15.括号里的数怎样求解呢?这个我们可以利用加减法的关系来求解,我们知道,一个加数+另一个加数=和,那么,求其中的一个加数,就可以用和减去另一个加数因为15 -8=7,所以括号里填7.括号里的未知数还可以x来表示,那么x+8=15,x= 15 -8.x=7这就是运用一元一次方程来解决问题,显得十分简便,本讲内容主要向大家介绍它的意义和作用.1.概念(1)方程:含有未知数的等式,叫做方程;(2)方程的解:使方程左有两边相等的未知数的值,叫做方程的解;(3)解方程:求方程的解的过程叫做解方程.2.解方程的依据解方程主要依据加法与减法、乘法与除法的互逆关系:一个加数=和-另一个加数被减数=差+减数减数=被减数-差一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商3.解方程的步骤(1)根据四则运算中各部分间的相互关系,求出x;(2)把x的值代人原方程检验.在2 x+1、3+5 = 6+2、x-l<5、3x=15中,______是方程,这个方程的解是______.方程必须符合两个条件:一是“等式”,二是“含有未知数”.2x+1虽含有未知数,但不是等式;3+5=6+2虽是等式但不含未知数,也不是方程; x-1<8是不等式;3x=15既是等式又含有未知数,所以它是方程.当x=5时,左右两边的值都是15.所以x=5是方程3x=15的解,解在2x+1、3+5= 6+2、x-1<8、3x=15中.3x= 15是方程,这个方程的解是x=5.方程是等式,等式不一定是方程,两者之间关系如图11- l所示..解方程2x+5=17.解把2x看成一个加数,根据“一个加数=和一另一个加数”得2x=17-5.化简得2x=12,把x看成一个数,根据“一个因数一积÷另一个因数”得x=12÷2.化简得x=6.检验:把x=6代人原方程得左边=2×6+5=17,则左边=右边,所以,x=6是原方程的解,(1)以后解方程,除要求写出检验过程的以外,都用口算进行检验.(2)因为方程是含有末知数的等式,所以每一个方程都有一个等号和两个相等的式子.在解方程的过程中不能连等,一般每一行中只写一个方程,而且方程中的等号要写得上下对齐.(1)填空题:①______+5=17;②30 -______=12;③1000×______=0;④______÷4=8.(2)解下列方程:①x+2.5=3;②x-0.1=1;③999-x=9;④x÷5=20÷4.你做对了吗?答案:(1)①12 ②18 ③0 ④32 (2)①x=0.5 ②x=1.1 ③x=990 ④x=25.解方程2×4- (2x+l) =7.这个方程稍复杂点,我们可以采取“抓主干”、“带枝叶”的办法,即先抓住方程中大范围内的数量关系,再抓住小范围内的数量关系,主次分明了,问题就能顺利解决,先把2x+1看作减数,根据“减数=被减数一差”,将方程变为2x+1=2×4-7,简化即得2x+1=1;再把2x看作一个加数,根据“一个加数=和一另一个加数”,将方程变成2x= 1-1.简化即得2x=0;至此,再根据“一个因数=积÷另一个因数”,即可求出方程的解;最后,可以口算进行检验.解2×4 -(2x+1)=7,→把“2x+1”看作减数,2x+l=2×4-7.2x+1=1,→把“2x"看作一个加数.2x=1-1.2x=0,→把“x”看作一个因数,x=0..38与一个数的4倍的和是70.求这个数.解设这个数为x.38+4x=70.4x=70-38.x=32÷4.x=8.检验:左边=38+4×8=70,右边=70.所以,x=8是方程的解..某数加上7再乘以4.减去8,得56.这个数先减去8.再乘以4.然后加上7,得多少?这个问题由两部分组成,根据前半部条件求出这个数,再计算后半部的结果,前半部是一个逆向思考的文字叙述题,用算术方法解容易出现差错,用方程来解,可化难为易,即把逆向思考的问题转化为顺向思考的问题,解设这个数为x,则4(x+7)-8=56.→把“4(x+7)”看成被减数.4(x+7) =56+8.4(x+7) =64,→把“x+7”看成一个因数.x+7=16,→把“x”看成一个加数.x=16 -7,x=9.将x=9代人(x-8)×4+7得(9 -8)×4+7=11.答得数是11.(1) x的6倍与31的和是49,求x.(2)比一个数的2倍少3的数是11,求这个数.(用方程解)你做对了吗?答案:(1)x=3 (2)设这个数为x,则2x-3=11,x=7.□、○、△分别代表一个数,它们满足下列三个等式.试求出它们各代表的是什么数?□+□+△=46,①□+△+△=47,②口+○+△= 48.③解等式①和等式②的等号左、右两边分别相加得3×□+3×△=93,等式两边都除以3得□+△=31.④等式③与等式④的等号左右两边分别相减得○=17.等式②与等式④的等号左右两边分别相减得△=16.等式①与等式④的等号左右两边分别相减得□= 15.所以.□代表15,△代表16,○代表17.(1)下面的等式中,□代表一个未知数,求出它等于多少?□×5+2 -18÷2=3.一、填空题1.(1)2×□+4=24; (2) 30-4×□=2.2.______加上5再乘以4等于36.3.有一个数,除以5,乘以4.减去15,再加上35,等于100,这个数是______.4.如果甲、乙两数之和为24,甲、乙两数之差为14,那么甲是______,乙是____.5.如果x+8=13,那么3x+8=______.6.方程12-3(x-1) =9的解是x=______.二、选择题7.方程3-2x=7x-6的解是( ).(A) x=0 (B) x=1(C) x=2 (D) x=38.在等式4×○-6+7=17中,○代表一个数,它是( ).(A)4 (B)3(C)5 (D)79.等式3×(□+10)+□=38中,□所代表的数是( ).(A)2 (B)4(C)3 (D)110.甲、乙两数,它们的和为30,甲数是乙数的2倍,甲、乙分别是( ).(A) 10、20 (B) 20、10(C) 15、30 (D) 30、15三、简答题11.解下列方程:(1) 6x+10 =11x; (2) 3x+1=9-x.12.列出方程,并求出方程的解.(1)从56里减去x的差的4倍等于12;(2)某数与7的差的7倍等于35.13.看图计算,一把香蕉是多少克?14.●、□、△各代表一个数,它们满足下列三个等式,求它们各代表什么数?△+□+●=53,①△+□+□=51,②△+△十□=48.③15.巳知x和y都是整数,并且x+y=100。

小学奥数一元一次方程解法综合

小学奥数一元一次方程解法综合

1、认识了解方程及方程命名2、移项、系数、解方程、方程的解等名词的意思一定要让学生了解3、运用等式性质解方程4、会解简单的方程一、方程的起源 方程这个名词,最早见于我国古代算书《九章算术》。

《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章。

在这一章里的所谓“方程”,是指一次方程和方程组。

例如其中的第一个问题实际上就是求解三元一次方程组。

古代解方程的方法是利用算筹。

我国古代数学家刘徽注释《九章算术》说,“程,课程也。

二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式。

一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程。

《九章算术》中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产。

同学们也要好好学习数学,将来争取为数学研究做出新的贡献!二、方程的重要性方程作为一个小学数学的重要工具,是小学向初中过渡的重点也是难点。

渗透方程思想,让学生能用字母表示数字,解决一些比较抽象的数学关系,所以学好方能对于学生以后学习数论等较难专题有很大帮助。

三、相关名词解释1、算式:把数用运算符号与运算顺序符号连接起来是算式2、等式:表示相等关系的式子3、方程:含有未知数的等式4、方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数项最高次数是a 的方程例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程;如:37x +=,71539q +=,222468m ⨯+=(),L一元一次方程的解:能使一元一次方程左右两边相等的未知数的值;如:4x =是方程37x +=的解,3q =是方程81539q +=的解,L5、解方程:求方程的解的过程叫解方程。

所以我们做方程的题时要先写“解”字,表示求方程的解的过程开始,也就是开始“解方程”。

【上海市】小学四年级奥数

【上海市】小学四年级奥数

目录第一部分行程第一章火车过桥和火车与人的相遇追及问题第二章火车与火车的相遇与追及问题第三章流水行船第四章扶梯问题第二部分计数第一章乘法原理第二章几何计数第三章加法原理第四章排列第五章组合第三部分几何第一章风筝模型和梯形蝴蝶定理第二章三角形等高模型第三章鸟头模型第四章图形的分割与拼接第四部分计算第一章整数小数四则运算第二章多位数计算第三章换元法与常用计算结论第四章平方差公式和完全平方公式第五部分应用题第一章列方程解应用题第二章一元一次方程解法综合第六部分杂题第一章抽屉原理第二章统筹规划第三章游戏与策略第一部分----------------------------------------------------------------------------------------------------------------------行程----------------------------------------------------------------------------------------------------------------------第一章火车过桥和火车与人的相遇知识框架火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度±人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程) = (快车速度—慢车速度) ×错车时间;对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

一元一次方程的应用——行程问题专题练习(学生版)

一元一次方程的应用——行程问题专题练习(学生版)

⼀元⼀次⽅程的应⽤——⾏程问题专题练习(学⽣版)⼀元⼀次⽅程的应⽤——⾏程问题专题练习⼀、相遇问题1、⼩明和⼩刚从相距25千⽶的两地同时相向⽽⾏,3⼩时后两⼈相遇,⼩明的速度是4千⽶/⼩时,设⼩刚的速度为x千⽶/⼩时,列⽅程得().A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4-x)=252、甲、⼄两地相距270千⽶,从甲地开出⼀辆快车,速度为120千⽶/时,从⼄地开出⼀辆慢车,速度为75千⽶/时,如果两车相向⽽⾏,慢车先开出1⼩时后,快车开出,那么再经过多长时间两车相遇?若设再经过x⼩时两车相遇,则根据题意列⽅程为().A. 75×1+(120-75)x=270B. 75×1+(120+75)x=270C. 120(x-1)+75x=270D. 120×1+(120+75)x=2703、汽车以每⼩时72千⽶的速度笔直地开向寂静的⼭⾕,驾驶员按⼀声喇叭,4秒后听到回响,已知声⾳的速度是每秒340⽶,听到回响时汽车离⼭⾕的距离是______⽶.4、A、B两地间的距离为360km,甲车从A地出发开往B地,每⼩时⾏驶72km;甲车出发25分钟后,⼄车从B地出发开往A地,每⼩时⾏驶48km,两车相遇后,各⾃仍按原速度、原⽅向继续⾏驶,求相遇以后两车相距100km时,甲车共⾏驶了多少⼩时?5、甲骑摩托车,⼄骑⾃⾏车从相距25km的两地相向⽽⾏.(1)甲,⼄同时出发经过0.5⼩时相遇,且甲每⼩时⾏驶路程是⼄每⼩时⾏驶路程的3倍少6km,求⼄骑⾃⾏车的速度.(2)在甲骑摩托车和⼄骑⾃⾏车与(1)相同的前提下,若⼄先出发0.5⼩时,甲才出发,问:甲出发⼏⼩时后两⼈相遇?6、⼩刚和⼩强从A、B两地同时出发,⼩刚骑⾃⾏车,⼩强步⾏,沿同⼀条路线相向匀速⽽⾏,出发后2h两⼈相遇,相遇时⼩刚⽐⼩强多⾏进24km,相遇后0.5h⼩刚到达B地,两⼈的⾏进速度分别是多少?相遇后经过多少时间⼩强到达A地?⼆、追及问题7、《九章算术》是中国古代数学专著,《九章算术》⽅程篇中有这样⼀道题:“今有善⾏者⾏⼀百步,不善⾏者⾏六⼗步,今不善⾏者先⾏⼀百步,善⾏者追之,问⼏何步及之?”这是⼀道⾏程问题,意思是说:⾛路快的⼈⾛100步的时候,⾛路慢的才⾛了60步;⾛路慢的⼈先⾛100步,然后⾛路快的⼈去追赶,问⾛路快的⼈要⾛多少步才能追上⾛路慢的⼈?如果⾛路慢的⼈先⾛100步,设⾛路快的⼈要⾛x步才能追上⾛路慢的⼈,那么,下⾯所列⽅程正确的是().A. 100x=60(x-100)B. 60x=100(x-100)C. 100x=60(x+100)D. 60x=100(x+100)8、甲、⼄两⼈练习长跑,已知甲每分钟跑300⽶,⼄每分钟跑260⽶,若⼄在甲前⽅120⽶处与甲同时、同向起跑,则甲在______分钟后追上⼄.9、五⼀长假⽇,弟弟和妈妈从家⾥出发⼀同去外婆家,他们⾛了1⼩时后,哥哥发现带给外婆的礼品忘在家⾥,便⽴刻带上礼品每⼩时6千⽶的速度去追,如果弟弟和妈妈每⼩时⾏2千⽶,则哥哥出发后______分钟追上弟弟和妈妈.10、2012年11⽉北京降下了六⼗年来最⼤的⼀场雪,暴雪导致部分地区供电线路损坏,该地供电局⽴即组织电⼯进⾏抢修.抢修车装载着所需材料先从供电局出发,20分钟后,电⼯乘吉普车从同⼀地点出发,结果他们同时到达抢修⼯地.若抢修车以每⼩时30千⽶的速度前进,吉普车的速度是抢修车的速度的1.5倍,求供电局到抢修⼯地的距离.11、列⽅程解应⽤题:登⼭运动是最简单易⾏的健⾝运动,在秀美的景⾊中进⾏有氧运动,特别是⼭脉中森林覆盖率⾼,负氧离⼦多,真正达到了⾝⼼愉悦的进⾏体育锻炼.张⽼师和李⽼师登⼀座⼭,张⽼师每分钟登⾼10⽶,并且先出发30分钟,李⽼师每分钟登⾼15⽶,两⼈同时登上⼭顶,求这座⼭的⾼度.12、某校七年级学⽣从学校出发步⾏去博物馆参观,他们出发半⼩时后,张⽼师骑⾃⾏车按相同路线⽤15分钟赶上学⽣队伍.已知张⽼师骑⾃⾏车的速度⽐学⽣队伍步⾏的速度每⼩时多8千⽶,求学⽣队伍步⾏的速度?三、环形跑道及多次相遇问题13、学校操场的环形跑道长400⽶,⼩聪的爸爸陪⼩聪锻炼,⼩聪跑步每秒⾏2.5⽶,爸爸骑⾃⾏车每秒⾏5.5⽶,两⼈从同⼀地点出发,反向⽽⾏,每隔______秒两⼈相遇⼀次.14、甲、⼄两⼈从400⽶的环形跑道的⼀点A背向同时出发,8分钟后两⼈第三次相遇,已知每秒钟甲⽐⼄多⾏0.1⽶,那么两⼈第三次相遇的地点与点A沿跑道上的最短距离是______⽶.15、学校为提⾼同学⾝体素质,开展了冬季体育锻炼活动.班主任⽼师让甲、⼄⼆⼈在长为400⽶的圆形跑道上进⾏跑步训练,已知甲每秒钟跑5⽶,⼄每秒钟跑3⽶.请列⽅程解决下⾯的问题.(1)两⼈同时同地同向⽽跑时,经过⼏秒钟两⼈⾸次相遇?(2)两⼈同时同地背向⽽跑时,⾸次相遇时甲⽐⼄多跑了多少⽶?16、⼩智和⼩康相约在学校的环形跑道上练习长跑.⼩智以5⽶/秒、⼩康以4⽶/秒的速度从同⼀地点同时出发,背向⽽⾏.途中⼩智的鞋带掉了,因此花了2秒停在原地系鞋带.当两⼈第⼀次相遇时,⼩康⾛了全程的511.那么跑道⼀圈的长度是多少⽶?17、已知甲⼄两⼈在⼀个400⽶的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4⽶,⼄平均每秒跑6⽶,若甲⼄两⼈分别从A、C两处同时相向出发(如图),则:(1)⼏秒后两⼈⾸次相遇?请说出此时他们在跑道上的具体位置.(2)⾸次相遇后,⼜经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪⼀条段跑道上?四、顺逆流问题18、⼀轮船往返于A、B两港之间,逆⽔航⾏需3⼩时,顺⽔航⾏需2⼩时,⽔流速度为3千⽶/时,则轮船在静⽔中的速度是().A. 18千⽶/时B. 15千⽶/时C. 12千⽶/时D. 20千⽶/时19、甲⼄两地相距180千⽶,已知轮船在静⽔中的航速是a千⽶/时,⽔流速度是10千⽶/时,若轮船从甲地顺流航⾏3⼩时到达⼄地后⽴刻逆流返航,则逆流⾏驶1⼩时后离⼄地的距离是().A. 40千⽶B. 50千⽶C. 60千⽶D. 140千⽶20、轮船在静⽔中速度为每⼩时20km ,⽔流速度为每⼩时4km ,从甲码头顺流⾏驶到⼄码头,再返回甲码头,共⽤5⼩时(不计停留时间),求甲、⼄两码头的距离.设两码头间的距离为xkm ,则列出⽅程正确的是().A. (20+4)x +(20-4)x =5B. 20x +4x =5C.20x +4x =5 D. 204x + +204x -=5 21、船在江⾯上航⾏,测得⽔的平均流速为5千⽶/⼩时,若船逆⽔航⾏3⼩时,再顺⽔航⾏2⼩时,共航⾏120千⽶,设船在静⽔中的速度为x 千⽶/⼩时,则列⽅程为______.22、甲、⼄两港相距360千⽶,⼀轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时,现有⼀机帆船,静⽔中速度是每⼩时12千⽶,问这机帆船往返两港要多少⼩时?23、某学⽣乘船由甲地顺流⽽下到⼄地,然后⼜逆流⽽上到丙地,共⽤3⼩时,若⽔流速度为2千⽶/⼩时,船在静⽔中的速度为8千⽶/⼩时.已知甲、丙两地间的距离为2千⽶,求甲、⼄两地间的距离是多少千⽶.(注:甲、⼄、丙三地在同⼀条直线上)五、变速问题24、某⼈开车从甲地到⼄地办事,原计划2⼩时到达,但因路上堵车,平均每⼩时⽐原计划少⾛了25千⽶,结果⽐原计划晚1⼩时到达,问原计划的速度是多少.25、⼀个邮递员骑⾃⾏车要在规定时间内把特快专递送到某单位.他如果每⼩时⾏15千⽶,可以早到10分钟,如果每⼩时⾏12千⽶,就要迟到10分钟,问规定的时间是多少⼩时?他去的单位有多远?26、某⼈因有急事,预定搭乘⼀辆⼩货车从A地赶往B地.实际上,他乘⼩货车⾏了三分之⼀路程后改乘⼀辆⼩轿车,车速提⾼了⼀倍,结果提前⼀个半⼩时到达.已知⼩货车的车速是每⼩时36千⽶,求两地间路程.27、列⽅程解决实际问题:京张⾼铁是2022年北京冬奥会的重要交通基础设施,最⾼运营时速为350公⾥.但考虑到不同路段的特殊情况,将根据不同的运⾏区间设置不同的时速.其中,北京北站到清河段分为地下清华园隧道和地上区间两部分,运⾏速度分别设置为120公⾥/⼩时和200公⾥/⼩时.⽇前,清华园隧道正式开机掘进,这标志着京张⾼铁建设全⾯进⼊攻坚阶段.已知此路段的地下清华园隧道⽐地上区间多1公⾥,运⾏时间⽐地上多1.5分钟.求清华园隧道全长是多少公⾥.28、⽼师带着两名学⽣到离学校33千⽶远的博物馆参观.⽼师乘⼀辆摩托车,速度25千⽶/⼩时.这辆摩托车后座可带多余⼀名学⽣,带⼈后速度为20千⽶/⼩时.学⽣步⾏的速度为5千⽶/⼩时.请你设计⼀种⽅案,使师⽣三⼈同时出发后都到达博物馆的时间不超过3⼩时.29、列⽅程解应⽤题:由甲地到⼄地前三分之⼆的路是⾼速公路,后三分之⼀的路是普通公路,⾼速公路和普通公路交界处是丙地.A车在⾼速公路和普通公路的⾏驶速度都是80千⽶/时;B车在⾼速公路上的⾏驶速度是100千⽶/时,在普通公路上的⾏驶速度是70千⽶/时,A、B两车分别从甲、⼄两地同时出发相向⾏驶,在⾼速公路上距离丙地40千⽶处相遇,求甲、⼄两地之间的距离是多少?六、过桥和过隧道问题30、博⽂中学学⽣郊游,学⽣沿着与笔直的铁路线并列的公路匀速前进,每⼩时⾛4500⽶,⼀列⽕车以每⼩时120千⽶的速度迎⾯开来,测得从车头与队⾸学⽣相遇,到车尾与队末学⽣相遇,共经过60秒,如果队伍长500⽶,那么⽕车长为()⽶.A. 2075B. 1575C. 2000D. 150031、⼀列⽕车匀速⾏驶,经过⼀条长600⽶的隧道需要45秒的时间,隧道的顶部⼀盏固定灯,在⽕车上垂直照射的时间为15秒,则⽕车的长为______.32、⼀列⽕车长150m,每秒钟⾏驶19m,全车通过长800m的⼤桥,需要多长时间?33、已知某⼀铁路桥长1000m,现有⼀列⽕车从桥上通过,测得⽕车从开始上桥到完全过桥共⽤1分钟,整个⽕车完全在桥上的时间为40S.求⽕车的速度.34、⼀列⽕车匀速⾏驶,经过⼀条长720⽶的隧道需要30秒的时间,隧道的顶上有⼀盏灯,垂直向下发光,灯光照在⽕车上的时间是6秒,求这列⽕车的速度和⽕车的长度.35、⼀列⽕车匀速⾏驶,经过⼀条长300m的隧道需要12s的时间,隧道的顶上有⼀盏灯,垂直向下发光,灯光照在⽕车上的时间是7s.(1)设⽕车的长度为xm,⽤含x的式⼦表⽰,从⽕车头进⼊隧道到车尾离开隧道这段时间内⽕车的平均速度(2)求这列⽕车的长度(3)若这列⽕车从甲地到⼄地,速度提⾼10%,则可以提前503分钟到达,求甲⼄两地的距离(⽕车的长度忽略不计)36、⼀辆车长为4⽶的⼩轿车和⼀辆车长为20⽶的⼤货车,在长为1200⽶隧道的两个⼊⼝同时开始相向⽽⾏,⼩轿车的速度是⼤货车速度的3倍,⼤货车速度为10m/s.(1)求两车相遇的时间.(2)求两车从相遇到完全离开所需的时间.(3)当⼩轿车车头和⼤货车车头相遇后,求⼩轿车车头与⼤货车车头的距离是⼩轿车车尾与⼤货车车尾的距离的4倍时所需的时间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、方程的起源
方程这个名词,最早见于我国古代算书《九章算术》。

《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章。

在这一章里的所谓“方程”,是指一次方程和方程组。

例如其中的第一个问题实际上就是求解三元一次方程组。

古代解方程的方法是利用算筹。

我国古代数学家刘徽注释《九章算术》说,“程,课程也。

二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式。

一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程。

《九章算术》中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产。

同学们也要好好学习数学,将来争取为数学研究做出新的贡献!
二、方程的重要性
方程作为一个小学数学的重要工具,是小学向初中过渡的重点也是难点。

渗透方程思想,让学生能用字母表示数字,解决一些比较抽象的数学关系,所以学好方能对于学生以后学习数论等较难专题有很大帮助。

三、相关名词解释
(1) 算式:把数用运算符号与运算顺序符号连接起来是算式
(2) 等式:表示相等关系的式子
(3) 方程:含有未知数的等式
(4) 方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数
项最高次数是a 的方程
例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程;
如:37x +=,71539q +=,222468m ⨯+=(),
一元一次方程的能使一元一次方程左右两边相等的未知数的值;
知识框架
一元一次方程解法综合
如:4x =是方程37x +=的解,3q =是方程81539q +=的解,
(5) 解方程:求方程的解的过程叫解方程。

所以我们做方程的题时要先写“解”字,表示求方程的解
的过程开始,也就是开始“解方程”。

(6) 方程的能使方程左右两断相等的未知数的值叫方程的解
四、解方程的步骤
(1) 解方程的一般步骤是:去分母、去括号、移项、合并同类项、化未知数系数为1。

(2) 移项变号:根据等式的基本性质可以把方程的某一项从等号的一边移到另一边,但一定要注意改
变原来的符号。

我们常说“移项变号”。

(3) 移项的目的:是为了把含有x 的未知项和数字项分别放在等号的两端,使“未知项=数字项”,从
而求出方程的解。

(4) 怎样检验方程的解的正确性?
判断一个数是不是方程的解,就要把这个数代入原方程,看方程两边结果是否相同。

(1) 含分数系数的方程,比例方程
(2) 移项去扩号等整理步骤
一、简单的一元一次方程
【例 1】 解下列一元一次方程:⑴ 38x +=;⑵ 83x -=;⑶ 39x ÷=;⑷ 39x =.
例题精讲
重难点
【巩固】 (1)解方程:
(2)解方程:
(3)解方程:
(4)解方程
【例 2】 解方程:
【例 3】 解方程:
【巩固】 解方程:
【例 4】 解下列一元一次方程:⑴ 41563x x +=+;⑵ 123718x x -=-.
38x +=96x -=39x =42x ÷=4338x x +=+4631x x -=-12432x x -=-
【巩固】 解下列一元一次方程:⑴ 204322x x +=-;⑵ 153194x x -=-.
【例 5】 解方程:
【巩固】 解方程:12(3)7x x +-=+
【例 6】 解方程132(23)5(2)x x --=--
【巩固】 解下列一元一次方程:⑴ 3221x x -+=();⑵ 6417x x --=().
()6318x +=
二、含有分数的一元一次方程
【例7】解方程222
40(40)56 555
x x x x ++--⨯+=
【巩固】解方程2476 23 x x
+-
=
【例8】解方程:213
1
48 y y
--
=-
【巩固】解方程
100100
25 5060
x x
--
-=+
【例9】解方程(32):(23)4:7
x x
-+=
【巩固】 解方程:(30.5):(43)4:9x x -+=
【随练1】 解方程:
【随练2】 解方程0.30.60.030.02
10.10.02x x -+=-
【作业1】 解方程3(21)4(3)x x -=-
【作业2】 解方程:
()()2331x x +=+()()413123x x x +--=+家庭作业
课堂检测
【作业3】解下列一元一次方程:⑴73222
x x
-+=
();⑵55103
x x
+=-
().
【作业4】解方程13 75
x
x
+
= +
【作业5】解方程
32
1 275
x
+=
-
【作业6】解下列一元一次方程:⑴316727321
x x x
+÷++÷=+
()();⑵53423968
x x x
+÷-=+÷
()()
教学反馈。

相关文档
最新文档