六年级奥数56典型应用题

合集下载

六年级奥数分数应用题经典例题加练习带答案

六年级奥数分数应用题经典例题加练习带答案

一.知识的回顾1.工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为1128(1)964⨯-=人,调入后女职工占总人数的23155-=,所以现在工厂共有职工3961605÷=人.2.有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克. 【解析】 原来甲桶油的质量是两桶油总质量的55527=+,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的44437=+,由于总质量不变,所以两桶油的总质量为545()3577÷-=千克,乙桶中原有油235107⨯=千克. 【例 2】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?【解析】 (1)设二月份产量是1,所以元月份产量为:()1011+10%=11÷,三月份产量为:110%=0.9-,因为1011>0.9,所以三月份比元月份减产了(2)设商品的原价是1,涨价后为1+15%=1.15,降价15%为:()1.15115%=0.9775⨯-,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。

【巩固】 把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【解析】 方法一:设一队的人数是“1”,那么二队人数是:131134÷=,三队的人数是:141145÷=,345114520++=,因此,一、二、三队之和是:一队人数5120⨯,因为人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51⨯(某一整数), 因为这是100以内的数,这个整数只能是1.所以三个队共有51人,其中一、二、三队各有20,15,16人.而四队有:1005149-=(人).方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份.为统一一队所以设一队有[4,5]20=份,则二队有15份,三队有16份,所以三个队之和为15162051++=份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有1005149-=人(人).【例 3】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【解析】 条件可以化为:音乐班的人数是所有班人数的22527=+,美术班的学生人数是所有班人数的337310=+,所以体育班的人数是所有班人数的2329171070--=,所以所有班的人数为295814070÷=人,其中音乐班有2140407⨯=人,美术班有31404210⨯=人.【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的45,甲加工零件数是乙、丙加工零件总数的56,则甲、丙加工的零件数分别为 个、 个.【解析】 把乙加工的零件数看作1,则丙加工的零件数为45,甲加工的零件数为453(1)562+⨯=,由于甲比乙多加工20个,所以乙加工了320(1)402÷-=个,甲、丙加工的零件数分别为340602⨯=个、440325⨯=个. 【例 4】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?【解析】方法一:要求王先生的年龄,必须先要求出其他三人的年龄各是多少.而题目中出现了三个“另外三人”所包含的对象并不同,即三个单位“1”是不同的,这就是所说的单位“1”不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题中四个人的年龄总和是不变的,如果以四个人的年龄总和为单位“1”,则单位“1”就统一了.那么王先生的年龄就是四人年龄和的11123=+,李先生的年龄就是四人年龄和的11134=+,赵先生的年龄就是四人年龄和的11145=+(这些过程就是所谓的转化单位“1”).则杨先生的年龄就是四人年龄和的11113134560---=.由此便可求出四人的年龄和:111261*********⎛⎫÷---= ⎪+++⎝⎭(岁),王先生的年龄为:1120403⨯=(岁). 方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的12,乙队筑的路是其他三个队的13,丙队筑的路是其他三个队的14,丁队筑了多少米?【解析】甲队筑的路是其他三个队的12,所以甲队筑的路占总公路长的11=1+23;乙队筑的路是其他三个队的13,所以乙队筑的路占总公路长的11=1+34; 丙队筑的路是其他三个队的14,所以丙队筑的路占总公路长的11=1+45,所以丁筑路为:11112001=260345⎛⎫⨯--- ⎪⎝⎭(米)【例 5】小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【解析】方法一:运完第一次后,还剩下58没运,再运来50块后,已运来的恰好是没运来的57,也就是说没运来的占全部的712,所以,第二次运来的50块占全部的:57181224-=,全部蜂窝煤有:150120024÷=(块),没运来的有:7120070012⨯=(块).方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的57,所以可以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12]24=份,则已运来应是5241075⨯=+份,没运来的7241475⨯=+份,第一次运来9份,所以第二次运来是1091-=份恰好是50块,因此没运来的蜂窝煤有5014700⨯=(块).【巩固】 五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除?【解析】又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加人数比原计划多11113520-=+.即全班共有124020÷=(人).原计划抽14085⨯=(人)参加大扫除.【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?【解析】 11204003141⎛⎫÷-=⎪++⎝⎭(人).【例 6】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少73;如果小刚给小莉24个,则小刚的玻璃球比小莉少85,小莉和小刚原来共有玻璃球多少个?【解析】小莉给小刚24个时,小莉是小刚的74(=1一73),即两人球数和的114;小刚给小莉24个时,小莉是两人球数和的118(=5888-+),因此24+24是两人球数和的118-114=114.从而,和是(24+24) ÷114=132(个).【巩固】某班一次集会,请假人数是出席人数的91,中途又有一人请假离开,这样一来,请假人数是出席人数的223,那么,这个班共有多少人?【解析】因为总人数未变,以总人数作为”1”.原来请假人数占总人数的119+,现在请假人数占总人数的3322+,这个班共有:l÷(3322+-119+)=50(人).【例7】小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【解析】首先,可以直接运算得出,第一天小明读了全书的11911019=+,而前二天小明一共读了全书的1131413=+,所以第二天比第一天多读的14页对应全书的111241020-⨯=。

小学奥数题六年级数学应用题100道及答案解析

小学奥数题六年级数学应用题100道及答案解析

小学奥数题六年级数学应用题100道及答案解析1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)解析:先算出1 桶水能灌多少壶水,再乘以每壶水可冲的杯数。

2. 修一条路,第一天修了全长的1/3,第二天修了全长的1/4,第一天比第二天多修200 米,这条路全长多少米?答案:200÷(1/3 - 1/4)= 2400(米)解析:第一天比第二天多修的占全长的(1/3 - 1/4),已知多修的长度,用除法可求出全长。

3. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,女生有(465 - x)人。

4/5 x - 2/3×(465 - x) = 20,解得x = 225,女生有465 - 225 = 240(人)解析:通过设未知数,根据已知条件列出方程求解。

4. 有一堆糖果,其中奶糖占45%,再放入16 块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?答案:设原来共有x 块糖,45%x = 25%(x + 16),解得x = 20,奶糖有20×45% = 9(块)解析:奶糖的数量不变,以此建立等量关系。

5. 学校买来一批图书,放在两个书柜中,其中第一个书柜中的图书占这批图书的58%,如果从第一个书柜中取出32 本,放到第二个书柜中,这时两个书柜的图书各占这批图书的1/2,这批图书共有多少本?答案:32÷(58% - 1/2)= 400(本)解析:32 本书占这批图书的(58% - 1/2),用除法可求出总数。

6. 甲、乙两个工程队合修一段路,甲队的工作效率是乙队的3/5。

两队合修6 天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?答案:两队工作效率和:2/3÷6 = 1/9,乙队工作效率:1/9÷(1 + 3/5)= 5/72,(1 - 2/3)÷5/72 = 24/5 = 4.8(天)解析:先求出工作效率和,再根据两者工作效率的关系求出乙队工作效率,最后用剩余工作量除以乙队工作效率。

六年级奥数56、典型应用题

六年级奥数56、典型应用题

56、典型应用题【平均数问题】例1 小强骑自行车从甲地到乙地,去时以每小时15千米的速度前进,回时以每小时30千米的速度返回。

小强往返过程中的平均速度是每小时多少千米?(江西省第二届“八一杯”小学数学竞赛试题)讲析:我们不能用(15+30)÷2来计算平均速度,因为往返的时间不相等。

只能用“总路程除以往返总时间”的方法求平均速度。

所以,往返的平均速度是每小时例2 动物园的饲养员给三群猴子分花生。

如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒。

那么平均分给三群猴子,每只猴子可得____粒。

(北京市第八届“迎春杯”小学数学竞赛试题)讲析:设花生总粒数为单位“ 1”,由题意可知,第一、二、三群猴子于是可知,把所有花生分给这三群猴子,平均每只可得花生例3 某班在一次数学考试中,平均成绩是78分,男、女生各自的平均成绩是75.5分和81分。

问:这个班男、女生人数的比是多少?(全国第三届“华杯赛”决赛第二试试题)讲析:因男生平均比全班平均少2.5分,而女生平均比全班平均的多3分,故可知2.5×男生数=3×女生数。

2.5∶3=女生数:男生数即男生数:女生数=6:5。

例4 某次数学竞赛原定一等奖10人,二等奖20人,现在将一等奖中最后4人调整为二等奖,这样,得二等奖的学生平均分提高了1分,得一等奖的学生的平均分提高了3分。

那么,原来一等奖平均分比二等奖平均分多____分。

(1994年全国小学数学奥林匹克决赛试题)讲析:设原来一等奖每人平均是a分。

二等奖每人平均是b分。

则有:10a+20b=6×(a+3)+24×(b+1)即:a-b=10. 5。

也就是一等奖平均分比二等奖平均分多10.5分。

【行程问题】例1 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相柜______米。

小学六年级数学奥数应用题150道及答案

小学六年级数学奥数应用题150道及答案

小学六年级数学奥数应用题150道及答案1. 一辆汽车从甲地开往乙地,前3 小时行了156 千米。

照这样的速度,从甲地到乙地共需8 小时,甲、乙两地相距多少千米?解题提示:先算出汽车的速度,再根据速度和总时间算出总路程。

答案:汽车速度为156÷3 = 52(千米/时),总路程为52×8 = 416(千米)2. 某工厂要生产一批零件,原计划每天生产30 个,20 天完成,实际每天生产的零件数比原计划多20%,实际多少天完成?解题提示:先算出零件总数,再算出实际每天生产的零件数,最后用总数除以实际每天生产数得到实际天数。

答案:零件总数为30×20 = 600(个),实际每天生产30×(1 + 20%) = 36(个),实际完成天数为600÷36 = 50/3(天)3. 学校买来一批图书,其中故事书有300 本,科技书的本数比故事书的2/3 少20 本,科技书有多少本?解题提示:先算出故事书的2/3,再减去20 本。

答案:300×2/3 - 20 = 180(本)4. 一个圆锥形沙堆,底面半径是2 米,高是1.5 米。

如果每立方米沙重1.7 吨,这堆沙重多少吨?解题提示:先算出圆锥的体积,再乘以每立方米沙的重量。

答案:圆锥体积为1/3×3.14×2²×1.5 = 6.28(立方米),沙重6.28×1.7 = 10.676(吨)5. 修一条公路,已修的和未修的长度比是1:3,再修300 米后,已修的和未修的长度比是1:2。

这条公路长多少米?解题提示:把总长度看作单位“1”,找出300 米对应的分率。

答案:原来已修的占总长的1/4,后来占总长的1/3,300÷(1/3 - 1/4)= 3600(米)6. 六年级有学生160 人,已达到国家体育锻炼标准的有120 人。

六年级学生的体育达标率是多少?解题提示:达标率= 达标人数÷总人数×100%答案:120÷160×100% = 75%7. 一个圆形花坛的周长是18.84 米,它的面积是多少平方米?解题提示:先根据周长算出半径,再算面积。

小学六年级奥数应用题(20道)

小学六年级奥数应用题(20道)

【导语】世界上很多国家都有国内的奥数竞赛,国际间的奥数竞赛也开展得如⽕如荼。

奥数在其它⼀些国家并不表现出“病⼊膏肓”,相反,奥数成了⼀些国家发现杰出数学⼈才的平台。

以下是整理的《⼩学六年级奥数应⽤题(20道)》,希望帮助到您。

⼩学六年级奥数应⽤题(1-10道) 1.四⼈进⾏跳远、百⽶、铅球、跳⾼四项⽐赛,各个单项的⼀、⼆、三、四名(没有并列名次)分别得5、3、2、1分。

已知总分第⼀名者共获17分,其中跳⾼得分低于其它项得分;总分第三名者共获11分,其中跳⾼得分⾼于其它项得分。

试求获得总分第⼀、⼆、三、四名者的各个单项得分。

2.甲、⼄、丙三⼈进⾏了⼀次体操五个单项的⽐赛,每个单项⽐赛的前三名依次得分为5、2、1分。

甲获得单杠第⼀名,丙总分为22分。

问:谁获得单杆第⼆名? 3.有A、B、C三个⾜球队,两两⽐赛⼀场,共赛了三场。

A队两胜,进6球失2球;B队⼀胜⼀负,进4球失4球;C队两负,进2球失6球。

试写出三场⽐赛的具体⽐分。

4.有五所⼩学,每所⼩学派出两⽀⾜球队参加⾜球赛。

⽐赛规定:同⼀学校的两队不赛,不同学校的各队间都要赛⼀场。

当⽐赛进⾏了若⼲天后,某个球队发现,其他9⽀球队⽐赛的场数各不相同。

试分析这⽀球队和与它同校的另⼀⽀球队,这时各⽐赛了⼏场。

5.甲、⼄、丙、丁约定上午10点在公园门⼝集合。

见⾯后,甲说:“我提前到了6分钟,⼄是正点到的”;⼄说:“我提前到了4分钟,丙⽐我晚到2分钟”;丙说:“我提前到了3分钟,丁提前了2分钟”;丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收⾳机报北京时间10点整”。

根据他们的谈话,请你推算他们四⼈的⼿表各快(慢)⼏分钟。

6.⽼王家和⽼李家各有两个⼥孩,四个⼥孩年龄各不相同。

已知:(1)⼩华⽐她姐姐⼩3岁;(2)⼩丽的年龄等于两个妹妹的年龄和;(3)⼩玲的年龄是⽼王家⼀个孩⼦年龄的⼀半;(4)⼩芳⽐⽼李家第⼆个孩⼦⼤5岁;(5)他们两家在五年前都只有⼀个孩⼦。

六年级经典奥数竞赛应用题大全

六年级经典奥数竞赛应用题大全

六年级经典奥数竞赛应用题大全1、某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。

他买了几支红钢笔?2、某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?3、某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。

3、某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。

其中买甲种书所付的钱数是买乙种书所付钱数的2倍。

已知乙种书每本1.5元,那么甲种书每本定价多少元?4、两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?5、学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。

已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。

问:他们一共行了多少路6、某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人.三个车间各有多少人?7、一堆西瓜,第一次卖出总个数的1/4又5个,第二次卖出余下的1/2又4个,还剩4个,这堆西瓜共有多少个?8、晋西小学五、六年级共有学生780人,该校去数学奥校学习的学生中,恰好有8/17是五年级学生,有9/23是六年级学生,那么该校五、六年级学生中,没进奥校学习的有多少人?9、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。

这两只蚂蚁每秒分别爬行0.04米和0.05米,且每爬行1秒、3秒、5秒……(连续奇数),就掉头爬行。

那么,它们相遇时,已爬行的时间是多少秒。

小学六年级奥数应用题3篇

小学六年级奥数应用题3篇

小学六年级奥数应用题3篇在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

以下是小编整理的《小学六年级奥数应用题3篇》相关资料,希望帮助到您。

【篇一】小学六年级奥数应用题1、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。

0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。

_年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。

求有多少个学生?有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下_个芒果。

求水果店里原来一共有多少个芒果?5、(置换问题)学校买回6张桌子和6把椅子共用去_2元。

已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重_千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共_1_只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有_道题,小旺得了84分,小旺做错了几道题?_、(相遇问题)甲、乙两人同时从相距_米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行_0米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。

这样不断来回,直到甲和乙相遇为止,狗共行了多少米?【篇二】小学六年级奥数应用题1、甲、乙、丙三人在A、B两块地植树,A地要植9_棵,B地要植_50棵。

小学六年级奥数应用题及答案五篇

小学六年级奥数应用题及答案五篇

【导语】奥数题中常常出现⼀些数量关系⾮常特殊的题⽬,⽤普通的⽅法很难列式解答,有时根本列不出相应的算式来。

我们可以⽤枚举法,根据题⽬的要求,⼀⼀列举基本符合要求的数据,然后从中挑选出符合要求的答案。

以下是整理的《⼩学六年级奥数应⽤题及答案五篇》相关资料,希望帮助到您。

1.⼩学六年级奥数应⽤题及答案 1、A、B是⼀圈形道路的⼀条直径的两个端点,现有甲、⼄两⼈分别从、两点同时沿相反⽅向绕道匀速跑步(甲、⼄两⼈的速度未必相同),假设当⼄跑完100⽶时,甲、⼄两⼈第⼀次相遇,当甲差60⽶跑完⼀圈时,甲、⼄两⼈第⼆次相遇,那么当甲、⼄两⼈第⼗⼆次相遇时,甲跑完⼏圈⼜⼏⽶? 解答: 【分析】甲、⼄第⼀次相遇时共跑圈,⼄跑了100⽶;第⼆次相遇时,甲、⼄共跑1.5圈,则⼄跑了100×3=300⽶,此时甲差60⽶跑⼀圈,则可得0.5圈是300-60=240⽶,所以⼀圈是480⽶。

第⼀次相遇时甲跑了240-100=140⽶,以后每次相遇甲⼜多跑140×2=280⽶,所以第⼗⼆次相遇时甲共跑了140+280×11=3220⽶,即跑了6圈340⽶。

2、原来将⼀批⽔果按100%的利润定价出售,由于价格过⾼,⽆⼈购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余⽔果会变质,不得不再次降价,售出了全部⽔果。

结果实际获得的总利润是原来利润的30.2%,那么第⼆次降价后的价格是原来定价的百分之⼏? 答案与解析: 8%×40%+x%×(1-40%)=30.2% X%=25% (1+25%)÷(1+100%)=62.5% ⼆次降价后的价格是原来定价的百分之⼏,则需要求出第⼆次是按百分之⼏的利润定价。

设第⼆次降价是按x%的利润定价的。

 2.⼩学六年级奥数应⽤题及答案 1、⼩明每天早晨6:50从家出发,7:20到校,⽼师要求他明天提早6分钟到校。

如果⼩明明天早晨还是6:50从家出发,那么,每分钟必须⽐往常多⾛25⽶才能按⽼师的要求准时到校。

小学六年级奥数应用题100道及答案解析完整版

小学六年级奥数应用题100道及答案解析完整版

小学六年级奥数应用题100道及答案解析完整版1. 有一堆苹果,第一次吃了总数的20%,第二次吃了余下的25%,还剩下120 个,这堆苹果原来有多少个?答案:200 个解析:设这堆苹果原来有x 个。

第一次吃了0.2x 个,剩下0.8x 个。

第二次吃了0.25×0.8x = 0.2x 个,所以0.8x - 0.2x = 120,解得x = 200 。

2. 一项工程,甲单独做10 天完成,乙单独做15 天完成,两人合作多少天完成?答案:6 天解析:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要1÷(1/6) = 6 天。

3. 一个长方体的棱长总和是80 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少?答案:384 立方厘米解析:长方体的棱长总和= 4×(长+ 宽+ 高),所以长+ 宽+ 高= 20 厘米。

长= 20×5/(5 + 3 + 2) = 10 厘米,宽= 20×3/(5 + 3 + 2) = 6 厘米,高= 20×2/(5 + 3 + 2) = 4 厘米,体积= 10×6×4 = 384 立方厘米。

4. 学校图书馆有科技书和文艺书共630 本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,买进了多少本科技书?答案:90 本解析:原来有科技书630×20% = 126 本,设买进x 本科技书,则(126 + x) / (630 + x) = 30%,解得x = 90 。

5. 甲乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇,各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇,A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,甲乙合走一个全程,甲走了60 千米。

六年级数学上册奥数应用题精选30道,孩子都会做吗

六年级数学上册奥数应用题精选30道,孩子都会做吗

六年级数学上册奥数应用题精选30道,孩子都会做吗1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。

两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。

(完整版)六年级奥数分数应用题

(完整版)六年级奥数分数应用题

六年级奥数 分数应用题【指点迷津】解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。

【经典例题】1、有两筐苹果。

乙筐是甲筐的57 ,从甲筐取出6 千克放入乙筐后,乙筐的苹果是甲筐的45 。

甲、乙两筐苹果共重多少千克?【思路导航】 由于是从甲重取出6千克放入乙筐的,所以两筐苹果的总质量没有变,把两筐苹果的总质量看作单位“1”,则原来甲筐苹果占总重量的75+7 ,后来甲筐苹果占总重量的55+4 。

所以6千克苹果相当于总重量的75+7 —55+4 =136 。

6÷(75+7 —55+4 )=216(千克) 答:甲、乙两筐苹果共重216千克。

【举一反三】1、1、乙队原来有的人数是甲队的 3 7 ,现在甲队派30人到乙队,则乙队人数是甲队的23 。

甲、乙两队共有多少人?2、有甲、乙两个粮仓,原来甲粮仓存粮的吨数是乙粮仓的 75 。

如果从甲粮仓调5吨到乙粮仓,甲粮仓的吨数就是乙粮仓的45 。

原来甲、乙粮仓各存粮多少吨?【经典例题】2、在阅览室看书的学生中,男生人数是女生的25 ,又来了3名女生后,男生人数是女生的38 。

阅览室有男生多少人?【思路导航】原来“男生人数是女生的25 ”,后来“ 男生人数是女生的38 ”,虽然都是女生的几分之几,但女生人数前后发生了变化。

在解答时,只能抓住不变的量,即男生人数。

可以这样看,原来女生人数是男生的52 ,后来增加了3名女生,女生人教是男生的83 ,3名女生对应的分率就是83 — 52 。

3÷(83 — 52 )=18(人) 答: 阅览室有男生18人。

【举一反三】2、1、 某学校舞蹈队男生人数是女生的35 ,调来了3名女生后,男生人数是女生的611 。

该学校舞蹈队有男生多少人?2、水果店运来苹果和梨两种水果,苹果的重量是梨的56 ,卖出20 千克梨后,幸果的重量是梨的54 ,运来苹果多少千克?【经典例题】3、在阅览室看书的学生中,女生占47 ,后来又来了5个女生,这时女生占阅览室看书人数的35 。

六年级奥数分数应用题经典例题加练习带答案

六年级奥数分数应用题经典例题加练习带答案

一.知识回顾1.工厂原有职工128人,男工人数占总数,后来又调入男职工若干人,调入后男工人数占总人数,这时工厂共有职工人.【解析】在调入前后,女职工人数保持不变.在调入前,女职工人数为人,调入后女职工占总人数,所以现在工厂共有职工人.2.有甲、乙两桶油,甲桶油质量是乙桶倍,从甲桶中倒出5千克油给乙桶后,甲桶油质量是乙桶倍,乙桶中原有油千克.【解析】原来甲桶油质量是两桶油总质量,甲桶中倒出5千克后剩下油质量是两桶油总质量,由于总质量不变,所以两桶油总质量为千克,乙桶中原有油千克.【例 2】(1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在价格和原价格比较升高、降低还是不变?【解析】(1)设二月份产量是1,所以元月份产量为:,三月份产量为:,因为>0.9,所以三月份比元月份减产了(2)设商品原价是1,涨价后为,降价15%为:,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。

【巩固】把个人分成四队,一队人数是二队人数倍,一队人数是三队人数倍,那么四队有多少个人?【解析】方法一:设一队人数是“”,那么二队人数是:,三队人数是:,,因此,一、二、三队之和是:一队人数,因为人数是整数,一队人数一定是整数倍,而三个队人数之和是(某一整数),因为这是以内数,这个整数只能是.所以三个队共有人,其中一、二、三队各有,,人.而四队有:(人).方法二:设二队有份,则一队有份;设三队有份,则一队有份.为统一一队所以设一队有份,则二队有份,三队有份,所以三个队之和为份,而四个队份数之和必须是因数,因此四个队份数之和是100份,恰是一份一人,所以四队有人(人).【例 3】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数,美术班人数相当于另外两个班人数,体育班有人,音乐班和美术班各有多少人?【解析】条件可以化为:音乐班人数是所有班人数,美术班学生人数是所有班人数,所以体育班人数是所有班人数,所以所有班人数为人,其中音乐班有人,美术班有人.【巩固】甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数,甲加工零件数是乙、丙加工零件总数,则甲、丙加工零件数分别为个、个.【解析】把乙加工零件数看作1,则丙加工零件数为,甲加工零件数为,由于甲比乙多加工20个,所以乙加工了个,甲、丙加工零件数分别为个、个.【例 4】王先生、李先生、赵先生、杨先生四个人比年龄,王先生年龄是另外三人年龄和,李先生年龄是另外三人年龄和,赵先生年龄是其他三人年龄和,杨先生26岁,你知道王先生多少岁吗?【解析】方法一:要求王先生年龄,必须先要求出其他三人年龄各是多少.而题目中出现了三个“另外三人”所包含对象并不同,即三个单位“”是不同,这就是所说单位“”不统一,因此,解答此题关键便是抓不变量,统一单位“”.题中四个人年龄总和是不变,如果以四个人年龄总和为单位“”,则单位“”就统一了.那么王先生年龄就是四人年龄和,李先生年龄就是四人年龄和,赵先生年龄就是四人年龄和(这些过程就是所谓转化单位“”).则杨先生年龄就是四人年龄和.由此便可求出四人年龄和:(岁),王先生年龄为:(岁).方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同,但是现在四人年龄和分别是3份、4份、5份,它们最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生年龄就变为20份,李先生年龄就变为15份,赵先生年龄就变为12份,则杨先生年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】 甲、乙、丙、丁四个筑路队共筑1200米长一段公路,甲队筑路是其他三个队12,乙队筑路是其他三个队13 ,丙队筑路是其他三个队14 ,丁队筑了多少米?【解析】 甲队筑路是其他三个队,所以甲队筑路占总公路长; 乙队筑路是其他三个队,所以乙队筑路占总公路长; 丙队筑路是其他三个队,所以丙队筑路占总公路长,所以丁筑路为:(米)【例 5】 小刚给王奶奶运蜂窝煤,第一次运了全部,第二次运了块,这时已运来恰好是没运来.问还有多少块蜂窝煤没有运来?【解析】 方法一:运完第一次后,还剩下没运,再运来块后,已运来恰好是没运来,也就是说没运来占全部,所以,第二次运来块占全部:,全部蜂窝煤有:(块),没运来有:(块).方法二:根据题意可以设全部为份,因为已运来恰好是没运来,所以可以设全部为份,为了统一全部蜂窝煤,所以设全部蜂窝煤共有份,则已运来应是份,没运来份,第一次运来份,所以第二次运来是份恰好是块,因此没运来蜂窝煤有(块).【巩固】 五(一)班原计划抽人参加大扫除,临时又有个同学主动参加,实际参加扫除人数是其余人数.原计划抽多少个同学参加大扫除?【解析】 又有个同学参加扫除后,实际参加扫除人数与其余人数比是,实际参加人数比原计划多.即全班共有(人).原计划抽(人)参加大扫除.【巩固】某校学生参加大扫除人数是未参加大扫除人数,后来又有20名同学参加大扫除,实际参加人数是未参加人数,这个学校有多少人?【解析】(人).【例 6】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉玻璃球比小刚少;如果小刚给小莉24个,则小刚玻璃球比小莉少,小莉和小刚原来共有玻璃球多少个?【解析】小莉给小刚24个时,小莉是小刚(=1一),即两人球数和;小刚给小莉24个时,小莉是两人球数和(=),因此24+24是两人球数和-=.从而,和是(24+24) ÷=132(个).【巩固】某班一次集会,请假人数是出席人数,中途又有一人请假离开,这样一来,请假人数是出席人数,那么,这个班共有多少人?【解析】因为总人数未变,以总人数作为”1”.原来请假人数占总人数,现在请假人数占总人数,这个班共有:l÷(-)=50(人).【例 7】小明是从昨天开始看这本书,昨天读完以后,小明已经读完页数是还没读页数,他今天比昨天多读了页,这时已经读完页数是还没读页数,问题是,这本书共有多少页?”【解析】首先,可以直接运算得出,第一天小明读了全书,而前二天小明一共读了全书,所以第二天比第一天多读页对应全书。

(完整版)六年级奥数分数应用题

(完整版)六年级奥数分数应用题

(完整版)六年级奥数分数应用题六年级奥数分数应用题【指点迷津】解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。

【经典例题】1、有两筐苹果。

乙筐是甲筐的57 ,从甲筐取出6 千克放入乙筐后,乙筐的苹果是甲筐的45 。

甲、乙两筐苹果共重多少千克?【思路导航】由于是从甲重取出6千克放入乙筐的,所以两筐苹果的总质量没有变,把两筐苹果的总质量看作单位“1”,则原来甲筐苹果占总重量的75+7 ,后来甲筐苹果占总重量的55+4 。

所以6千克苹果相当于总重量的75+7 —55+4 =136 。

6÷(75+7 —55+4 )=216(千克) 答:甲、乙两筐苹果共重216千克。

【举一反三】1、1、乙队原来有的人数是甲队的 3 7 ,现在甲队派30人到乙队,则乙队人数是甲队的23 。

甲、乙两队共有多少人?2、有甲、乙两个粮仓,原来甲粮仓存粮的吨数是乙粮仓的 75 。

如果从甲粮仓调5吨到乙粮仓,甲粮仓的吨数就是乙粮仓的45 。

原来甲、乙粮仓各存粮多少吨?【经典例题】2、在阅览室看书的学生中,男生人数是女生的25 ,又来了3名女生后,男生人数是女生的38 。

阅览室有男生多少人?【思路导航】原来“男生人数是女生的25 ”,后来“ 男生人数是女生的38 ”,虽然都是女生的几分之几,但女生人数前后发生了变化。

在解答时,只能抓住不变的量,即男生人数。

可以这样看,原来女生人数是男生的52 ,后来增加了3名女生,女生人教是男生的83 ,3名女生对应的分率就是83 — 52 。

3÷(83 — 52 )=18(人) 答: 阅览室有男生18人。

【举一反三】2、1、某学校舞蹈队男生人数是女生的35 ,调来了3名女生后,男生人数是女生的611 。

该学校舞蹈队有男生多少人?2、水果店运来苹果和梨两种水果,苹果的重量是梨的56 ,卖出20 千克梨后,幸果的重量是梨的54 ,运来苹果多少千克?【经典例题】3、在阅览室看书的学生中,女生占47 ,后来又来了5个女生,这时女生占阅览室看书人数的35 。

小学数学六年级奥数应用题100道(含答案)

小学数学六年级奥数应用题100道(含答案)

小学数学六年级奥数应用题100道(含答案)1. 小明有15 个苹果,小红的苹果数是小明的2 倍,小红有多少个苹果?答案:15×2 = 30(个)2. 一辆汽车每小时行驶60 千米,5 小时行驶多少千米?答案:60×5 = 300(千米)3. 学校图书馆有科技书300 本,故事书比科技书多100 本,故事书有多少本?答案:300 + 100 = 400(本)4. 果园里有苹果树250 棵,梨树比苹果树少50 棵,梨树有多少棵?答案:250 - 50 = 200(棵)5. 一套衣服原价200 元,打八折出售,现价多少元?答案:200×80% = 160(元)6. 工人师傅加工一批零件,每天加工80 个,5 天完成,这批零件一共有多少个?答案:80×5 = 400(个)7. 一个长方形的长是12 厘米,宽是8 厘米,它的周长是多少厘米?答案:(12 + 8)×2 = 40(厘米)8. 一个正方形的边长是6 厘米,它的面积是多少平方厘米?答案:6×6 = 36(平方厘米)9. 六年级一班有男生25 人,女生20 人,男生比女生多几分之几?答案:(25 - 20)÷20 = 1/410. 一桶水重20 千克,用去了1/4,还剩多少千克?答案:20×(1 - 1/4)= 15(千克)11. 商店运来120 千克苹果,卖出了3/5,卖出了多少千克?答案:120×3/5 = 72(千克)12. 一本书有300 页,第一天看了全书的1/5,第二天看了全书的1/6,两天一共看了多少页?答案:300×(1/5 + 1/6)= 110(页)13. 修一条路,第一天修了全长的1/3,第二天修了全长的1/4,还剩500 米没修,这条路全长多少米?答案:500÷(1 - 1/3 - 1/4)= 1200(米)14. 一个圆形花坛的周长是18.84 米,它的半径是多少米?答案:18.84÷3.14÷2 = 3(米)15. 一个圆锥形沙堆,底面半径是2 米,高是1.5 米,这个沙堆的体积是多少立方米?答案:1/3×3.14×2²×1.5 = 6.28(立方米)16. 学校买来50 套桌椅,每张桌子80 元,每把椅子30 元,一共花了多少钱?答案:(80 + 30)×50 = 5500(元)17. 某工厂有男职工180 人,女职工人数是男职工的5/6,女职工有多少人?答案:180×5/6 = 150(人)18. 一件衣服原价180 元,现在降价20%出售,现价多少元?答案:180×(1 - 20%)= 144(元)19. 一个数的3/5 是27,这个数是多少?答案:27÷3/5 = 4520. 小明家距离学校1200 米,他每天上学要走15 分钟,他平均每分钟走多少米?答案:1200÷15 = 80(米)21. 一个长方形的面积是72 平方厘米,长是9 厘米,宽是多少厘米?答案:72÷9 = 8(厘米)22. 某班有48 名学生,其中男生占5/8,男生有多少人?答案:48×5/8 = 30(人)23. 一根绳子长20 米,用去了3/5,还剩多少米?答案:20×(1 - 3/5)= 8(米)24. 果园里有桃树180 棵,梨树的棵数是桃树的2/3,梨树有多少棵?答案:180×2/3 = 120(棵)25. 一辆汽车3 小时行驶180 千米,照这样计算,5 小时行驶多少千米?答案:180÷3×5 = 300(千米)26. 一个三角形的底是12 厘米,高是底的2/3,这个三角形的面积是多少平方厘米?答案:12×(12×2/3)÷2 = 48(平方厘米)27. 六年级同学植树200 棵,成活了190 棵,成活率是多少?答案:190÷200×100% = 95%28. 一套西服原价800 元,现在打七五折出售,比原价便宜多少元?答案:800×(1 - 75%)= 200(元)29. 妈妈买了5 千克苹果,用了20 元,每千克苹果多少元?答案:20÷5 = 4(元)30. 一个长方体的长、宽、高分别是6 厘米、5 厘米、4 厘米,它的体积是多少立方厘米?答案:6×5×4 = 120(立方厘米)31. 学校要粉刷一间教室的四壁和天花板,教室长8 米,宽6 米,高3 米,门窗面积12 平方米,需要粉刷的面积是多少平方米?答案:(8×3 + 6×3)×2 + 8×6 - 12 = 120(平方米)32. 把一个棱长6 分米的正方体铁块,铸造成一个底面积是18 平方分米的长方体铁块,这个长方体铁块高多少分米?答案:6×6×6÷18 = 12(分米)33. 小明家的果园里有苹果树150 棵,梨树的棵数比苹果树少1/5,梨树有多少棵?答案:150×(1 - 1/5)= 120(棵)34. 某工厂五月份生产零件400 个,六月份比五月份增产1/8,六月份生产零件多少个?答案:400×(1 + 1/8)= 450(个)35. 一桶油,用去2/5 后,还剩12 千克,这桶油原来有多少千克?答案:12÷(1 - 2/5)= 20(千克)36. 修一条公路,已经修了全长的3/8,离中点还有12 千米,这条公路全长多少千米?答案:12÷(1/2 - 3/8)= 96(千米)37. 一个圆形水池的直径是8 米,在它的周围修一条1 米宽的小路,小路的面积是多少平方米?答案:3.14×[(8÷2 + 1)²- (8÷2)²] = 28.26(平方米)38. 商店运来一批水果,其中苹果有120 千克,梨比苹果多1/4,梨有多少千克?答案:120×(1 + 1/4)= 150(千克)39. 六年级学生参加植树活动,男生植树180 棵,女生植树的棵数比男生少1/6,女生植树多少棵?答案:180×(1 - 1/6)= 150(棵)40. 一辆汽车从甲地开往乙地,已经行驶了全程的4/7,离乙地还有180 千米,甲乙两地相距多少千米?答案:180÷(1 - 4/7)= 420(千米)41. 一个长方体的棱长总和是48 厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少立方厘米?答案:48÷4 = 12(厘米),3 + 2 + 1 = 6,长:12×3/6 = 6(厘米),宽:12×2/6 = 4(厘米),高:12×1/6 = 2(厘米),体积:6×4×2 = 48(立方厘米)42. 某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:5÷(5 - 4)×4 = 20(人)43. 一块长方形地,长120 米,宽比长短1/3,这块地的面积是多少平方米?答案:宽:120×(1 - 1/3)= 80(米),面积:120×80 = 9600(平方米)44. 一本书,第一天看了全书的1/4,第二天看了30 页,这时已看的页数与未看的页数比是2∶3,这本书一共有多少页?答案:30÷(2/5 - 1/4)= 200(页)45. 一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?答案:2×3.14×2×5 = 62.8(平方厘米)46. 一辆自行车的车轮半径是30 厘米,车轮每分钟转100 圈,要通过1884 米的桥,大约需要几分钟?答案:3.14×2×0.3×100 = 188.4(米),1884÷188.4 = 10(分钟)47. 仓库里有一批化肥,第一次运走了总数的1/4,第二次运走了总数的1/3,还剩下14 吨,这批化肥一共有多少吨?答案:14÷(1 - 1/4 - 1/3)= 33.6(吨)48. 六年级同学为灾区捐款,六(1)班捐了500 元,六(2)班捐的是六(1)班的4/5,六(3)班捐的是六(2)班的9/8,六(3)班捐款多少元?答案:500×4/5×9/8 = 450(元)49. 一个圆锥形麦堆,底面周长是12.56 米,高1.5 米,如果每立方米小麦重750 千克,这堆小麦重多少千克?答案:底面半径:12.56÷3.14÷2 = 2(米),体积:1/3×3.14×2²×1.5 = 6.28(立方米),重量:6.28×750 = 4710(千克)50. 某工厂计划生产一批零件,已经生产了3/5,还剩80 个没有生产,这批零件一共有多少个?答案:80÷(1 - 3/5)= 200(个)51. 一块长方形菜地,长和宽的比是5∶3,周长是48 米,这块菜地的面积是多少平方米?答案:48÷2 = 24(米),5 + 3 = 8,长:24×5/8 = 15(米),宽:24×3/8 = 9(米),面积:15×9 = 135(平方米)52. 一个圆柱的体积是120 立方厘米,底面积是15 平方厘米,它的高是多少厘米?答案:120÷15 = 8(厘米)53. 商店卖出两件衣服,每件都卖60 元,其中一件赚20%,另一件亏20%,商店卖出这两件衣服是赚还是亏?答案:第一件成本:60÷(1 + 20%)= 50(元),第二件成本:60÷(1 - 20%)= 75(元),总成本:50 + 75 = 125(元),总售价:60×2 = 120(元),125 > 120,亏了5 元。

六年级奥数应用题及答案:行程问题

六年级奥数应用题及答案:行程问题

六年级应用题及答案:行程问题一、填空题(共10小题,每小题3分,满分30分)1.(3分)两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距_________千米.2.(3分)小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了_________公里.3.(3分)一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的_________倍.4.(3分)一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用_________秒.5.(3分)A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经_________小时,乙在甲丙之间的中点?6.(3分)主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了_________步.7.(3分)兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走_________米才能回到出发点.8.(3分)骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要_________分钟,电车追上骑车人.9.(3分)一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有_________公里.10.(3分)如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在_________边上.二、解答题(共4小题,满分0分)11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇?12.三个人自A地到B地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D 与第三个人相遇,然后两人同乘自行车前往B;第二个人在C处下车后继续步行前往B地.结果三个人同时到达B地.那么,C距A处多少千米?D距A处多少千米?13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时3.6公里,骑车人速度为每小时10.8公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?14.一条小河流过A、B、C三镇.A、B两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B、C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A、C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A、B两镇的水路路程是多少米.六年级应用题及答案:行程问题参考答案与试题解一、填空题(共10小题,每小题3分,满分30分)1.(3分)两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距1224千米.考点:相遇问题。

六年级50道经典奥数应用题及答案详细解析

六年级50道经典奥数应用题及答案详细解析

六年级50 道经典奥数应用题及答案详细解析2、3 箱苹果重45千克。

一箱梨比一箱苹果多5千克;3 箱梨重多少千克?3. 甲乙二人从两地同时相对而行;经过4小时;在距离中点4千米处相遇。

甲比乙速度快; 甲每小时比乙快多少千米?4. 李军和张强付同样多的钱买了同一种铅笔;李军要了13支;张强要了7支; 李军又给张强0.6 元钱。

每支铅笔多少钱?5. 甲乙两辆客车上午8时同时从两个车站出发;相向而行;经过一段时间;两车同时到达一条河的两岸。

由于河上的桥正在维修;车辆禁止通行; 两车需交换乘客; 然后按原路返回各自出发的车站; 到站时已是下午 2 点。

甲车每小时行40 千米; 乙车每小时行45 千米; 两地相距多少千米?(交换乘客的时间略去不计)6. 学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5 千米; 第二小组每小时行 3.5 千米。

两组同时出发 1 小时后; 第一小组停下来参观一个果园;用了1小时;再去追第二小组。

多长时间能追上第二小组?7. 有甲乙两个仓库; 每个仓库平均储存粮食32.5 吨。

甲仓的存粮吨数比乙仓的 4 倍少 5 吨; 甲、乙两仓各储存粮食多少吨?8. 甲、乙两队共同修一条长400米的公路; 甲队从东往西修4 天;乙队从西往东修 5 天;正好修完; 甲队比乙队每天多修10 米。

甲、乙两队每天共修多少米?9. 学校买来 6 张桌子和 5 把椅子共付455元; 已知每张桌子比每把椅子贵30 元; 桌子和椅子的单价各是多少元?10. 一列火车和一列慢车; 同时分别从甲乙两地相对开出。

快车每小时行75 千米; 慢车每小时行65千米;相遇时快车比慢车多行了40 千米;甲乙两地相距多少千米?11. 某玻璃厂托运玻璃250箱;合同规定每箱运费20元;如果损坏一箱;不但不付运费还要赔偿100元。

运后结算时;共付运费4400元。

托运中损坏了多少箱玻璃?12. 五年级一中队和二中队要到距学校20 千米的地方去春游。

小学六年级奥数应用题及答案五篇

小学六年级奥数应用题及答案五篇

小学六年级奥数应用题及答案五篇小学生奥数应用题及答案五篇第一篇:题目:Lily和John的年龄问题Lily今年的年龄是John去年的年龄,而Lily明年的年龄又是John 明年的年龄。

如果已知Lily今年8岁,那么请问John今年多少岁?解答:根据题目描述可知,Lily今年的年龄是John去年的年龄,而Lily明年的年龄又是John明年的年龄。

因此,Lily去年的年龄为8岁-1岁=7岁,Lily明年的年龄为8岁+1岁=9岁。

根据题目可知,Lily明年的年龄又是John明年的年龄,因此,John明年的年龄为9岁。

根据题目可知,Lily今年的年龄是John去年的年龄,因此,John今年的年龄为7岁。

答案:John今年的年龄是7岁。

第二篇:题目:车站的巴士问题在一个车站,依次经过了3辆、5辆和7辆巴士,而这些巴士每隔20分钟就会有一辆。

请问,下一辆经过车站的巴士会在多少分钟后到达?解答:根据题目描述可知,一辆巴士经过车站需要20分钟。

而根据题目可知,依次经过了3辆、5辆和7辆巴士,因此共经过15辆巴士。

由此可知,下一辆经过车站的巴士将在15辆巴士×20分钟/1辆巴士=300分钟后到达。

答案:下一辆经过车站的巴士会在300分钟后到达。

第三篇:题目:苹果糖果的分配问题小明、小红、小李和小华共有16个苹果糖果。

如果小明拿了小红的一半加上两个,小红拿了小李的一半加上一个,小李拿了小华的一半加上一个,那么请问小华手里有几个苹果糖果?解答:根据题目描述可知,小明拿了小红的一半加上两个,小红拿了小李的一半加上一个,小李拿了小华的一半加上一个。

因此,小红手里的苹果糖果数量为(16/2+1)=9个,小李手里的苹果糖果数量为(9/2+1)=6个,小华手里的苹果糖果数量为(6/2+1)=4个。

答案:小华手里有4个苹果糖果。

第四篇:题目:水果市场的蔬菜水果比例问题在一个水果市场里,蔬菜和水果的比例为1:3。

如果市场摆放了24个蔬菜,请问市场里摆放了多少个水果?解答:根据题目描述可知,蔬菜和水果的比例为1:3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

56、典型应用题【平均数问题】例1 小强骑自行车从甲地到乙地,去时以每小时15千米的速度前进,回时以每小时30千米的速度返回。

小强往返过程中的平均速度是每小时多少千米?(江西省第二届“八一杯”小学数学竞赛试题)讲析:我们不能用(15+30)÷2来计算平均速度,因为往返的时间不相等。

只能用“总路程除以往返总时间”的方法求平均速度。

所以,往返的平均速度是每小时例2 动物园的饲养员给三群猴子分花生。

如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒。

那么平均分给三群猴子,每只猴子可得____粒。

(北京市第八届“迎春杯”小学数学竞赛试题)讲析:设花生总粒数为单位“ 1”,由题意可知,第一、二、三群猴子于是可知,把所有花生分给这三群猴子,平均每只可得花生例3 某班在一次数学考试中,平均成绩是78分,男、女生各自的平均成绩是75.5分和81分。

问:这个班男、女生人数的比是多少?(全国第三届“华杯赛”决赛第二试试题)讲析:因男生平均比全班平均少2.5分,而女生平均比全班平均的多3分,故可知2.5×男生数=3×女生数。

2.5∶3=女生数:男生数即男生数:女生数=6:5。

例4 某次数学竞赛原定一等奖10人,二等奖20人,现在将一等奖中最后4人调整为二等奖,这样,得二等奖的学生平均分提高了1分,得一等奖的学生的平均分提高了3分。

那么,原来一等奖平均分比二等奖平均分多____分。

(1994年全国小学数学奥林匹克决赛试题)讲析:设原来一等奖每人平均是a分。

二等奖每人平均是b分。

则有:10a+20b=6×(a+3)+24×(b+1)即:a-b=10. 5。

也就是一等奖平均分比二等奖平均分多10.5分。

【行程问题】例1 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相柜______米。

( 1990年《小学生报》小学数学竞赛试题)讲析:如图5.30,当乙丙在D点相遇时,甲已行至C点。

可先求出乙、两相遇的时间,也就是乙行距离AD的时间。

乙每分钟比甲多走 10米,多少分钟就多走了CD呢?而CD的距离,就是甲、丙2分钟共行的距离:(70+50)×2=240(米)。

于是可知,乙行AD的时间是240÷10=24(分钟)。

所以,AB两地相距米数是(70+60)×24=3120(米)例2 在一条公路上,甲、乙两个地点相距600米,张明每小时行走4千米,李强每小时行走5千米。

8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再过3分钟,他们又调头相向而行,依次按照1、3、5、7……(连续奇数)分钟数调头行走。

那么,张、李两个人相遇时是8点_____分。

(1992年全国小学数学奥林匹克竞赛初赛试题)(千米)=150(米)他俩相向走(1+5)分钟,反向走(3+7)分钟后两人相距:600+150×〔(3+7)-(1+5)〕=1200(米)所以,只要再相向行走1200÷150=8(分钟),就可以相遇了。

从而可知,相遇所需要的时间共是1+3+5+7+7+8=24(分钟)也就是相遇时是8点24分。

例3 快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人。

这三辆车分别用6分钟,10分钟、12分钟追上骑车人。

现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?(全国第一届“华杯赛”决赛第二试试题)讲析:如图5.31所示,A点是三车的出发点,三车出发时骑车人在B点,A1、A2、A3分别为三车追上骑车人的地点。

快车走完2.4千米追上了他。

由此可见三辆车出发时,骑车人已走的路程是AB=2.4-1.4=1(千米)。

所以,慢车的速度是:例4 一辆车从甲地开往乙地。

如果把车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%。

则可提前40分钟到达。

那么,甲、乙两地相距______千米。

(1992年全国小学数学奥林匹克决赛试题)讲析:首先必须考虑车速与时间的关系。

因为车速与时间成反比,当车速提高20%时,所用时间缩短为原来的例5 游船顺流而下每小时行8千米,逆流而上每小时行7千米,两船同时从同地出发,甲船顺流而下,然后返回。

乙船逆流而上,然后返回,经过2小时同时回到出发点,在这2小时中,有______小时甲、乙两船的航行方向相同。

(上海市第五届小学数学竞赛初赛试题)讲析:关键是要理解上行与下行时间各占全部上下行总时间的百分之几。

因为两船2小时同时返回,则两船航程相等。

又上行船速是每小时行7例6 甲、乙两车分别从A、B两城同时相向而行,第一次在离A城30千米处相遇。

相遇后两车又继续前行,分别到达对方城市后,又立即返回,在离A城42千米处第二次相遇。

求A、B 两城的距离。

(《小学生科普报》小学数学竞赛预选赛试题)讲析:如图5.32所示。

两车第一次在C地相遇,第二次在D地相遇。

甲、乙两车从开始到第一次C点相遇时,合起来行了一个全程。

此时甲行了30千米,从第一次相遇到第二次D点相遇时,两车合起来行了两个全程。

在这两个全程中,乙共行(30+42)千米,所以在合行一个全程中,乙行(30+42)÷2=36(千米),即A、B两城的距离是30+36=66(千米)。

例8 甲、乙两车分别从A、B两地出发,在A、B之间不断往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇(两车同时到达同一地点叫相遇)的地点与第四次相遇的地点恰好相距100千米。

那么A、B两地的距离等于____千米。

(1993年全国小学数学奥林匹克初赛试题)讲析:根据甲、乙两车的速度比为3∶7,我们可将A、B两地平均分成10份(如图5.33)。

因为甲、乙两车速度之比为3∶7,所以甲每走3份,乙就走了7份。

于是它们第一次在a3处相遇。

甲再走4.5份,乙走10.5份,在a7与a8之中点处甲被乙追上,这是第二次相遇;甲再又走1.5份,乙走3.5份,在a9点第三次两车相遇;甲走6份,乙走14份在a5点第四次两车相遇。

(千米)。

例9 在400米环形跑道上, A、B两点相距100米(如图5.34)。

甲、乙两人分别从A、B 两点同时按逆时针方向跑步。

甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟,那么,甲追上乙需要____秒钟。

(1992年全国小学数学奥林匹克初赛试题)讲析:各跑100米,甲比乙少用的时间是100÷4-100÷5=5(秒钟),现在甲要比乙多跑100米,需20秒钟。

由20÷5=4(个百米),可知,乙跑400米以后,甲就比乙多跑100米。

这样便刚好追上乙。

甲跑完(400+100)米时,中途停了4次,共停40秒钟。

故20×5+40=140(秒)。

当乙跑完400米以后,停了10秒,甲刚好到达同一地点。

所以,甲追上乙需要140秒钟。

例10 甲、乙二人在同一条环形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二第一次相遇点190米,问这条环形跑道长多少米?(全国第四届“华杯赛”复赛试题)讲析:图为甲、乙两人每跑到原出发点时,就返回头跑。

于是,从出发点切开,然后将环形跑道拉直,这样,他俩就可以看作在AB线段上的往返跑步(如图5.35)。

跑第一圈时,乙的速度与甲的速度的比是3∶2。

当甲从原速跑到A点。

(个)全程,即刚好到达D点。

所以,在AD段中,甲、乙两人都是按各自的加速度相向而行。

不难求得例11 图5.36,大圈是400米跑道,由A到B的跑道长是200米,直线距离是50米。

父子俩同时从A点出发逆时针方向沿跑道进行长跑锻炼,儿子跑大圈,父亲每跑到B点便沿直线跑,父亲每100米用20秒,儿子每100米用19秒。

如果他们按这样的速度跑,儿子在跑第几圈时,第一次与父亲再相遇?(全国第二届“华杯赛”复赛试题)讲析:容易计算出,父亲经过150秒刚好跑完3小圈到达A点,儿子经过152秒刚好跑完2圈到达A点,儿子比父亲慢2秒钟,所以儿子将沿跑道追赶父亲。

因为A到B弯道长200米,儿子每跑100米比父亲快一秒,可知恰好在B点追上父亲。

即,儿子在跑第三圈时,会第一次与父亲相遇。

例12 甲班与乙班学生同时从学校出发去某公园。

甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。

学校有一辆大客车,它的速度是每小时48千米。

这辆车恰好能坐一个班的学生。

为了使两班学生在最短时间内到达,那么甲班学生与乙班学生需要步行的距离之比是____。

(1991年全国小学数学奥林匹克决赛试题)讲析:要使两个班在最短时间内到达,只有让两个班都同时运行且同时到达。

设甲班先步行后乘车。

甲班、乙班和客车的行进路线如图5.37所示。

AB、CD分别表示甲班和乙班步行距离。

当甲班从A地行至B地时,汽车共行了:AB+2·BC。

又汽车速度是甲班的12倍,所以同理,当乙班从C地行至D地时,汽车共行了CD+2·BC。

又,汽车速度是乙班的16倍,所以AB∶CD=15∶11。

即甲班与乙班需要步行的距离之比为15∶11。

例13 王经理总是上午8点钟乘公司的汽车去上班。

有一天,他6点40分就步行上班,而汽车仍按以前的时间从公司出发,去接经理,结果在路途中接到了他。

因此,王经理这天比平时提前16分钟到达公司。

那么汽车的速度是王经理步行速度的____倍。

(《小学生科普报》小学数学奥林匹克通讯赛试题)讲析:如图5.38,A点表示王经理家,B点表示公司,C点表示汽车接王经理之处。

王经理比平时提前16分钟到达公司,而这16分钟实际上是汽车少走了2·AC而剩下的时间,则汽车行AC路程需要8分钟,所以汽车到达C点接到王经理的时间是7点52分钟。

王经理步行时间是从6点40分到7点52分,共行72分钟。

因此,汽车速度是王经理步行速度的72÷8=9(倍)。

【倍数问题】例1 仓库里有两个货位,第一货位上有78箱货物,第二货位上有42箱货物,两个货位上各运走了相同的箱数之后,第一货位上的箱数还比第二货位上的箱数多2倍。

两个货位上各运走了多少箱货物?(1994年天津市小学数学竞赛试题)讲析:因为两堆货物各运走相同数量的货物之后,第一堆比第二堆货物多2倍。

即此时第一堆货物是第二堆货物的3倍。

所以,42的3倍的积与78的差,就是两堆中各运走货物的箱数的2倍。

故两个货位各运走的货物箱数是(42×3-78)÷2=24(箱)。

相关文档
最新文档