圆锥曲线基础知识

合集下载

圆锥曲线基础知识

圆锥曲线基础知识

圆锥曲线1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。

圆锥曲线知识点总结(基础)

圆锥曲线知识点总结(基础)

圆锥曲线的方程与性质1椭圆 (1)椭圆概念x 0,得y b ,则BdO, b) , B 2(0,b)是椭圆与y 轴的两个交点。

同理令 y 0得xa ,即A( a,0),A>(a,0)是椭圆与x 轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段 AA 、B 1B 2分别叫做椭圆的长轴和短轴,它们的长分别为 2a 和2b , a 和b 分别叫做椭圆的长半轴长和短半轴长。

由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在Rt OB 2F 2中,|OB 2 |b , |0F 2 |c , | B 2F 2 | a ,222222且 |0F 2 I 2I B 2F 2I 2|0B 2 |2,即 c 2 a 2 b 2 ;c④离心率:椭圆的焦距与长轴的比 e 叫椭圆的离心率。

••• a c 0 ,••• 0 e 1,且e 越接近1, c 就a越接近a ,从而b 就越小,对应的椭圆越扁;反之, e 越接近于0 , c 就越接近于0,从而b 越接近于a ,这时 椭圆越接近于圆。

当且仅当 a b 时,c 0,两焦点重合,图形变为圆,方程为 x 2 y 2 a 2。

2•双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(|| PF 1 | | PF 2 || 2a )。

注意:①式中是差的绝对值,在0 2a | F 1F 2 |条件下;|PF 1 | | PF 2 | 2a 时为双曲线的一支; |PF 2| |PF 1| 2a 时为双曲线的另一支(含 F 1的一支);②当2a 厅汀2丨时,|| PF 11 |PF 2〔| 2a 表示两条射 线;③当2a | F 1F 21时,||卩已| |PF 2|| 2a 不表示任何图形;④两定点 斤丁2叫做双曲线的焦点,| F 1F 2 |叫做 焦距。

平面内与两个定点 F 1、 的焦点,两焦点的距离椭圆的标准方程为: F 2的距离的和等于常数2c 叫椭圆的焦距。

圆锥曲线基础知识梳理

圆锥曲线基础知识梳理

圆锥曲线知识要点梳理知识点一:圆锥曲线的统一定义椭圆、双曲线、抛物线统称圆锥曲线。

平面内,到一定点的距离与它到一条定直线(不经过定点)的距离之比是常数e的点的轨迹叫做圆锥曲线。

定点叫做焦点,定直线叫做准线、常数叫做离心率。

①e∈(0,1)时轨迹是椭圆;②e=1时轨迹是抛物线;③e∈(1,+∞)时轨迹是双曲线。

知识点二:圆锥曲线的标准方程和几何性质1.椭圆:(1)定义:平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫椭圆,这两个定点叫焦点.(2)标准方程当焦点在轴上时,椭圆的标准方程:,其中;当焦点在轴上时,椭圆的标准方程:,其中;(3)椭圆的的简单几何性质:范围:,,焦点,顶点、,长轴长=,短轴长=,焦距=,2.双曲线(1)定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫双曲线的焦点.(2)标准方程当焦点在轴上时,双曲线的标准方程:,其中;当焦点在轴上时,双曲线的标准方程:,其中.(3)双曲线的简单几何性质范围:,;焦点,顶点,实轴长=,虚轴长=,焦距=;离心率是,准线方程是;渐近线:.3.抛物线(1)定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(2)标准方程四种形式:,,,。

(3)抛物线标准方程的几何性质范围:,,对称性:关于x轴对称顶点:坐标原点离心率:.知识点三:直线和圆锥曲线的位置关系1.直线Ax+By+C=0和椭圆的位置关系:将直线方程代入椭圆后化简为一元二次方程,其判别式为Δ。

(1)若Δ>0,则直线和椭圆相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和椭圆相切,有一个切点(或一个公共点);(3)若Δ<0,则直线和椭圆相离,无公共点.2.直线Ax+By+C=0和双曲线的位置关系:将直线方程代入双曲线方程后化简方程①若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和双曲线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和双曲线相切,有一个切点;(3)若Δ<0,则直线和双曲线相离,无公共点.注意:如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点3.直线Ax+By+C=0和抛物线y2=2px(p>0)的位置关系:将直线方程代入抛物线方程后化简后方程:①若为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和抛物线相交,有两个交点(或两个公共点); (2)若Δ=0,则直线和抛物线相切,有一个切点; (3)若Δ<0,则直线和抛物线相离,无公共点。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。

2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。

3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。

二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。

(完整版)《圆锥曲线》主要知识点

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是代数几何中重要的一部分,它由平面和一个定点的两条曲线组成。

在数学的发展历史中,圆锥曲线的研究经历了漫长的时期,涉及到众多的数学家和学者的努力。

本文将对圆锥曲线的基本概念、性质、分类以及应用等知识点进行总结。

一、圆锥曲线的基本概念1. 圆锥曲线的定义圆锥曲线是由平面与一个定点和这个定点到平面上任意一点的连线组成的图形。

2. 圆锥曲线的基本元素圆锥曲线由定点称为焦点和一条固定的直线称为准线组成。

3. 圆锥曲线的标准方程圆锥曲线可以用一般的二次方程表示,即 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。

4. 圆锥曲线的焦点和准线焦点是定点到平面上各点的距离与准线到这些点距离之比的极限值。

准线是过焦点且垂直于对称轴的直线。

二、圆锥曲线的性质1. 直线和圆的特例直线是当离心率为1的圆锥曲线,圆是离心率为0的圆锥曲线。

2. 焦准属性圆锥曲线上的任意一点到焦点的距离与到准线的距离之比始终为常数,这就是焦准属性。

3. 长轴和短轴圆锥曲线的焦点和准线确定了两条互相垂直的轴线,这两条轴线分别称为长轴和短轴。

4. 离心率圆锥曲线的离心率是一个反映离心程度的量,离心率为0时曲线为圆,离心率为1时曲线为直线。

5. 对称性圆锥曲线具有平移和对称性,即曲线在对称轴两侧具有相同的形状。

三、圆锥曲线的分类1. 椭圆圆锥曲线的离心率小于1,且大于0,形状近似于椭圆的曲线称为椭圆。

2. 抛物线圆锥曲线的离心率等于1,形状类似于抛物线的曲线称为抛物线。

3. 双曲线圆锥曲线的离心率大于1,形状类似于双曲线的曲线称为双曲线。

四、圆锥曲线的应用1. 天文学圆锥曲线在天文学中有广泛的应用,例如行星和彗星的轨道可以用圆锥曲线描述。

2. 工程学在工程学中,圆锥曲线被用于设计天桥、隧道、公路弯道等工程项目。

3. 经济学圆锥曲线在经济学中有重要的应用,例如需求曲线和供给曲线可以用圆锥曲线表示。

圆锥曲线 基础知识 技巧套路 题型结论 极点极线

圆锥曲线 基础知识 技巧套路 题型结论 极点极线

圆锥曲线基础知识技巧套路题型结论极点极线圆锥曲线是解析几何中的重要组成部分,它包括椭圆、双曲线和抛物线。

掌握圆锥曲线的基本知识和解题技巧,对提高数学素养和解题能力具有重要意义。

本文将为您详细介绍圆锥曲线的基础知识、技巧套路、题型结论以及极点极线的应用。

一、基础知识1.定义:圆锥曲线是平面与圆锥面的交线。

根据平面与圆锥面的相对位置关系,可分为椭圆、双曲线和抛物线三种类型。

2.标准方程:- 椭圆:x^2/a^2 + y^2/b^2 = 1(a > b > 0)- 双曲线:x^2/a^2 - y^2/b^2 = 1(a > 0, b > 0)- 抛物线:y^2 = 2px(p > 0)或x^2 = 2py(p > 0)3.基本性质:- 椭圆:对称性、有界性、顶点、焦点、准线等;- 双曲线:对称性、无界性、顶点、焦点、准线等;- 抛物线:对称性、有界性、顶点、焦点、准线等。

二、技巧套路1.椭圆:- 求解椭圆上的点P(x, y)到焦点F1、F2的距离之和:|PF1| + |PF2| = 2a(椭圆的长轴)- 椭圆的切线方程:y = kx + m,代入椭圆方程,求解k和m。

2.双曲线:- 求解双曲线上的点P(x, y)到焦点F1、F2的距离之差:|PF1| - |PF2| = 2a(双曲线的实轴)- 双曲线的切线方程:y = kx + m,代入双曲线方程,求解k和m。

3.抛物线:- 抛物线的焦点:F(p/2, 0)(对于y^2 = 2px)或F(0, p/2)(对于x^2 = 2py)- 抛物线的切线方程:y = kx + m,代入抛物线方程,求解k和m。

三、题型结论1.椭圆:- 线段长度的最大值和最小值:与椭圆的长轴和短轴有关;- 面积的最大值和最小值:与椭圆的长轴和短轴有关。

2.双曲线:- 线段长度的最大值和最小值:与双曲线的实轴和虚轴有关;- 面积的最大值和最小值:与双曲线的实轴和虚轴有关。

高中数学第八章圆锥曲线知识点

高中数学第八章圆锥曲线知识点

高中数学第八章圆锥曲线知识点第八章圆锥曲线是高中数学的一个重要章节,本章内容涵盖了圆锥曲线的基本定义、性质和相关的解题方法。

在本文档中,我们将详细介绍圆锥曲线的相关知识点,帮助同学们更好地理解和掌握这一部分内容。

一、圆锥曲线的基本定义1. 圆锥曲线的定义圆锥曲线是由一个固定点(焦点)和一个动点(在直线上移动)确定的几何图形。

根据焦点的位置和直线与曲线的交点情况,圆锥曲线分为椭圆、双曲线和抛物线三种情况。

2. 椭圆的定义椭圆是平面上与两个固定点的距离之和等于常数的点(焦点),构成的几何图形。

3. 双曲线的定义双曲线是平面上与两个固定点的距离之差等于常数的点(焦点),构成的几何图形。

4. 抛物线的定义抛物线是平面上与一个固定点的距离等于另一个固定点到直线的距离,构成的几何图形。

二、圆锥曲线的性质1. 椭圆的性质椭圆的离心率小于1,焦点在椭圆的内部。

椭圆有两个主轴,相互垂直,长度分别为2a和2b,其中2a是椭圆的长轴,2b是椭圆的短轴。

椭圆的面积为πab。

2. 双曲线的性质双曲线的离心率大于1,焦点在双曲线的外部。

双曲线有两个虚轴和两条实轴,相互垂直。

双曲线的面积无限大。

3. 抛物线的性质抛物线的离心率等于1,焦点在抛物线的内部。

抛物线有一个对称轴,与焦点和顶点的距离相等。

抛物线的面积为2/3 × a × h,其中a是焦点到顶点的距离,h是对称轴的长度。

三、圆锥曲线的解题方法1. 椭圆的解题方法(1)求解椭圆的标准方程,确定椭圆的中心、长轴和短轴;(2)求解椭圆的焦点和离心率;(3)利用椭圆的性质解题,例如求点到椭圆的距离或求椭圆上一点的坐标。

2. 双曲线的解题方法(1)求解双曲线的标准方程,确定双曲线的中心、虚轴和实轴;(2)求解双曲线的焦点和离心率;(3)利用双曲线的性质解题,例如求点到双曲线的距离或求双曲线上一点的坐标。

3. 抛物线的解题方法(1)求解抛物线的标准方程,确定抛物线的顶点、对称轴和焦点;(2)利用抛物线的性质解题,例如求点到抛物线的距离或求抛物线上一点的坐标。

圆锥曲线基础知识

圆锥曲线基础知识

圆锥曲线1.定义:⑴椭圆:|)|2(,2||||2121F F a a MF MF >=+; ⑴双曲线:|)|2(,2||||||2121F F a a MF MF <=-;⑴抛物线:略 2.结论⑴焦半径:⑴椭圆:0201,ex a PF ex a PF -=+=(e 为离心率); (左“+”右“-”); ⑴抛物线:20px PF += ⑴弦长公式:]4))[(1(1212212122x x x x k x x k AB -++=-⋅+= ]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=; 注:(⑴)焦点弦长:⑴椭圆:)(2||21x x e a AB +±=;⑴抛物线:AB =x 1+x 2+p=α2sin 2p;(⑴)通径(最短弦):⑴椭圆、双曲线:ab 22;⑴抛物线:2p 。

⑴过两点的椭圆、双曲线标准方程可设为:122=+ny mx (n m ,同时大于0时表示椭圆,0<mn 时表示双曲线); ⑴椭圆中的结论:⑴内接矩形最大面积 :2ab ;⑴P ,Q 为椭圆上任意两点,且OP ⊥0Q ,则222211||1||1ba OQ OP +=+ ; ⑴椭圆焦点三角形:<⑴>.2tan 221θb S F PF =∆,(21PF F ∠=θ);<⑴>.点M 是21F PF ∆内心,PM 交21F F 于点N ,则caMN PM =|||| ;⑴当点P 与椭圆短轴顶点重合时21PF F ∠最大; ⑴双曲线中的结论:⑴双曲线12222=-b y a x (a>0,b>0)的渐近线:02222=-by a x ; ⑴共渐进线x a b y ±=的双曲线标准方程为λλ(2222=-by a x 为参数,λ≠0); ⑴双曲线焦点三角形:<⑴>.2cot221θb S F PF =∆,(21PF F ∠=θ);<⑴>.P 是双曲线22a x -22by =1(a >0,b >0)的左(右)支上一点,F 1、F 2分别为左、右焦点,则⑴PF 1F 2的内切圆的圆心横坐标为)(,a a -; ⑴双曲线为等轴双曲线⇔⇔=2e 渐近线为x y ±=⇔渐近线互相垂直;(6)抛物线中的结论:⑴抛物线y 2=2px(p>0)的焦点弦AB 性质:<⑴>. x 1x 2=42p ;y 1y 2=-p 2;<⑴>.pBF AF 2||1||1=+ ; <⑴>.以AB 为直径的圆与准线相切; <⑴>.以AF (或BF )为直径的圆与y 轴相切; <⑴>.αsin 22p S AOB =∆。

高中数学圆锥曲线知识全归纳

高中数学圆锥曲线知识全归纳

圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。

下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。

一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。

根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。

(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。

椭圆有两个焦点,与这两个焦点的距离之和是常数。

椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。

(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。

抛物线是一条对称曲线,其开口方向由切割平面的位置决定。

抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。

(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。

双曲线有两个焦点,与这两个焦点的距离之差是常数。

双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。

二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。

(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。

(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。

三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。

2. 椭圆的长轴和短轴分别与x轴和y轴平行。

3. 椭圆有两个焦点,对称于椭圆的长轴上。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。

它在数学、物理、工程和计算机图形等领域具有广泛的应用。

本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。

一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。

它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。

- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。

- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。

2. 方程形式:圆锥曲线可以以各种形式的方程表示。

常见的方程形式包括标准方程、参数方程和极坐标方程。

二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。

椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。

2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。

3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。

4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。

5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。

三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。

抛物线对称于准线,并且具有一个顶点。

2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。

3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。

4. 极坐标方程:抛物线没有显式的极坐标方程。

5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。

《圆锥曲线》第一章基础知识篇

《圆锥曲线》第一章基础知识篇

Word-可编辑圆锥曲线目录共分成四大章: 基础知识篇, 技巧套路篇, 题型结论篇, 极点极线篇第一章基础知识篇 .4§1椭圆 .41.1 椭圆的定义(和比积) .41.2 椭圆的方程 .61.3 椭圆的基本参数 .8方程和基本参数 10第一定义 10离心率 .11参数方程 . 12构造椭圆解题 .14综合题 . 15§2双曲线 .232.1 双曲线的定义(和比积) .232.2 双曲线的方程 . 242.3 双曲线的基本参数 .25第一定义 . 26方程和基本参数 .28通径 . 30离心率 .31千里之行,始于足下渐近线 .33渐近线勾股三角形 . 34渐近线与焦点圆的交点 . 40构造双曲线解题 . 41综合题 . 432.4 等轴双曲线 . 492.5 双曲线的渐近线专题 . 53渐近线的常用性质四条 . 53渐近三角形 . 61§ 3 离心率专题 . 653.1 离心率 vs 定值 . 65直译型 . 65直接利用定义 691先补焦点再利用第一定义 .75利用平几知识 .81算两次 .93用尺子量 .96和抛物线混合 .97点差法相关 .99其他类型 .993.2 离心率 vs 范围 104朽木易折,金石可镂利焦半径的有界性 104利用椭圆双曲线坐标的有界性 107双曲线的渐近线 109米勒定理 .110其他类型 .112§4焦点三角形专题 1264.1 椭圆的焦点三角形 . 126面积公式(算多次) . 126张角最大与拓展 129焦点三角形 vs 正弦定理 133焦点三角形 vs 角平分线定理 . 135椭圆焦点三角形外接圆与内切圆的半径比 . 136 4.2 双曲线的焦点三角形 137面积公式(算多次) 137焦点三角形 vs 内切圆(包括相关平几知识补充) 140双焦点三角形 vs 内切圆 1434.3 椭圆焦点三角形的内心和旁心轨迹 1444.4 双曲线的内心轨迹 146§5圆锥曲线的光学性质 1495.1 光学性质 1495.2 焦点在圆雉曲线切线上的射影轨迹 1545.3 以圆雉曲线焦半径为直径的圆 162千里之行,始于足下5.4 光学性质的拓展二 164§6焦半径专题(第二定义) 1676.1 焦半径的代数式 . 1676.2 焦半径的极坐标式 . 1736.3 最短的焦点弦一通径? . 1736.4 焦半径和椭圆的短轴圆 .1746.5 以焦半径为直径的圆 . 1776.6 以焦点弦为直径的圆 . 1786.7 焦半径 vs 焦点弦的综合题 . 178§7 第一二定义与距离和最短 1837.1 三点共线(利用第一定义转化) 1837.2 垂线段最短(利用第二定义转化) 186§ 8 抛物线 .1888.1 抛物线的定义 .1888.2 抛物线的基本参数 .188方程的求解 .189定义的应用 . 191点、直线、抛物线模型 . 195酒杯小球 . 196罗列组合 .200综合题 .2018.3 抛物线的定长动弦 .207朽木易折,金石可镂8.4 抛物线的焦点弦模型 .2108.5 抛物线的点差法一一中点斜率公式 .2198.6 抛物线的等比性质和取负替换性质 .226斜率比值 .2298.7 抛物线的定点三角形面积公式 .2318.8 抛物线的两点式直线方程 .2348.9 抛物线的切线专题(极点极线) .2498.10 抛物线两条切线的交点一双切线模型 .2528.11 阿基米德三角形 .264第一章基础知识篇§1椭圆1.1 椭圆的定义(和比积)1. 第一定义之“和”平面内与两个定点F1、F2的距离的和等于常数2F (大于|F1F2| ) 的点的轨迹; 其中,两个定点称做椭圆的焦点, 焦点间的距离叫做焦距.椭圆方程的推导设F(F,F)是椭圆上随意一点,焦点F1(−F,0)和F2(F,0) ,由上述椭圆的定义可得: √(F+F)2+F2+√(F−F)2+F2=2F ,将这个方程移项,两边平方得: F2−FF=F√(F−F)2+F2 ,两边再平方, 收拾得: F2F2+F2F2=1(F>F>0) .注 (1) 2F>|F1F2|表示椭圆; (2) 2F=|F1F2|表示线段F1F2 ; (3) 2F<|F1F2|不存在轨迹.千里之行,始于足下2. 第二定义之 “比”平面内与一个定点的距离和到一条定直线的距离的比是常数 F (0<F <1) 的点的轨迹,其中,定点为焦 点,定直线叫做准线,常数 F 叫做离心率.椭圆方程的推导 设 F (F ,F ) 是椭圆上随意一点,定点为 F 1(−F ,0) ,定直线为 F =F 2F,常数 F =FF ,由 上述椭圆的定义可得:√(F −F )2+F 2|F 2F−F |=FF ,直译变形即可.例 在平面直角坐标系中,若方程 F (F 2+F 2+2F +1)=(F −2F +3)2 表示的曲线为椭圆,则 F 的取值范 围是 ( ) .A. (0,1)B. (1,+∞)C. (0,5)D. (5,+∞) 答案 选 D.解 将方程变形为:√F 2+(F +1)2|F −2F +3√1+4|=√5F ,此式可看成动点 (F ,F ) 到定点 (0,−1) 与到直线F −2F +3=0 的距离之比为 √5F,按照椭圆的定义,只须 √5F<1 即可.3. 第三定义之 “积”已知坐标轴上关于原点对称的两个定点,那么,到这两定点连线的斜率之积为定值 F 2−1(0<F <1) 的点 的轨迹是椭圆,其中,定点为短轴或长轴顶点. 【求轨迹的话,得去掉两个定点 ! 】椭圆方程的推导 设 F (F ,F ) 是椭圆上随意一点,两个定点为 F 1(−F ,0)、F 2(F ,0) ,定直线为 F =F 2F, 常数 F =FF ,由上述椭圆的定义可得: 将 F 2F 2+F 2F 2=1(F >F >0) ,变形成F 2(F −F )(F +F )=−F 2F 2 ,于是可得,椭 圆上动点到两顶点 (−F ,0)、(F ,0) 的连线的斜率之积等于常数.注 这个定义有 bug, 可以不必深究, 你只需要清晰地知道, 第三定义实质是对称点点差法的一个特 例而已, 后面的双曲线也是类似!朽木易折,金石可镂例 (1)已知圆 (F +2)2+F 2=36 的圆心为 F ,设 F 为圆上任一点,且点 F (2,0) ,线段 FF 的垂直平分 线交 FF 于点 F ,则动点 F 的轨迹是 ( ) .A. 圆B. 椭圆C. 双曲线D. 抛物线(2)已知圆 (F +2)2+F 2=1 的圆心为 F ,设 F 为圆上任一点,且点 F (2,0) ,线段 FF 的垂直平分线交 FF 于点 F ,则动点 F 的轨迹是 ( ) .A. 圆B. 椭圆C. 双曲线D. 抛物线 答案 (1) 选 B; (2)选 C.例 (1) 已知 △FFF 的顶点 F 、F 在椭圆 F 23+F 2=1 上,顶点 F 是椭圆的一个焦点,且椭圆的另外一 个焦点在 FF 边上,则 △FFF 的周长是 ( ) .A. 2√3B. 6C. 4√3D. 12(2)(2023年年 四川文理)如图,把椭圆 F 225+F 216=1 的长轴 FF 分成 8 分,过每个分点作 F轴的垂线交椭圆的 上半部分于 F 1、F 2、⋯、F 7 七个点, F 是椭圆的一个焦点,则 |F 1F |+|F 2F |+⋯+|F 7F |= .答案 (1) 选 C; (2)35.解 (1) 利用定义易得 △FFF 的周长是 4F =4√3 . (2) 构造另一个焦点, 利用对称性, 或倒序相加!1.2 椭圆的方程1. 椭圆的标准方程 {F 2F 2+F 2F 2=1(F >F >0)⇔中心在原点,焦点在F 轴上;F2F 2+F 2F 2=1(F >F >0)⇔中心在原点,焦点在F 轴上.千里之行,始于足下例 (1) 已知椭圆F 2F+F 217=1 的焦距为 8,则这个椭圆的方程是 (2) 已知椭圆方程 F 24+F 2F=1 的离心率 F =√33,则 F =解 (1) F >17⇒F =33;F <17⇒F =1 ; (2) 4>F ⇒F =83;4<F ⇒F =6 . 例 (2023年年 湖北理) 设集合 F ={(F ,F )| F 24+F 216=1},F ={(F ,F )∣F =3F } ,则 F ∩F 的子集的个数是 ( ) .A. 4B. 3C. 2D. 1 解 两个交点, 故选 A.例 若方程 (9−F )F 2+(F −4)F 2=1 表示椭圆,则实数 F 的取值范围是 解 4<F <9 且 F ≠132 .2. 椭圆的参数方程 {F 2F 2+F 2F 2=1(F >F >0)⇔{F =F cos FF =F sin F ;F 2F 2+F 2F 2=1(F >F >0)⇔{F =F cos F F =F sin F. 注 (1) 参数方程中的参数 F 不是所谓的 “椭圆心角”,而是物理上的离心角,可结合离心率理解; 同时, 要和圆的参数方程中的圆心角分开.(2) 椭圆的参数方程 vs 标准方程椭圆的参数方程在数据计算上偶尔会有很大的优势, 尤其是求解最值、相关参数的范围判断等相关题 型; 同时, 后面在 “直线与圆锥曲线” 和 “圆锥曲线与圆锥曲线” 章节, 还会有相关的串讲应用.例 (1)求椭圆 F 2F 2+F 2F 2=1(F >F >0) 的内接矩形的面积及周长的最大值. (2) 设点 F (F ,F ) 在椭圆 F 216+F 29=1 ,试求点 F 到直线 F +F −5=0 的距离 F 的最大值和最小值.答案 (1) F max =2FF ,F max =4√F 2+F 2 ; (2) F min =0,F max =2 .朽木易折,金石可镂3. 椭圆的普通式方程 FF 2+FF 2=1(F >0,F >0,F ≠F ) 【括号中的限制亦是 “充要条件” 1 注 (1) 焦点的位置判断 当 F <F 时,焦点在 F 轴上; 当 F >F 时,焦点在 F 轴上.(2) 使用技巧 在求椭圆的标准方程时, 偶尔不知道焦点在哪一个坐标轴上, 此时, 可尝试使用椭圆的 普通式方程,利用用待定系数法求出 F 、F 的值即可; 椭圆的普通式方程可有效的避免焦点位置的分类讨 论, 同时, 也可以简化运算.例 (1) 倘若方程 F 2+FF 2=2 表示焦点在 F 轴上的椭圆,那么实数 F 的取值范围是 (2) 已知方程 (2−F )F 2+FF 2=2F −F 2 表示焦点在 F 轴上的椭圆,则实数 F 的取值范围.答案 (1) (0,1) ; (2) 当 2F −F 2≠0 时,有 F 2F +F 22−F =1 . 因为方程表示焦点在 F 轴上的椭圆,所以 F >2−F >0 ,即 1<F <2 . 故实数 F 的取值范围是 1<F <2 .例 (1) 求过两点 (2,−√2),(−1,√142) ,中央在原点,焦点在坐标轴上的椭圆的方程. (2) 求过两点 F 1(√6,1),F 2(−√3,−√2) ,中央在原点,焦点在坐标轴上的椭圆的方程. 答案 (1) F 28+F 24=1 ; (2) F 29+F 23=1 .4. 椭圆的定义式方程(1)第一定义: √(F +F )2+F 2+√(F −F )2+F 2=2F ; (2)第二定义:√(F −F )2+F 2|F 2F−F |=FF .注 因为有些题目会给出此类定义方程作为条件, 因此, 要熟知其中的参数含义, 并能疾驰转化为标 准方程.5. 椭圆的极坐标方程 见后面 “圆雉曲线之极坐标方程” 的章节!6. 同离心率式的椭圆方程注重一点即可,即离心率相同,但焦点可以在不同的坐标轴; 因此,和椭圆 F 2F 2+F 2F 2=1(F >F >0) 有相 同离心率的椭圆方程可设为: F 2F 2+F 2F 2=F (F >0) 或 F 2F 2+F 2F 2=F (F >0) .千里之行,始于足下例 (1) 求和椭圆 9F 2+F 2=81 有相同离心率且过点 (3,9) 的椭圆方程.(2) 求和椭圆F 2225+F 2125=1 有相同离心率且通径 (过焦点且垂直于长轴的直线与椭圆所交的线段) 长等 于 5 的椭圆方程.(3) 求和椭圆 F 24+F 2=1 有相同离心率,且与直线 3F +2√7F −16=0 相切的椭圆方程. 答案 (1) F 218+F 2162=1 ; (2) 4F 281+4F 245=1 ; (3) 设所求椭圆方程为 F 24+F 2=F (F >0) ,解得F =4 ,故所 求椭圆方程为 F 216+F 24=1 .7. 共焦点式的椭圆方程和椭圆 F 2F 2+F 2F 2=1(F >F >0) 有相同焦点的椭圆方程可设为: F 2F 2−F +F 2F 2−F =1(F 2>F ) (形式(1); F 2F +F 2F −(F 2−F 2)=1(F >F 2−F 2) (形式(2)).注 上述形式相对照较繁琐, 实际上, 直接计算, 列出两个方程求解更容易. 例 (1)求与椭圆 4F 2+9F 2=36 有相同焦点,且过点 (3,−2) 的椭圆的标准方程为 (2) 过点 (√3,−√5) ,且与椭圆 F 225+F 29=1 有相同焦点的椭圆的标准方程为答案 (1) F 215+F 210=1 ; (2) F 220+F 24=1 ;法一 利用第一定义,结合点到直线的距离公式,直接求出 F =2√5 ,又 F =4 ,故 F =2 ; 法二 设椭圆的标准方程为 F 2F 2+F 2F 2=1(F >F >0) ,则 F 2−F 2=16 ,又 (−√5)2F 2+(√3)2F 2=1 ,解这两个方 程组即可!1.3 椭圆的基本参数1. 对称性 标准方程的图形,不仅关于 F 轴和 F 轴轴对称,同时,还关于原点中央对称.2. 顶点 F 1(−F ,0),F 2(F ,0),F 1(0,−F ),F 2(0,F ) ,或 F 1(−F ,0),F 2(F ,0),F 1(0,−F ),F 2(0,F ) .朽木易折,金石可镂3. 长轴和短轴 长轴为 2F ,短轴为 2F ,注重区别长半轴为 F ,短半轴为 F .4. 焦点 F 1(−F ,0),F 2(F ,0) ; 或 F 1(0,−F ),F 2(0,F ) .5. 焦距 |F 1F 2|=2F (F >0) ,同时,半焦距 F 、长半轴为 F 和短半轴为 F 是一组勾股数,满意关系式: F 2=F 2−F 2.注 对于基本概念要扎实控制, 一定要区别长轴、短轴、焦距, 和长半轴、短半轴、半焦距; 尤其在 大题中, 一定要看清!6. 离心率 F =FF (0<F <1) ; 离心率越大,椭圆越扁. 【 cos∠椭圆的离心率是描述椭圆扁平程度的一个重要数据. 因为 F >F >0 ,所以 F 的取值范围是 0<F <1 ; (1 F 越临近 1,则 F 就越临近 F ,从而 F =√F 2−F 2 越小,因此椭圆越扁; (2)反之, F 越临近于 0,F 就越临近 0,从而 F 越临近于 F ,这时椭圆就越临近于圆.注 如图,点 F 位于短轴的顶点,(1)当 F =√22 时,有 ∠F 1FF 2=F2,亦有 F 2=F 2; (2)当 F =√5−12,即黄金分割比时,有 ∠F 1FF =F2 ; 容易证实如下:cos∠FF 1F =F =|FF 1||FF 1|=F F +F =11+F⇒F 2+F −1=0. 例 (2000 年全回联赛)在椭圆 F 2F 2+F 2F 2=1(F >F >0) 中,记左焦点为 F ,右顶点为 F ,短轴上方的端点 为 F . 若该椭圆的离心率为√5−12,则 ∠FFF =千里之行,始于足下答案 90∘ . 7. (1)准线 F =±F 2F; 或 F =±F 2F; (2)焦准距 F =F 2F−F =F 2F; (3)通径 2FF =2F 2F(F 为焦准距),8. 焦半径 椭圆上的点到焦点的距离; 设 F (F 0,F 0) 为椭圆上的一点, F 1 在负半轴, F 2 在正半轴;A. 越临近于圆 B. 越扁C. 先临近于圆后越扁D. 先越扁后临近于圆 答案 选 D.解 因为焦点在 F 轴上,故 4F >F 2+1 ,解得 2−√3<F <2+√3 . 又 −F 2+14F=F 2−1 ,即 4(F 2−1)=−(F +1F ) ,利用对勾函数的性质可知: F (F )=F +1F在 (2−√3,1) 上 ↘ , 在 (1,2+√3) 上 ↗ ,因此, F 关于 F 先增大后减小.例 (2023年年 湖北文理压轴) 如图所示, “嫦娥一号” 探月卫星沿地月转移轨道飞向月球, 在月球附近一点 F 轨进入以月球球心 F 为一个焦点的椭圆轨道 I 绕月翱翔,之后卫星在 F 点第二次变轨进入仍以 F 为一个 焦点的椭圆轨道 II 绕月翱翔,总算卫星在 F 点第三次变轨进入以 F 为圆心的圆形轨道III 绕月翱翔,若用 2F 1 和 2F 2 分离表示椭轨道 I 和 II 的焦距,用 2F 1 和 2F 2 分离表示椭圆轨道 I 和 II 的长轴的长,给出下列式子: (1) F 1+F 1=F 2+F 2 ; (2) F 1−F 1=F 2−F 2 ; (3) F 1F 2>F 1F 2 ; (4) F 1F 1<F2F 2.其中准确式子的序号是 ( ) . A. (1)(3) B. (2)(3) C. (1)(4) D. (2)(4)答案 选 B.朽木易折,金石可镂解 焦点 F 到顶点 F 的距离不变,易知(2)准确; 从轨道 I 、II 、II 可知,椭圆越来越圆,总算变为圆, 结合椭圆的离心率变化逻辑 “越大越扁, 越小越圆”, 显然(3)准确, 故应选 B.参数方程例 (2023年年 上海大压轴) 记椭圆 F 24+FF 24F +1=1 围成的区域(含边界)为 F F (F =1,2,⋯) ,当点 (F ,F ) 分离 在 F 1、F 2、⋯ 上时, F +F 的最大值分离是 F 1、F 2、⋯ ,则 lim F →+∞F F =( ) .A. 0B. 14 C. 2 D. 2√2 答案 选.。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。

在高中数学课程中,学习圆锥曲线是必不可少的。

本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。

一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。

二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

3. 抛物线:抛物线的基本方程为:$y^2=2px$。

其中,p为抛物线的焦距。

三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。

双曲线还具有渐近线,即曲线趋近于两根直线。

2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。

此外,椭圆也具有主轴、短轴和焦距等重要概念。

3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。

四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。

2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。

例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。

3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。

例如自由落体运动、射击运动以及卫星的发射轨道等。

综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。

在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。

希望本文对你对圆锥曲线的学习有所帮助。

圆锥曲线知识点 总结

圆锥曲线知识点 总结

圆锥曲线知识点总结1. 圆锥曲线的定义圆锥曲线是指平面内由圆锥截面形成的曲线。

圆锥曲线包括圆、椭圆、双曲线、抛物线等类型。

它们的定义方式如下:- 圆:如果平面内的一条曲线上到定点的距离恒定,那么这条曲线就是一个圆。

- 椭圆:平面内的一条曲线上到两个定点的距离之和恒定,这条曲线就是椭圆。

- 双曲线:平面内的一条曲线上到两个定点的距离之差恒定,这条曲线就是双曲线。

- 抛物线:平面内的一条曲线上到定点的距离等于到直线的距离,这条曲线就是抛物线。

2. 圆锥曲线的基本性质圆锥曲线具有一些共同的基本性质,对于不同的类型曲线具有不同的特点:- 对称性:圆锥曲线可能具有对称轴,可以对称于直线、坐标轴、原点或其他特定点。

- 过焦点性质:圆锥曲线上的任意一点到焦点的距离与到焦距的距离之和始终是一个固定值。

- 直径性质:圆锥曲线可能有两个焦点,双曲线、椭圆和抛物线有两个焦点,而圆只有一个焦点。

- 渐近线性质:双曲线和椭圆的曲线可能有渐近线,这些渐近线与曲线的某些特定方向趋近的直线。

3. 圆锥曲线的参数方程圆锥曲线可以用参数方程来表示。

参数方程是指用参数来表示一个函数或曲线的方程。

对于椭圆、双曲线等圆锥曲线,它们的参数方程可以表示为:- 椭圆:x=a*cos(t) ,y=b*sin(t) 0≤t≤2π- 双曲线:x=a*cosh(t) , y=b*sinh(t) -∞<t<+∞4. 圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程来表示。

极坐标方程是指用极坐标来表示一个函数或曲线的方程。

对于椭圆、双曲线等圆锥曲线,它们的极坐标方程可以表示为:- 椭圆:r(t)=a(1-e^2)/(1+e*cos(t))- 双曲线:r(t)=a(1+e*cos(t))5. 圆锥曲线的焦点和直径对于圆锥曲线来说,焦点和直径是它们的重要性质。

焦点是指椭圆、双曲线、抛物线曲线上的两个固定点,直径是指通过焦点的直线。

6. 圆锥曲线的渐近线部分圆锥曲线,如双曲线和椭圆,可能存在渐近线。

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么(ABC ≠0,且A ,B ,C 同号,A ≠B )。

如(1)已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为____(答:11(3,)(,2)22---U );(2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___2)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。

方程22Ax By C +=表示双曲线的充要条件是什么(ABC ≠0,且A ,B 异号)。

如(1)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上。

如已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__(答:)23,1()1,(Y --∞)(2)双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+。

4.圆锥曲线的几何性质: (1)椭圆(以12222=+by a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c=±; ⑤离心率:c e a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。

如(1)若椭圆1522=+m y x 的离心率510=e ,则m 的值是__(答:3或325);(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:22)(2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a=,双曲线⇔1e >,等轴双曲线⇔e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a=±。

如(1)双曲线的渐近线方程是023=±y x ,则该双曲线的离心率等于______);(2)双曲线221ax by -=:a b = (答:4或14);(3)设双曲线12222=-by a x (a>0,b>0)中,离心率e ∈[2,2],则两条渐近线夹角θ的取值范围是________(答:[,]32ππ); (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线⇔1e =。

如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________(答:)161,0(a ); 5、点00(,)P x y 和椭圆12222=+by a x (0a b >>)的关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220by a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+< 6.直线与圆锥曲线的位置关系:(1)相交:0∆>⇔直线与椭圆相交; 0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件。

如(1)若直线y=kx+2与双曲线x 2-y 2=6的右支有两个不同的交点,则k 的取值范围是_______(答:(-315,-1));(2)直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_______(答:[1,5)∪(5,+∞));(3)过双曲线12122=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB ︱=4,则这样的直线有_____条(答:3);(2)相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;(3)相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离。

特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。

如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线2222by a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。

如(1)过点)4,2(作直线与抛物线x y 82=只有一个公共点,这样的直线有______(答:2);(2)过点(0,2)与双曲线116922=-y x 有且仅有一个公共点的直线的斜率的取值范围为______(答:4,33⎧⎪±±⎨⎪⎪⎩⎭);(3)过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条(答:3);(4)对于抛物线C :x y 42=,我们称满足0204x y <的点),(00y x M 在抛物线的内部,若点),(00y x M 在抛物线的内部,则直线l :)(200x x y y +=与抛物线C 的位置关系是_______(答:相离);(5)过抛物线x y 42=的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则=+qp 11_______(答:1);(6)设双曲线191622=-y x 的右焦点为F ,右准线为l ,设某直线m 交其左支、右支和右准线分别于R Q P ,,,则PFR ∠和QFR ∠的大小关系为___________(填大于、小于或等于) (答:等于);(7)求椭圆284722=+y x 上的点到直线01623=--y x 的最短距离(答:13);(8)直线1+=ax y 与双曲线1322=-y x 交于A 、B 两点。

①当a 为何值时,A 、B 分别在双曲线的两支上②当a 为何值时,以AB为直径的圆过坐标原点(答:①(;②1a =±);7、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径r ed =,其中d 表示P 到与F 所对应的准线的距离。

相关文档
最新文档