蒸汽动力装置循环

合集下载

沈维道《工程热力学》(第4版)名校考研真题-蒸汽动力装置循环(圣才出品)

沈维道《工程热力学》(第4版)名校考研真题-蒸汽动力装置循环(圣才出品)

第10章蒸汽动力装置循环一、选择题在蒸汽动力循环中,为达到提高循环热效率的目的,可采用回热技术来提高工质的()[宁波大学2008研]A.循环最高温度B.循环最低温度C.平均吸热温度D.平均放热温度【答案】C【解析】在蒸汽动力循环中,采用回热技术可以提高工质的平均吸热温度,从而达到提高循环热效率的目的。

二、判断题1.回热循环的热效率比郎肯循环高,但比功比朗肯循环低。

()[天津大学2004研] 【答案】对2.抽气回热循环由于提高了效率,所以单位质量的水蒸气做功能力增加。

()[同济大学2006研]【答案】错【解析】抽气回热循环中部分未完全膨胀的蒸汽从汽轮机中抽出,去加热低温冷却水,这样就使得相同的工质情况下,抽气回热循环做功小于普通朗肯循环,因而单位质量的水蒸气做功能力降低。

3.实际蒸汽动力装置与燃气轮装置,采用回热后平均吸热温度与热效率均提高。

()[湖南大学2007研]【答案】对【解析】对实际的蒸汽的动力装置于燃气轮机装置来说,采用回热后,平均吸热温度升高,于是热效率也得到提高。

三、简答题1.朗肯循环采用回热的基本原理是什么?[天津大学2004研]解:基本原理是提高卡诺循环的平均吸热温度来提高热效率。

2.画出朗肯循环和蒸汽压缩制冷循环的T-s图,用各点的状态参数写出:(1)朗肯循环的吸热量、放热量、汽轮机所做的功及循环热效率。

(2)制冷循环的制冷量、压缩机耗功及制冷系数。

[西安交通大学2004研]解:画出朗肯循环和蒸汽压缩制冷循环的T-s图如图10-1所示。

郎肯循环蒸汽压缩制冷循环图10-1(1)参考T-s图,可以得到:朗肯循环的吸热过程为4→1的定压加热过程,吸热量:;郎肯循环的放热过程为2→3的过程,在冷凝器中进行,放热量:;汽轮机中,做功过程为绝热膨胀过程1→2,做工量:;在水泵中被绝热压缩,接受功量为,相对于汽轮机做功来说很小,故有热效率:(2)参考上面的T-s图,可以得到:蒸汽压缩制冷循环的吸热量为:;压缩机耗功为:;制冷系数为:。

工程热力学基础——第七章蒸汽动力循环

工程热力学基础——第七章蒸汽动力循环

第四节 回热循环
一、回热循环的装置系统图和T-S 图 分析朗肯循环,导致平均吸热温度不高的原 因是水的预热过程温度较低,故设法使吸热过程 的预热热量降低,提出了回热循环。 回热是指从汽轮机的适当部位抽出尚未完全 膨胀的压力、温度相对较高的少量蒸汽,去回热 加热器中加热低温冷凝水。这部分抽汽未经凝汽 器,因而没有向冷源放热,但是加热了冷凝水, 达到了回热的目的,这种循环称为抽汽回热循环。
b
5
a
6
(4)
A
图8 再热循环的T-S图
二、再热循环工作原理
从图可以看出,再热部分实际上相当于在原来 的郎肯循环1A3561的基础上增加了一个附加的循环 ab2Aa。一般而言,采用再热循环可以提高3%左右的 热效率。
三、再热循环经济性指标的计算
1、热效率
t
w0 q1
(h1 ha ) (hb h2 )
第七章 蒸汽动力循环
本章重点
水蒸气朗肯循环、回热循环、再热循 环、热电循环的组成、热效率计算及提高 热效率的方法和途径
第一节 朗肯循环
一、水蒸汽的卡诺循环
1、水蒸汽的卡诺循环的组成,如图1 2、水蒸汽的卡诺循环在蒸汽动力装置中不被应用
原因:
T
(1)、T1不高(最高
不超 374 0 C ),T2不低
(h1
h2
)
(hb
h a
)
2、汽耗率
d 3600
3600
w0 (h1 ha ) (hb h2 )
四、再热循环分析
1、采用再热循环后,可明显提高汽轮机排 汽干度,增强了汽轮机工作的安全性; 2、正确选择再热循环,不仅可提高汽轮机 排汽干度,还可明显提高循环热效率; 3、采用再热循环后,可降低汽耗率; 4、因要增设再热管道、阀门等设备,采用 再热循环要增加电厂的投资,故我国规定 单机容量在125MW及以上的机组才采用此循 环。 [例7-2] 注意,再热后,各经济指标的变化

第十一章 蒸汽动力循环装置

第十一章 蒸汽动力循环装置

第十一章蒸汽动力循环装置水蒸气是工业上最早使用来作为动力机的工质。

在蒸汽动力装置中水时而处于液态,时而处于气态。

因而蒸汽动力装置循环不同于气体动力循环。

此外,水和水蒸气不能燃烧,只能从外界吸收热量,所以蒸汽循环必须配备锅炉,因此装置设备也不同于气体动力装置。

由于燃烧产物不参与循环,故而蒸汽动力装置可利用各种燃料,如煤、渣油,甚至可燃垃圾。

§11-1简单蒸汽动力装置循环——朗肯循环1、工质为水蒸气的卡诺循环由第二定律可知,在相同温限内卡诺循环的热效率最高,而采用气体作工质的循环中,定温过程(加热及放热)难以实现,并且气体绝热线及等温线在p-v图上斜率接近,因此有w较小。

i在采用蒸汽做工质时,由于水的汽化和凝结,当压力不变时温度也不变,因而有了定温放热和定温吸热的可能。

又因为定温即是定压,其在p-v图上与绝热线斜率相差较大,因而可提高w,所以蒸汽机原则上可采用卡诺循环,如图中5-6-7-8-5所i示。

而实际的蒸汽动力装置中不采用上冻循环,其主要原因有以下几点:1)在压缩机中绝热压缩8-5过程难以实现;2)徨仅局限于饱和区,上限温度受临界温度的限制,故即使实现卡诺循环,其热效率也不高;3)膨胀末期,湿蒸汽干度过小,含水分甚多,不利于动力机安全。

所以,实际蒸汽动力循环均以朗肯循环为其基础。

2、朗肯(Rankine)循环朗肯循环是最简单也是最基本的蒸汽动力循环,它由锅炉、汽轮机、冷凝器和水泵4个基本的、也是主要的设备组成。

右图中为该装置的示意图。

水在锅炉中被加热汽化,直至成为过热蒸汽后,进入汽轮机膨胀作功,作功后的低压蒸汽进入冷凝器被冷凝成水,凝结后的水在水泵中被压缩升压后,再回到锅炉中,完成一个循环。

为了突出主要矛盾,分析主要参数对循环的影响,与前述循环一样,首先对实际循环进行简化和理想化,略去摩阻及温差传热等不可逆因素,理想化后的循环由右图(a )所示的热力过程组成,对应的T-s 图如图(b )所示。

第九章蒸汽动力循环装置

第九章蒸汽动力循环装置

第九章 蒸汽动力循环装置工业上最早使用的动力机是用水蒸气做工质的蒸汽动力装置。

在蒸汽动力装置中水时而处于液态,时而处于气态,如在蒸汽锅炉中液态水汽化产生蒸汽,经汽轮机膨胀作功后,进入冷凝器又凝结成水再返回锅炉,而且在汽化和凝结时可维持定温,因而蒸汽动力装置循环不同于气体动力循环。

此外,水和水蒸气不能助燃,只能从外热源吸收热量,所以蒸汽循环必需配备锅炉,因此装置设备也不同于气体动力循环。

由于燃烧产物不参与循环,故而蒸汽动力装置可利用各种燃料,如煤、渣油,甚至可燃垃圾。

第一节简单蒸汽动力装置循环———朗肯循环一、 工质为水蒸气的卡诺循环热力学第二定律已证明,在相同温限内卡诺循环的热效率最高。

在采用气体作工质的循环中,因定温加热和放热难于进行,而且气体的定温线和绝热线在p-v图上的斜率相差不多,以致卡诺循环所作的功并不大,故在实际上难于采用。

在采用蒸汽作工质时,由于水的汽化和蒸汽的凝结,当压力不变时温度也不变,因而实际上也就有了定温加热和放热的可能。

更因这时定温过程亦即定压过程,在p-v图上其与绝热线之间的斜率相差亦大,故所作的功也较大。

所以,以蒸汽为工质时原则上可以采用卡诺循环,如图11-1中循环6-7-8-5-6所示。

然而在实际(b)(a)图9-1 水蒸气的朗肯循环的蒸汽动力装置中不采用卡诺循环,其主要原因是:首先,在压缩机中绝热压缩过程8-5难于实现,因状态8是水和蒸汽的混合物,压缩过程中压缩机工作不稳定,同时状态8的比体积比水的比体积大得多,需用比水泵大得多的压缩机;其次,循环局限于饱和区,上限温度受制于临界温度,故即使实现卡诺循环,其热效率也不高;再次,膨胀末期,湿蒸汽干度过小,即含水分甚多,不利于动力机安全。

实际蒸汽动力循环均以朗肯循环为其基础。

二、朗肯循环及其热效率简单蒸汽动力装置流程示意图如图9-2所示,其理想循环———朗肯循环图9-2简单蒸汽动力装置流程示意图的p-v图和T-s图见图9-1。

蒸汽动力循环

蒸汽动力循环

第十章 蒸汽动力循环蒸汽动力装置:是实现热能→机械能的动力装置之一。

工质 :水蒸汽。

用途 :电力生产、化工厂原材料、船舶、机车等动力上的应用。

本章重点:1、蒸汽动力装置的基本循环朗肯循环匀速回热循环2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径10-1 水蒸气作为工质的卡诺循环热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今不能采用卡诺循环但卡诺循环在理论上具有很大的意义。

二、为什么不能采用卡诺循环若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能按卡诺循环进行。

1-2 绝热膨胀(汽轮机) 2-C 定温放热(冷凝汽)可以实现 5-1 定温加热(锅炉)C-5 绝热压缩(压缩机) 难以实现原因:2-C 过程压缩的工质处于低干度的湿汽状态1、水与汽的混合物压缩有困难,压缩机工作不稳定,而且3点的湿蒸汽比容比水大的多'23νν>'232000νν≈需比水泵大得多的压缩机使得输出的净功大大p v减少,同时对压缩机不利。

2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理论效率也不高。

3、膨胀末期,湿蒸汽所含的水分太多不利于动机为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使T1高于临界温度,改进的结果就是下面要讨论的另一种循环—朗肯循环。

10-2 朗肯循环过程:从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵P送进省煤器D′进行预热,然后在锅炉内吸热汽化,饱和蒸汽进入S继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热过程—朗诺循环。

1-2 绝热膨胀过程,对外作功2-3 定温(定压)冷凝过程(放热过程)3-4 绝热压缩过程,消耗外界功4-1 定压吸热过程,(三个状态)4-1过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。

工程热力学-第十章-蒸汽动力装置循环.讲课教案

工程热力学-第十章-蒸汽动力装置循环.讲课教案

■汽轮机的相对内部效率 T 实际作功与理论作功之比,
T
h1 h2act h1 h2
一般为0.85~0.92。
■耗汽率(steam rate)
输出单位功量的耗汽量称为耗汽率,单位为 k g / J
工程上常用 kg/(kWh) 。
●理想耗汽率:d 0 D /P 0 1 /w T 1 /( h 1 h 2 ) ●实际耗汽率:d i D /P i 1 /w T ,a c t 1 /( h 1 h 2 a c t)
(2)吸热量不变,热效率: iw net,act/q10.3972
实际耗汽率:d i 1 /( h 1 h 2 a c t) 7 .5 9 7 1 0 7 k g /J
(3)作功能力损失
查水和水蒸汽图表,得到:
新蒸汽状态点1:s16.442kJ/(kgK ),h13426kJ/kg
乏汽状态点
胀到状态2,然后进入冷凝器,定压放热变为饱和水2
再经水泵绝热压缩变为过冷水4,也进入回热器。
在回热器中, kg的水蒸汽 0 1 和(1 )kg的过
冷水4混合,变为1kg的饱和水 0 1 。然后经水泵绝热压
缩进入锅炉,定压吸热变为过热蒸汽,开始新的循
环。
2、回热循环分析
■抽汽量
能量方程(吸热量=放热量):
说明:质量不同,因此不能直接从T-s图上判断热量的 变化。
●热效率(提高):
t wnet / q1
锅炉给水的起始加热
温度由 2 提高到 0 1 ,平均
吸热温度提高,平均放热 温度不变,热效率提高。
吸热量:
q 1 h 1 h 4 h 1 ( h 3 w p ) h 1 ( h 2 w p ) 3 2 7 1 . 2 2 k J / k g

第十章 蒸汽动力循环装置

第十章 蒸汽动力循环装置

热效率:
b
c
2
0
图10-9 再热循环的T-s图
s
四、再热压力对循环热效率大小的影响
T
1
T1
1
1
T 1'
5
T1
T 1"
4
6
T2
3 2 2'
2
s
蒸汽再热循环的实践
再热压力 pb=pa0.2~0.3p1 p1<10MPa,一般不采用再热 10、12.5、20、30万机组,p1>13.5MPa,一次再热
目录
第十章 10-1 10-2 10-3
蒸汽动力循环装置
简单蒸汽动力装置循环(朗肯循环) 再热循环 回热循环
10-4* 热电合供循环
10-5* 几种与蒸汽有关的动力循环

教学目标:掌握蒸汽动力循环及其计算方法。

知识点:蒸汽动力基本循环;朗肯循环;回热循环与再热循
环;热电循环;蒸汽—燃气联合循环。
发 电 机
T
2
q2
P
3(2’)
图10-2 简单蒸汽动力装置流程示意图
实际的蒸汽动力循环都是以 朗肯循环为基础的。
1
四个主要装置: 锅炉 汽轮机 凝汽器 给水泵
q1
锅 炉
B
T
汽 轮 机
2
发 电 机
q2
凝汽器 给水泵
4 C
P
3(2’)
图10-2 简单蒸汽动力装置流程示意图
1—2:汽轮机中绝热膨胀
2—3:冷凝器中定压冷凝 3—4:给水泵中绝热压缩
10-3
回热循环
对于一级抽汽回热循环,每千克状态
为1的新蒸汽绝热膨胀到状态01(p01,t01),

蒸汽动力循环与制冷循环

蒸汽动力循环与制冷循环

*
② 真实气体
有三种可能的情况,由定义式知
当μJ>0时,表示节流后压力下降,温度也下降
致冷
当μJ=0时,表示节流后压力下降,温度不变化
当μJ<0时,表示节流后压力下降,温度上升,
致热
不产生温度效应
*
(3) 结论
① 节流膨胀过程的主要特征是等焓过程; ② 理想气体节流时温度不变,不能用于致冷、致热; ③ 真实气体节流效应取决于气体的状态,在不同的状态下节流,具有不同的微分节流效应值。
*
③ 循环的热效率:
循环的净功
吸收的热量
解题步骤:
关键在于求出循环产生的净功
*
对于透平
1
2’
2
3
4
绝热可逆(等熵):
实际过程(绝热不可逆):
1—2,等熵过程:
*
1
2’
2
3
4
绝热可逆(等熵):
实际过程(绝热不可逆):
*
1
2’
2
3
4
对于泵:
① 对于蒸汽的质量流量:
*
1
2’
2
3
4
② 汽轮机出口乏汽的湿度:
(1)过热蒸汽在透平中为等熵膨胀过程,因此:
点2为湿蒸汽,所以:
*
查压力为10kPa,温度为45.830C饱和水蒸气表得:
sl、h1
sg、hg
*
x2=0.80467
同理:
透平等熵膨胀作出的可逆轴功为:
*
已知:h3 = hl = 191.83kJ·kg-1
所以,冷凝过程的传热量为:
*
水泵所消耗的可逆轴功:
*
3. 热电循环

蒸汽动力循环的四个主要过程

蒸汽动力循环的四个主要过程

蒸汽动力循环的四个主要过程
蒸汽动力循环的四个主要过程是:
1. 压缩:在蒸汽动力循环中,蒸汽从锅炉中产生并进入蒸汽轮机。

在进入蒸汽轮机之前,蒸汽需要被压缩以增加其热能密度。

压缩过程通常通过蒸汽压缩机完成,其中蒸汽被压缩到较高的压力。

2. 膨胀:压缩后的蒸汽进入蒸汽轮机进行膨胀。

在膨胀过程中,蒸汽的热能被转化为机械能,驱动蒸汽轮机旋转并做功。

通过连接到轮轴上的发电机,膨胀过程中产生的机械能可以转化为电能。

3. 冷凝:在膨胀过程结束后,蒸汽处于低压状态。

为了进一步提高热效率,蒸汽需要在冷凝器中冷凝成水,释放出余热。

在冷凝过程中,蒸汽失去热能并变成液态。

这些液态水可以被重新加热并再次进入蒸汽轮机,形成循环。

4. 加热:冷凝后的水被泵送到锅炉中,在那里它被加热至高温。

在锅炉中,水接触到燃烧的燃料,经过吸热反应转化为蒸汽。

加热过程使蒸汽再次进入压缩过程,形成循环。

蒸汽动力循环装置提高效率的方法

蒸汽动力循环装置提高效率的方法

蒸汽动力循环装置提高效率的方法1. 使用多级蒸汽动力循环装置:通过增加多个蒸汽轮机和各个级别的回热器,可以充分利用热能,提高装置的效率。

每个级别都利用已经冷却的蒸汽,使其再次加热,并选择不同的压力点以充分利用能量。

2. 使用高效的燃烧系统:采用高效的燃烧系统,如流体化床燃烧器或气化燃烧器,可以更充分地燃烧燃料,并减少烟气中的污染物生成。

这不仅可以提高燃料利用效率,还可以减少对环境的负面影响。

3. 优化锅炉和回热器设计:通过优化锅炉和回热器的设计,增加燃料燃烧的热能传递,从而提高装置的热效率。

增加燃料燃烧的燃烧时间和温度,减少烟气温度和烟气中的热量损失。

4. 使用高效的蒸汽涡轮机:选择高效的蒸汽涡轮机,可以减少能量损失,提高装置的效率。

采用多级蒸汽涡轮机和温度叶片等先进技术,可以更好地利用蒸汽的能量。

5. 采用热能储存系统:通过采用热能储存系统,可以在低耗电负荷时存储部分热能,然后在高耗电负荷时释放。

这种方式可以平衡装置的能量供应,提高效率。

6. 优化循环过程:通过优化蒸汽动力循环装置的操作参数,如水蒸气的压力和温度,可以提高装置的性能。

选择合适的循环压力,以在蒸汽生成和排气过程中最大限度地提高效率。

7. 进行余热回收:通过在涡轮蒸汽排气过程中回收余热,可以充分利用热能,减少能量损失。

采用热交换器将排气蒸汽中的热量传递给进料水,从而提高装置的热效率。

8. 使用高效的冷凝器:选择高效的冷凝器,可以将涡轮蒸汽排气中的热量更充分地释放出来,并转化为有用的能源。

通过减少蒸汽在冷凝器中的压力损失,可以提高装置的效率。

9. 优化冷却水系统:通过优化蒸汽动力循环装置的冷却水系统,可以提高冷凝的效率。

使用高效的冷却塔或换热器,以便更好地冷却循环水,并减少冷却水的消耗。

10. 定期维护和清洁:定期进行设备维护和清洁,以确保蒸汽动力循环装置的正常运行。

清洁涡轮叶片和燃烧器,消除积碳和污垢,可以提高设备的性能和效率。

定期检查和更换老化的设备部件,也可以减少能量损失和系统故障。

华北电力大学课件,工程热力学 第11章、蒸汽动力装置循环_1515

华北电力大学课件,工程热力学   第11章、蒸汽动力装置循环_1515
实际 w p 实 水 际 h 3 a h 泵 2 w p p 功 1 0 ..8 0 4 5 7 1 : .5 6 k5 /k Jg
理 想 情 况 下 汽 轮 机 功 : w T h 1 h 2 3 4 3 2 . 1 1 9 9 0 . 3 1 4 4 1 . 8 k J / k g
w p h 3 h 2 v 2 p 1 p 2
v2 0.0010m3 0/k5g2
w p1.0 4k7/Jkg
p114 16 0Pa p250P 00 a
2019/5/3
理 想 情 况 下 水 泵 功 : w p h 3 h 2 v 2 p 1 p 2 1 4 . 0 7 k J / k g
2019/5/3
2
§11-1 简单蒸汽动力装置循环 —朗肯循环(Rankine cycle)
一.简介
32019/5/3
朗肯 W.J.M. Rankine,1820~1872年, 英国科学家。
1820年6月5日出生于苏格兰的爱丁 堡。1855年被委任为格拉斯哥大学机 械工程教授。 1858年出版《应用力学 手册》一书,是工程师和建筑师必备的 指南。1859年出版《蒸汽机和其它动 力机手册》,是第一本系统阐述蒸汽机 理论的经典著作。朗肯计算出一个热力 学循环(后称为朗肯循环)的热效率,被 作为是蒸汽动力发电厂性能的对比标准。 1872年12月24日于格拉斯哥逝世。
2019/5/3
(1) 循环效率
汽轮机的相对内效率: ri实 理际 论功 功 hh11hh22a
水泵的效率:
p实 理际 论 泵 泵 hh33a 功 功 hh2 2
实际效率:
i h1h1h2h2rih3ah3h2ph2

沈维道《工程热力学》(第4版)章节题库-蒸汽动力装置循环(圣才出品)

沈维道《工程热力学》(第4版)章节题库-蒸汽动力装置循环(圣才出品)

过程绝热
十万种考研考证电子书、题库视频学习平台
,所以
锅炉内熵产和作功能力损失
冷凝器内熵产和作轮机的新蒸汽温度 400 ℃、压力 3 MPa,抽汽压 力 0.8 MPa,冷凝器工作压力为 10 kPa,回热器排出 0.8 MPa 的饱和水,忽略水泵功,求 循环热效率(图 10-4)。
图 10-2 解:状态 1: 由 30 MPa、500℃,查水蒸气表,得
状态 2: 由 10 kPa,查饱和水蒸气表,得

,所以状态 2 为饱和湿蒸汽状态
状态 3:
5 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

状态 4:
汽轮机输出功 水泵耗功 从锅炉吸热量 冷凝器中放热量 循环热效率
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 10 章 蒸汽动力装置循环
一、选择题 1.工程上尚无进行卡诺循环的蒸汽动力装置的原因是( )。 A.卡诺循环的工质只能是理想气体 B.循环放热量太大,吸热量太小 C.湿饱和蒸汽区温限太小且压缩两相介质困难 D.不能实现等温吸热和等温放热 【答案】C 【解析】卡诺循环是由两个绝热过程和两个等温过程组成的理想可逆过程,并没有对工 质的性质提出任何限制,在湿饱和蒸汽区内进行蒸汽循环,保持吸热和放热过程等压即可以 等温吸热和等温放热。把凝汽器内压力维持在较低的水平,可以把放热量降低到合理的水平。 但是,水蒸气动力循环要实现卡诺循环,必须在湿饱和蒸汽区内进行循环,使得吸热温度不 能大于临界温度,放热必定高于环境温度,两者的温差太小,导致热效率太低,同时压缩过 程的起点是这两相区,而目前压缩两相介质在技术上尚有困难。
6 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

工程热力学(第7章--蒸汽动力循环)

工程热力学(第7章--蒸汽动力循环)

1
T2 T1
从理论上确定了通过热机循环 实现热能转变为机械能的条件 及给定温度范围内循环热效率 的最高极限值,并指出了提高 热机效率的方向和途径,为度 量实际热机循环的热力学完善
s 程度提供了标准。
对于任意复杂循环,可利用相 应的等效卡诺循环(即平均温 度法)来分析其热经济性。
3
任意循环ηt 的分析方法——平均温度法
1
p1
h
1 t1
T1
p2
4
T2 3
2
2 x=1
s
0
s
t
h1 h2 h1 h2
f
( p1,t1,
p2 )
1 T2 T1
t1
p1
p2
12
一、蒸汽初温对热效率的 影响:
设 初 压 p1=const, 排 汽 压力p2=const.
提高t1对ηt的影响:
(1)提高初温使平均加热温度升高,而放热温度不变, 则朗肯循环的热效率得到提高; (2)排汽干度增加,即x2′>x2,这有利于改善汽轮机叶 片的工作条件。
受到的限制:排汽压力的降低主要受汽轮机排汽干度下降及环 境温度的限制。目前火电厂的排汽压力最低在0.004MPa左右
15
新课引入
p1
t
x2
为解决二者间的矛盾,可对循环方式 加以改进:采用再热循环。
7-3 再热循环
➢采用再热的目的:提高汽轮机排汽干度,为
初压的提高创造条件;同时提高循环热效率。
➢再热的概念:当蒸汽在汽轮机中膨胀作功而
0
则朗肯循环的热效率可近似地表示为: h
t
w12 q1
h1 h2 h1 h3
h1 h2 h1 h2'

第12章蒸汽动力循环

第12章蒸汽动力循环

第12章蒸汽动⼒循环第⼗⼆章蒸汽动⼒循环Chapter 12Vapor Power Cycles通过这⼀章的学习要解决的问题:1.为什么在实际蒸汽动⼒循环中不采⽤卡诺循环?2.什么是朗肯循环?3.怎样计算朗肯循环的热效率?4.蒸汽参数如何影响朗肯循环的热效率?5.有摩阻的实际循环;6.再热循环、回热循环四个主要装置:锅炉Boiler (B )汽轮机Turbine (T )凝汽器Condensor (C )⽔泵Pump (P )蒸汽动⼒装置基本循环系统锅炉汽轮机发电机⽔泵凝汽器为什么在实际蒸汽动⼒装置中不采⽤卡诺循环?以⽔蒸汽为⼯质原则上可以采⽤卡诺循环,12-1简单蒸汽动⼒循环-朗肯循环(Rankine cycle)TOs 1243①湿蒸汽的压缩难以实现;②温差⼩,循环热效率不⾼;③膨胀末端x 太⼩,不利于动⼒机的安全。

朗肯循环的基本过程1-2:过热蒸汽等熵膨胀2-3:乏汽定压放热3-4:冷凝⽔等熵压缩4-1:给⽔定压加热1342pv朗肯循环的p-v 图构成朗肯循环的四个过程:1-2 汽轮机中定熵膨胀过程;2-3 冷凝器中定压放热凝结过程;3-4 ⽔泵中的定熵压缩过程;4-1 锅炉中的定压吸热汽化过程。

4321Ts hs1324朗肯循环的T-s 和h-s 图朗肯循环各过程的能量计算1222343114T p w h h q h h w h h q h h =-=-=-=-4321Tsnett 1w q η=热效率热效率34h h ≈net 12431411()()p T t w w w h h h h q q h h η----===-12141213t t h h h h h h h h ηη--==-- 或忽略⽔泵功12'h h -s蒸⽓初参数p 1,t 1,乏⽓压⼒p 24321影响热效率的参数T12-2 蒸汽参数对朗肯循环热效率的影响如果确定了新汽的温度(初温T1 )、压⼒(初压p 1)以及乏汽的压⼒(终压p2),那么整个朗肯循环也就确定了蒸汽参数对朗肯循环热效率的影响,也就是指初温、初压和终压对朗肯循环热效率的影响蒸汽参数对朗肯循环热效率的影响sT43211'2'1.蒸汽初温对朗肯循环热效率的影响有利于汽轮机安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
⑵ 朗肯循环的热效率
朗肯循环吸热和放热过程是定压的
T 5 1
P1
t1
循环的吸热量 q1 q 4561 h1 h4
循环的放热量
q 2 q 23 h2 h3
4 3
6
2 s
h4 ) (h2 h3 ) (h1 h2 ) (h4 h3 ) q1 (h1 h4 ) (h1 h4 )
§8.1 蒸汽动力装置的基本循环
⑴ 朗肯循环
蒸汽动力装置由以下基本设备: 锅炉 锅炉 、汽轮机、 联接构成 凝汽器、 给水泵 按图中所示标号 蒸汽动力装置中水蒸气经历的基本 循环过程可理想化为:
6 5 3 冷却水 1 2 汽轮机 凝汽器
给水泵 蒸汽动力装置
4
4-5-6-1——给水在锅炉中定压加热形成为过热蒸汽; 1-2——过热蒸汽(新蒸汽)在汽轮机中绝热膨胀作功; 2-3——乏汽在凝汽器中定压凝结,成为凝结水; 3-4——凝结水由给水泵绝热压缩成给水,返回到锅炉中
P1 t1
不计给水泵消耗的技术功时,朗肯循环热 效率t,R受P1、P2、t1控制 ① P2、t1不变,将初压P1提高
P1'
6 6
平均吸热温度 T1 明显提高 t,R会有较显著的提高 对机器的强度要求提高
乏汽干度x2会降低 乏汽干度x2不得小于0.86
2019/1/13
s 提高初压力的影响
8
② P1、P2不变,将初温 t1提高 提高初温的结果相当于在原循环 1234561基础上附加循环11221 平均吸热温度 T1 明显提高
T1
P2'
P1
略有下降; T2 下降明显 对t,R总是有利
T 5
4 4' 3 3' 6
1
t1
P2 目前实际采用至 3.5 ~ 5kPa ,水的对 应饱和温度为27~ 33℃ 限于循环水的温度(环境温度),已基 本达到极限低值 冬天循环水温较低,循环热效率较高
2 2' s
降低终压力的影响
2019/1/13
汽轮机输出的 技术功 给水泵消耗的 技术功
2019/1/13
6
P1
水泵消耗的技术功远小于汽轮 机作出的技术功 一般占其0.8~1% wt,B=h4−h3≈0 通常不计给水泵消耗的技术功 h4=h3=h'2
T 5 6
1
t1
4 3
2 s
t,R
h1 h2 h1
' h2
t,R
汽轮机输出的 技术功
(P 1 , t s )
定压放热 凝汽器
过热器
过热汽1
(P1, t1)
绝热膨胀 汽轮机
4
给水4
2019/1/13
凝结水3
(P2, h’2)
乏汽2
(P2, h2)
朗肯循环的P-v图和h-s图
P-v图
P 4 s P 5 6 1 s 5 3 P 4 s 3 6 P 2 P h 1 s
h-s 图
2

s
2019/1/13
T
5 6
1
t1
4 3
2
s
朗肯循环
( 4-5-6-1——给水在锅炉中定压加热成新蒸汽)
2019/1/13
3
P1
T
5 6
1
t1
4 3
2
蒸汽动力装置朗肯循环的路径:
给水4
(P1, h’2)
定压加热 省煤器 (重新循环) 定压加热
朗肯循环
定压加热
s
(新蒸汽)
饱和水5
(P1, ts)
绝热压缩 给水泵
水冷壁
饱和汽6
P0 D(h1 h2s ) D 1 3600 kg/kJ kg/kW h 理想汽耗率 d 0 P0 h1 h2s h1 h2s
2019/1/13 11
相对于汽轮机实际输出功率P 的汽耗率为实际汽耗率 实际汽耗率
D 3600 d kg/kW h P h1 h2
(h1 h2 ) (h4 h3 ) (h1 h4 )
给水泵消耗的 技术功
2019/1/13
7
⑶ 影响朗肯循环热效率的因素
根据状态参数关系 h1= f (P1,t1) h2= f (P2) h'2= f (P2)
t,R
h1 h2
' h1 h2
P1 T 5 5 4 3 2 2 1 1
⑸ 实际蒸汽动力装置的热效率
从整体上讲,实际蒸汽动力装置尚需考虑:
锅炉的热损失——锅炉效率B 管道的热损失——管道效率tu
实际蒸汽动力装置的热效率
装置输出的功 实际蒸汽动力装置的热 效率 燃料的发热量 t=t,RBtuT
2019/1/13 12
例8-1(习题11-1) 一简单蒸汽动力装置循环 (即朗肯循环),蒸汽的初压P1 = 3 MPa,终 压P2 = 6 kPa,初温分别为300℃和500 ℃ 。 试求不同初温时循环的热效率t、耗汽率d 及蒸汽的终干度 x2 ,并将所求得的各值填 入下表内,以比较所求得的结果。
t1'
T 5 6
P1 1 1 t1 t1
t,R会有较显著的提高
乏汽干度x2会提高 金属耐热要求提高 对机器的强度要求提高 汽机出口尺寸增大 目前可应用的t1约为550℃ 同时提高P1、 t1是方向
2019/1/13
4 3
2
2
s 提高初温的影响
9
③ P1、t1不变,将终压P2降低 wt,T增大
10
⑷ 汽轮机的相对内效率和汽耗率
实际的汽轮机内部过程是不可逆的 ①汽轮机的相对内效率(定熵效率) h1 h2 T h1 h2s ②汽耗率(d)
装置输出每单位功量所消耗的蒸汽量 单位kg/J,kg/kJ,也使用kg/(kWh)
1 T
P1 t1
4 3
2s 2
s 实际的基本循环
不计给水泵耗功时,若 理想 汽轮机的输出功率为 P0 kW , 耗汽量为D kg/s,两者有以下关系:
2019/1/13 1
P1
理想化的蒸汽动力装置基本循环是朗肯 T 循环 1(P1,t1)——进入汽轮机时的新蒸汽 (过热汽)状态; 1-2——蒸汽在汽轮机中 绝热 膨胀 4 3 (定熵)的作功过程; 2(P2)—— 从 汽 轮 机 排 出 时 的 乏 汽 (湿蒸汽)状态; 2-3——乏汽在凝汽器中定压(定温)凝结放热过程; 3——凝结水(饱和水)状态(P2) ;
1
t1
2
s
3-4——凝结水在给水泵中绝热压缩(定熵)成为锅炉给水;
由于水几乎不可压缩,垂直线段3-4几乎重合成为一点
2019/1/13 2
P1
4——给水(未饱和水)状态(P1) ; 4-5——给水在锅炉 省煤器 中定压加热 成饱和水 (P1' ts) ; 5-6——水在锅炉水冷壁中定压加热成为饱 和汽 (P1' ts); 6-1——饱和汽在过热器中定压加热成为新 蒸汽 (P1' t1)。
相关文档
最新文档