工程热力学---第10章蒸汽动力装置循环

合集下载

沈维道《工程热力学》(第4版)名校考研真题-蒸汽动力装置循环(圣才出品)

沈维道《工程热力学》(第4版)名校考研真题-蒸汽动力装置循环(圣才出品)

第10章蒸汽动力装置循环一、选择题在蒸汽动力循环中,为达到提高循环热效率的目的,可采用回热技术来提高工质的()[宁波大学2008研]A.循环最高温度B.循环最低温度C.平均吸热温度D.平均放热温度【答案】C【解析】在蒸汽动力循环中,采用回热技术可以提高工质的平均吸热温度,从而达到提高循环热效率的目的。

二、判断题1.回热循环的热效率比郎肯循环高,但比功比朗肯循环低。

()[天津大学2004研] 【答案】对2.抽气回热循环由于提高了效率,所以单位质量的水蒸气做功能力增加。

()[同济大学2006研]【答案】错【解析】抽气回热循环中部分未完全膨胀的蒸汽从汽轮机中抽出,去加热低温冷却水,这样就使得相同的工质情况下,抽气回热循环做功小于普通朗肯循环,因而单位质量的水蒸气做功能力降低。

3.实际蒸汽动力装置与燃气轮装置,采用回热后平均吸热温度与热效率均提高。

()[湖南大学2007研]【答案】对【解析】对实际的蒸汽的动力装置于燃气轮机装置来说,采用回热后,平均吸热温度升高,于是热效率也得到提高。

三、简答题1.朗肯循环采用回热的基本原理是什么?[天津大学2004研]解:基本原理是提高卡诺循环的平均吸热温度来提高热效率。

2.画出朗肯循环和蒸汽压缩制冷循环的T-s图,用各点的状态参数写出:(1)朗肯循环的吸热量、放热量、汽轮机所做的功及循环热效率。

(2)制冷循环的制冷量、压缩机耗功及制冷系数。

[西安交通大学2004研]解:画出朗肯循环和蒸汽压缩制冷循环的T-s图如图10-1所示。

郎肯循环蒸汽压缩制冷循环图10-1(1)参考T-s图,可以得到:朗肯循环的吸热过程为4→1的定压加热过程,吸热量:;郎肯循环的放热过程为2→3的过程,在冷凝器中进行,放热量:;汽轮机中,做功过程为绝热膨胀过程1→2,做工量:;在水泵中被绝热压缩,接受功量为,相对于汽轮机做功来说很小,故有热效率:(2)参考上面的T-s图,可以得到:蒸汽压缩制冷循环的吸热量为:;压缩机耗功为:;制冷系数为:。

工程热力学-第十章-蒸汽动力装置循环.讲课教案

工程热力学-第十章-蒸汽动力装置循环.讲课教案

■汽轮机的相对内部效率 T 实际作功与理论作功之比,
T
h1 h2act h1 h2
一般为0.85~0.92。
■耗汽率(steam rate)
输出单位功量的耗汽量称为耗汽率,单位为 k g / J
工程上常用 kg/(kWh) 。
●理想耗汽率:d 0 D /P 0 1 /w T 1 /( h 1 h 2 ) ●实际耗汽率:d i D /P i 1 /w T ,a c t 1 /( h 1 h 2 a c t)
(2)吸热量不变,热效率: iw net,act/q10.3972
实际耗汽率:d i 1 /( h 1 h 2 a c t) 7 .5 9 7 1 0 7 k g /J
(3)作功能力损失
查水和水蒸汽图表,得到:
新蒸汽状态点1:s16.442kJ/(kgK ),h13426kJ/kg
乏汽状态点
胀到状态2,然后进入冷凝器,定压放热变为饱和水2
再经水泵绝热压缩变为过冷水4,也进入回热器。
在回热器中, kg的水蒸汽 0 1 和(1 )kg的过
冷水4混合,变为1kg的饱和水 0 1 。然后经水泵绝热压
缩进入锅炉,定压吸热变为过热蒸汽,开始新的循
环。
2、回热循环分析
■抽汽量
能量方程(吸热量=放热量):
说明:质量不同,因此不能直接从T-s图上判断热量的 变化。
●热效率(提高):
t wnet / q1
锅炉给水的起始加热
温度由 2 提高到 0 1 ,平均
吸热温度提高,平均放热 温度不变,热效率提高。
吸热量:
q 1 h 1 h 4 h 1 ( h 3 w p ) h 1 ( h 2 w p ) 3 2 7 1 . 2 2 k J / k g

10工程热力学第十章 水蒸气及蒸汽动力循环

10工程热力学第十章 水蒸气及蒸汽动力循环

10-3 水蒸气的热力过程 目的—确定过程的能量转换关系 分析水蒸气热力过程的目的 确定过程的能量转换关系, 分析水蒸气热力过程的目的 确定过程的能量转换关系, 包括w 以及 以及u和 等 因此,需确定状态参数的变化. 包括 ,q以及 和Δh等.因此,需确定状态参数的变化. 确定过程的能量转换关系的依据为热力学第一,二定律: 确定过程的能量转换关系的依据为热力学第一,二定律:
图和T-s图 三,水蒸气的p-v图和 图 水蒸气的 图和
分析水蒸气的相变图线可见,上,下界线表明了水汽化的始末界线, 分析水蒸气的相变图线可见, 下界线表明了水汽化的始末界线, 二者统称饱和曲线, 图分为三个区域,即液态区( 二者统称饱和曲线,它把p-v和T-s图分为三个区域,即液态区(下 界线左侧) 湿蒸汽区(饱和曲线内) 汽态区(上界线右侧) 此外, 界线左侧),湿蒸汽区(饱和曲线内),汽态区(上界线右侧).此外, 习惯上常把压力高于临界点的临界温度线作为"永久" 习惯上常把压力高于临界点的临界温度线作为"永久"气体与液体 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点) 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点), 二线(上界线,下界线) 三区(液态区,湿蒸汽区,气态区) 二线(上界线,下界线),三区(液态区,湿蒸汽区,气态区)和五态 未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, (未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, 过热蒸汽状态) 过热蒸汽状态)
q = h h ′′
显然, 的水加热变为过热水蒸气所需的热量, 显然,将0.01℃的水加热变为过热水蒸气所需的热量,等于液 的水加热变为过热水蒸气所需的热量 体热,汽化潜热与过热热量三者之和. 体热,汽化潜热与过热热量三者之和.而且整个水蒸气定压发生过 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算 用水和水蒸气的焓值变化来计算. 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算.

北京科技大学研究生考试初试-871工程热力学大纲

北京科技大学研究生考试初试-871工程热力学大纲

考试科目名称:871工程热力学《工程热力学》考试大纲工程热力学课程是热能与动力工程、建筑环境与设备专业的一门重要技术基础课,它的教学目的与任务是:让学生学习关于能量守恒与转换的理论基础,使学生牢固地掌握工程热力学的基本理论、基本知识和相应的热工分析、计算能力,并进一步得到基本技能的训练。

为学习专业课提供充分的理论准备,也为学生以后解决生产实际问题和参加科学研究打下必要的理论基础。

其考试大纲内容如下:一、第一章基本概念要求熟练掌握:系统,平衡状态和状态参数,温度温标,压力,状态方程,准静态过程和可逆过程,循环,功和热量;透彻理解以下的基本概念:热力系统,热力学状态、平衡状态、准静态过程、可逆过程和不可逆过程、功与热量。

二、第二章热力学第一定律要求熟练掌握热力学第一定律基本表达式——基本能量方程,总能,热力学能,焓,膨胀功,技术功,热力学第一定律的第一解析式和稳定流动能量方程式及其应用,循环功之间及循环净功与循环净热量之间关系,循环热效率概念与计算公式;透彻理解以下概念:热力学第一定律的实质—能量守衡与转换定律在热现象中的应用,能量方程的内在联系与共性,热变功的实质。

会进行功和热量的计算,以及功和热量在p-v图和T-s图上的表示。

三、第三章气体和蒸汽的性质要求熟练掌握理想气体和实际气体的概念、理想气体状态方程、理想气体的比热容和热力学能、焓、熵的定义、计算;水蒸气的性质:水蒸气的饱和状态、饱和温度、饱和压力、饱和湿蒸汽、干度、三相点,水蒸气状态的确定。

四、第四章气体和蒸汽的基本热力过程要求熟练掌握理想气体的基本热力过程:定温、定压、定容、定熵和多变过程的过程方程、参数变化和过程中功及热量的计算及其p-v图和T-s图。

水的定压加热汽化过程及其在p-v图和T-s上的表示;会计算水蒸气定压过程的热量,水蒸气绝热过程的功。

五、第五章热力学第二定律熟练掌握热过程的方向性、热力学第二定律的表述;卡诺循环和卡诺定理、克劳修斯积分不等式、熵流和熵产、熵方程、孤立系统的熵增原理;作功能力、作功能力损失与熵产和火用平衡方程。

工程热力学与传热学复习资料总体(主要是一些概念)

工程热力学与传热学复习资料总体(主要是一些概念)

工程热力学第一章工质——实现热能和机械能相互转化的媒介物质。

热力学系统——简称系统、体系,人为分割出来作为热力学分析对象的有限物质系统。

闭口系统——与外界只有能量交换而无物质交换的热力系统,闭口系统又叫做控制质量。

开口系统——与外界不仅有能量交换而且有物质交换的热力系统,开口系又叫做控制容积,或控制体。

区分闭口系和开口系的关键是有没有质量越过了边界,并不是系统的质量是不是发生了变化。

绝热系统——与外界无热量交换的热力系统。

绝热系是从系统与外界的热交换的角度考察系统,不论系统是开口系还是闭口系,只要没有热量越过边界,就是绝热系。

简单可压缩系——由可压缩流体构成,与外界可逆功交换只有体积变化功(膨胀功)一种形式,没有化学反应的有限物质系统。

对于简单可压缩系,只要有两个独立的状态参数即可确定一个平衡状态,所有其它状态参数均可表示为这两个独立状态参数的函数。

准平衡过程——又称准静态过程,不致显著偏离平衡状态,并迅速恢复平衡的过程。

准平衡过程进行的条件是破坏平衡的势无穷小,过程进行足够缓慢,工质本身具有恢复平衡的能力。

准平衡过程在坐标图中可用连续曲线表示。

可逆过程——工质能沿相同的路径逆行而回复到原来状态,并使相互作用中所涉及到的外界回复到原来状态,而不留下任何改变的过程。

过程不可逆的成因一是有限势差的作用,二是物系本身的耗散作用,所以可逆过程,首先应是准平衡过程,同时在过程中没有任何耗散效应。

实际热力设备中所进行的一切热力过程都是不可逆的,可逆过程是不引起任何热力学损失的理想过程。

可逆过程可用状态参数图上连续实线表示。

膨胀功——又称“体积功”。

机械功的一种。

由系统体积变化而由系统对环境所做的功或环境对系统所做的功。

第二章热力学能——原称内能,由分子或其他微观粒子的热运动及相互作用力形成的内动能、内位能及维持一定分子结构的化学能和原子核内部的原子能以及电磁场作用下的电磁能等一起构成的内部储存能。

工程热力学思考题答案

工程热力学思考题答案

第十章蒸汽动力装置循环1、干饱和蒸汽朗肯循环(图10-1 中循环6-7-3-4-5-6)与同样初压力下的过热蒸汽朗肯循环(图10-1 中循环1-2-3-4-5-6-1)相比较,前者更接近卡诺循环,但热效率却比后者低,如何解释此结果?答:循环6-7-3-4-5-6局限于饱和区,吸热温度受到水的临界温度的制约,其平均吸热温度较低,故其热效率较循环1-2-3-4-5-6-1低。

2、本世纪二三十年代,金属材料的耐热性仅达400℃,为使蒸汽初压提高,用再热循环很有必要。

其后,耐热合金材料有进展,加之其他一些原因,在很长一段时期内不再设计制造按再热循环工作的设备。

但近年来随着初压提高再热循环再次受到注意。

请分析其原因。

答:朗肯循环中提高新蒸汽压力和温度都可以提高循环的热效率,在本世纪二三十年代,材料的耐热性较差,通过提高蒸汽的温度而提高热机的效率比较困难,因此采用再热循环来提高蒸汽初压。

随着耐热材料的研究通过提高蒸汽的温度而提高热机的效率就可以满足工业要求。

因此很长一段时期不再设计制造再热循环工作设备。

近年来使用的蒸汽初压大大提高,由于初压的提高使得乏气干度迅速降低,引起气轮机内部效率降低,另外还会侵蚀汽轮机叶片缩短汽轮机寿命,所以乏气干度不宜太低,必须提高乏气干度,就要使用再热循环。

3、图10-13 所示回热系统中采用的是混合式回热器,靠蒸气与水的混合达到换热的目的。

另有一种表面式换热器,如图10-26 所示,蒸汽在管外冷凝,将凝结热量传给管内的水,这种布置可减少系统中高压水泵的数量。

试分析这种系统在热力学分析上与混合式系统有否不同?图10-26答:回热循环的计算最重要的是计算抽气量:对于混合式回热加热器:其热平衡方程为:()()()1'1'100041h h h h -=--αα 可得:404011'h h h h --=α对于表面式换热器:热平衡方程为:假设在理想换热情况下,没有热损失。

沈维道《工程热力学》(第4版)章节题库-蒸汽动力装置循环(圣才出品)

沈维道《工程热力学》(第4版)章节题库-蒸汽动力装置循环(圣才出品)

过程绝热
十万种考研考证电子书、题库视频学习平台
,所以
锅炉内熵产和作功能力损失
冷凝器内熵产和作轮机的新蒸汽温度 400 ℃、压力 3 MPa,抽汽压 力 0.8 MPa,冷凝器工作压力为 10 kPa,回热器排出 0.8 MPa 的饱和水,忽略水泵功,求 循环热效率(图 10-4)。
图 10-2 解:状态 1: 由 30 MPa、500℃,查水蒸气表,得
状态 2: 由 10 kPa,查饱和水蒸气表,得

,所以状态 2 为饱和湿蒸汽状态
状态 3:
5 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

状态 4:
汽轮机输出功 水泵耗功 从锅炉吸热量 冷凝器中放热量 循环热效率
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 10 章 蒸汽动力装置循环
一、选择题 1.工程上尚无进行卡诺循环的蒸汽动力装置的原因是( )。 A.卡诺循环的工质只能是理想气体 B.循环放热量太大,吸热量太小 C.湿饱和蒸汽区温限太小且压缩两相介质困难 D.不能实现等温吸热和等温放热 【答案】C 【解析】卡诺循环是由两个绝热过程和两个等温过程组成的理想可逆过程,并没有对工 质的性质提出任何限制,在湿饱和蒸汽区内进行蒸汽循环,保持吸热和放热过程等压即可以 等温吸热和等温放热。把凝汽器内压力维持在较低的水平,可以把放热量降低到合理的水平。 但是,水蒸气动力循环要实现卡诺循环,必须在湿饱和蒸汽区内进行循环,使得吸热温度不 能大于临界温度,放热必定高于环境温度,两者的温差太小,导致热效率太低,同时压缩过 程的起点是这两相区,而目前压缩两相介质在技术上尚有困难。
6 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

工程热力学与传热学 第十章 气体动力循环

工程热力学与传热学 第十章 气体动力循环

在斯特林循环中,在定容吸热过程2-3中工质从回热器中吸收的
热量正好等于定容放热过程4-1放给回热器的热量。经过一个循环
回热器恢复到初始状态。 可以证明:在相同的温度范围内,理想的定容回热循环(斯特 林循环)和卡诺循环,具有相同的热效率。
斯特林循环的突出优点是热效率高、污染少,对加热方式的适
应性强。随着科技的发展以及环境保护日益为人们所重视,斯特林
同样可以证明:在相同的温度范围内,理想的定压回热循环( 艾利克松循环)和卡诺循环,具有相同的热效率。 理想回热循环(斯特林循环和艾利克松循环)通常称为概括性 卡诺循环。实践证明,采用回热措施可以提高循环热效率,也是余 热回收的一种重要节能途径。
本章小结
1。气体动力循环的基本概念 1)内燃机的特性参数:
P 3 2 4
0-1:吸气过程。由于阀门的阻力,吸入气缸内
空气的压力略低于大气压力。
1-2:压缩过程 2-3-4-5:燃烧和膨胀过程
5 6
燃烧可分为定容过程和定压过 程
1
Pb
0
5-6-0:排气过程
V
P 3 2 4
简化原则为:(1)不计吸气和
排气过程,将内燃机的工作过程 看作是气缸内工质进行状态变化 的封闭循环。
3 - 4为定压加热过程:
T4 v4 T3 v3 T4 T3 T1 k 1;p4 p3 p1 k
v1 v2
p3 p2
v4 v3
4-5为定熵过程,5-1及2-3为定容过程,因此有:
T5 v 4 k 1 v 4 k 1 v 4 v 2 k 1 k 1 ( ) ( ) ( ) ( ) T4 v5 v1 v3 v1
2-3:定容吸热; 4-5:绝热膨胀;

工程热力学-名词解释

工程热力学-名词解释

1.第一章 基本概念及定义 2.热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。

3.工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。

4.高温热源:工质从中吸取热能的物系叫热源,或称高温热源。

5.低温热源:接受工质排出热能的物系叫冷源,或称低温热源。

6.热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。

7.闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。

(系统质量不变) 8.开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。

(系统体积不变) 9.绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。

(无论开口、闭口系统,只要没有热量越过边界) 10.孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。

11.表压力:工质的绝对压力>大气压力时,压力计测得的差数。

12.真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。

13.平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。

充要条件是同时到达热平衡和力平衡。

14.稳定状态:系统参数不随时间改变。

(稳定未必平衡) 15.准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。

它是无限接近于平衡状态的过程。

16.可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。

可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。

17.准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。

工程热力学知识点

工程热力学知识点

一.是非题1.两种湿空气的相对湿度相等,则吸收水蒸汽的能力也相等。

()2.闭口系统进行一放热过程,其熵一定减少()3.容器中气体的压力不变,则压力表的读数也绝对不会改变。

()4.理想气体在绝热容器中作自由膨胀,则气体温度与压力的表达式为k kppTT1 1212()5.对所研究的各种热力现象都可以按闭口系统、开口系统或孤立系统进行分析,其结果与所取系统的形式无关。

()6.工质在相同的初、终态之间进行可逆与不可逆过程,则工质熵的变化是一样的。

()7.对于过热水蒸气,干度1x()8.对于渐缩喷管,若气流的初参数一定,那么随着背压的降低,流量将增大,但最多增大到临界流量。

()9.膨胀功、流动功和技术功都是与过程的路径有关的过程量()10.已知露点温度dt、含湿量d即能确定湿空气的状态。

()二.选择题(10分)1.如果热机从热源吸热100kJ,对外作功100kJ,则()。

(A)违反热力学第一定律;(B)违反热力学第二定律;(C)不违反第一、第二定律;(D)A和B。

2.压力为10bar的气体通过渐缩喷管流入1bar的环境中,现将喷管尾部截去一小段,其流速、流量变化为()。

A 流速减小,流量不变(B)流速不变,流量增加C流速不变,流量不变(D)流速减小,流量增大3.系统在可逆过程中与外界传递的热量,其数值大小取决于()。

(A)系统的初、终态;(B)系统所经历的过程;(C)(A)和(B);(D)系统的熵变。

4.不断对密闭刚性容器中的汽水混合物加热之后,其结果只能是()。

(A)全部水变成水蒸汽(B)部分水变成水蒸汽(C)部分或全部水变成水蒸汽(D)不能确定5.()过程是可逆过程。

(A).可以从终态回复到初态的(B).没有摩擦的(C).没有摩擦的准静态过程(D).没有温差的三.填空题(10分)1.理想气体多变过程中,工质放热压缩升温的多变指数的范围_________ 2.蒸汽的干度定义为_________。

3.水蒸汽的汽化潜热在低温时较__________,在高温时较__________,在临界温度为__________。

沈维道《工程热力学》考研考点精讲

沈维道《工程热力学》考研考点精讲

考点精讲工程热力学考试指导及课程说明主讲:程老师沈维道《工程热力学》考研辅导课程1、沈维道《工程热力学》考点精讲及复习思路2、沈维道《工程热力学》名校真题解析及典型题精讲精练3、沈维道《工程热力学》冲刺串讲及模拟四套卷精讲本课程使用教材《工程热力学》第三版作者:沈维道,蒋智敏,童钧耕主编出版社:高等教育出版社出版时间:2001-6-1《工程热力学》第4版作者:沈维道,童钧耕主编出版社:高等教育出版社出版时间:2007-6-1《工程热力学》第4版作者:曾丹岺主编出版社:高等教育出版社出版时间:2002-12-1《工程热力学》作者:朱明善等编著出版社:清华大学出版社出版时间:2011-6-1《工程热力学》作者:冯青,李世武,张丽编著出版社:西北工业大学出版社出版时间:2006-9-1《工程热力学》(第三版)作者:华自强,张忠进编出版社:高等教育出版社出版时间:2000-7-1《工程热力学》第二版作者:毕明树、冯殿义、马连湘编出版社:化学工业出版社出版时间:2008-1-1《工程热力学》作者:朱明善等编著出版社:清华大学出版社出版时间:1995-7-1《工程热力学》第四版作者:华自强等编出版社:高等教育出版社出版时间:2009-11-1《工程热力学》(第五版)作者:廉乐明等编出版社:中国建筑工业出版社出版时间:2007-1-1《工程热力学》作者:王修彦主编出版社:机械工业出版社出版时间:2008-1-1《工程热力学》作者:严家騄,王永青编著出版社:中国电力出版社出版时间:2007-9-1考试分值分布一般来说,在硕士研究生入学考试中,工程热力学专业课满分为150分。

大家首先要认真仔细地阅读自己打算报考院校的招生简章,确定考试教材,然后阅读考试大纲,确认考试范围。

尤其是,要根据近年(一般三年内)的真题,了解分值的分布、题型,以及该院校出题的倾向和偏好。

考试分值分布考研的工程热力学试题,一般来说题型分为两大类:概念题和计算题。

工程热力学第10章蒸汽动力装置循环

工程热力学第10章蒸汽动力装置循环
人造低温环境,实现作功和制冷双赢!
本章学习目标
1. 描述水蒸气朗肯循环的构成,画出水蒸气朗肯循环p-v图 和T-s 图,计算循环参数、耗气率和热效率。
2. 指出摩阻对水蒸气朗肯循环的影响并进行计算; 3. 描述蒸汽动力装置再热循环的构成、画出循环p-v图
和T-s 图,分析再热对循环的影响;
4. 说明并分析计算蒸汽动力装置抽汽回热循环的实施及 构成,画出循环p-v图和T-s 图,计算抽汽量和抽汽回 热循环其它参数;
4
6. 蒸汽动力装置工作流程和简化 蒸汽电厂示意图
二、朗肯循环 (Rankine cycle) 1. 水蒸气的卡诺循环
. . 4 p1 1
. . s
s
3 p2 2
p1
1
p2
.. .. 4
3
2
水蒸气卡诺循环有可能实现,但:
1)温限小 2)膨胀末端x太小 3)压缩两相物质的困难
实际并不实行卡诺循环
6
约850K(580℃) 约500K(227℃)随π变
不能如燃气轮 机装置般回热
约36℃(6kPa)
蒸汽动力装置循环回热的两种方式 混合式
.
. .. 01’
αkg
1kg
. . .01 .1-αkg
1-αkg
20
间壁式
工程多采用间壁式,热力学分析两者相似。
21
四、回热循环计算
1. 抽汽量
? 能量方程:
1 T2S2 1 T2 1 s2 s2'
T1S1
T1 s1 s01'
1 T2 T1
24
3)回热器中过程不可逆,为什么循环ηt 上升? 4)回热器是间壁式,α怎么求?
例A466266

工程热力学主要循环图示

工程热力学主要循环图示
热泵技术
通过循环图示分析热泵的工作原理,实现低品位热能的回收利用。
热管技术
利用循环图示研究热管技术,实现高效传热和节能。
环保技术
废热处理
利用循环图示分析废热处理过程中的能量转换和利用,降低环境污 染。
温室气体减排
通过循环图示研究温室气体减排技术,减少温室气体排放。
工业废水处理
利用循环图示分析工业废水处理过程中的能量转换和利用,实现废水 零排放。
影响因素
热效率受到工质的选择、循环过程的设计、实际运行条件等因素 的影响。
机械效率
01
机械效率
表示循环过程中机械能转换为输 出功的效率,是评价机械发动机 性能的重要指标。
计算公式
02
03
影响因素
$eta_{mech} = frac{W_{net}}{W_{net} + Q_{in}}$。
机械效率受到工质的选择、循环 过程的设计、实际运行条件等因 素的影响。
THANKS
感谢观看
循环效率受到多种因素的 影响,如循环过程的设计、 工质的选择、实际运行条 件等。
热效率
热效率
表示循环过程中热能转换为机械能的效率,是评价热力发动机性 能的重要指标。
计算公式
$eta_{th} = frac{W_{net}}{Q_{in} - Q_{out}}$,其中 $Q_{out}$为循环中输出热量。
对于封闭系统,热量自发地从低温流向高温,而不是相反方向。
03
循环图示的解析
循环效率
循环效率
表示循环过程能量转换的 完善程度,是评价循环过 程性能的重要参数。
计算公式
$eta
=
frac{W_{net}}{Q_{in}}$,

工程热力学-沈维道课后思考题答案

工程热力学-沈维道课后思考题答案

第一章基本概念与定义1.答:不一定。

稳定流动开口系统内质量也可以保持恒定2.答:这种说法是不对的。

工质在越过边界时,其热力学能也越过了边界。

但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。

3.答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。

稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。

平衡状态并非稳定状态之必要条件。

物系内部各处的性质均匀一致的状态为均匀状态。

平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。

4.答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。

当地大气压不一定是环境大气压。

环境大气压是指压力仪表所处的环境的压力。

5.答:温度计随物体的冷热程度不同有显着的变化。

6.答:任何一种经验温标不能作为度量温度的标准。

由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。

7.答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。

8.答:(1)第一种情况如图1-1(a),不作功(2)第二种情况如图1-1(b),作功(3)第一种情况为不可逆过程不可以在p-v图上表示出来,第二种情况为可逆过程可以在p-v图上表示出来。

9.答:经历一个不可逆过程后系统可以恢复为原来状态。

系统和外界整个系统不能恢复原来状态。

?10.答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。

?11.答:不一定。

主要看输出功的主要作用是什么,排斥大气功是否有用。

第二章热力学第一定律1.答:将隔板抽去,根据热力学第一定律wuq+∆=其中,0==wq所以容器中空气的热力学能不变。

工程热力学与传热学(第十六讲)10-2(二)、3、4

工程热力学与传热学(第十六讲)10-2(二)、3、4

二、水蒸气的p-v 图和T-s 图在不同压力下对水进行定压加热汽化过程,可在p-v 图和T-s 图上得到一系列定压加热线。

它们全都经历上述五种状态和三个阶段。

如图10-3所示。

图10-3中标有饱和水线、干饱和蒸汽线和临界点。

(1)饱和水线:是各个压力下饱和水状态点的连线,又称下界线,沿此线干度x=0;(2)干饱和蒸汽线:是各个压力下饱和蒸汽状态点的连线,又称上界线,沿此线干度x=1;(3)临界点C :是饱和水线和干饱和蒸汽线的交点。

图中,饱和水线和干饱和蒸汽线把水和水蒸气分为三个区: (1)未饱和水区:位于饱和水线左侧的一个较狭窄的范围内; (2)湿蒸汽区:位于饱和水线和干饱和蒸汽线之间; (3)过热蒸汽区:位于干饱和蒸汽线的右侧。

由p-v 图看出 ,随着压力升高,由于饱和水比容随压力的升高而略有增加,故饱和水线向右上方倾斜,而干饱和蒸汽比容则随压力的升高而明显减小,故干饱和蒸汽线向左上方倾斜。

即饱和水线比干饱和蒸汽线陡。

由T-s 图看出,随着压力升高,饱和温度升高,比液体热增加,而比汽化潜热随压力的升高而减小。

饱和水的比熵随压力的升高而增加,故饱和水线也向右上方倾斜。

而干饱和蒸汽线的比熵随压力的升高而减小,,故干饱和蒸汽线也向左上方倾斜。

这样随着压力的升高,同压或同温下的饱和水和饱和蒸汽的状态点越来越接p2p 1p pTa b 图和水蒸气的图s T v p ---310近,当压力达到22.115Mpa时,它们重合为一点,即临界点C。

在临界点上汽液两相差异完全消失,汽化过程不再存在,汽液相变将在瞬间完成,比汽化潜热为零。

临界参数:临界点的状态参数称为临界参数。

每种物质有不同的临界点和临界参数。

水的临界参数为:p c=22.115MPa t c=374.120C v c=0.003147m3/kg临界温度是最高的饱和温度,高于临界温度时,液态水是不可能存在的,只能是过热的水蒸气。

当t> t c时,无论压力多大,都不能用单纯压缩的方法使蒸汽液化。

工程热力学第四版思考题答案

工程热力学第四版思考题答案

工程热力学第四版沈维道思考题完整版第 1 章基本概念及定义1. 闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。

当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。

2. 有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。

这种观点对不对,为什么? 答:不对。

“绝热系”指的是过程中与外界无热量交换的系统。

热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。

物质并不“拥有”热量一个系统能否绝热与其边界是否对物质流开放无关。

3•平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态” 的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。

力计算公式4•倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压P P b P e (P P b );P P b P v (P P b )中,当地大气压是否必定是环境大气压?答:可能会的。

因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。

环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。

“当地大气压”并非就是环境大气压。

准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。

5•温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。

它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
三、初参数对朗肯循环热效率的影响 1. 初温t1
T1 T2不变 t
或 循环1t2t3561t =循环123561+循环11t2t21
t11t2t21 t123561
t
h
7
2. 初压力 p1
T1,T2不变 t
但 x2下降且 p太高造成强度问题
h
8
3. 背压 p2
T1不变,T2 t 但受制于环境温度,不能任意
水蒸气卡诺循环有可能实现,但:
1)温限小 2)膨胀末端x太小 3)压缩两相物质的困难
实际并不实行 卡诺循环
h
3
2. 水蒸气朗肯循环 1)流程图
2)p-v,T-s及h-s图
h
4
3)朗肯循环的热效率
t
wnet q1
1 q2 q1
wnet wt,Twt,P
w t,T h 1 h 2? cpT 1 T 2
降低 p 2 6 k P a , t s 3 6 . 1 7 C ; p 2 4 k P a , t s 2 8 . 9 5 C
同时,x2下降 。
讨论: 我国幅员辽阔,四季温差大,对蒸汽发电机组有什么影响?
例A466167英
例A466167中h
9
四、有摩阻的实际朗肯循环
1. T-s图及h-s图
放 吸
2)回热器是间壁式,α怎么求?
3)回热器中过程不可逆,为什么
循环ηt 上升?
h
19
例A466266 例A460200
h
20
10-4 热电合供(power-and-heating plant cycle)
一、背压式设备流程及T-s图
特点—发电量受热负荷制约。
wt,P h4 h3
w n e t h 1 h 2 h 4 h 3
q 2 h 2 h 3 ? c p T 2 T 3
?Ts s3 s2
q1 h1h4
tw q n 1 et h 1q q 1 2h 1h 2 h 1 h h 44h 3 5
wt,Pwt,T wnet wt,T
若忽略水泵功,同时近似取h4h3,则
忽略水泵功:
q1 h1 h3
不变
t
q2 h2act h2'h
10
2. 不可逆性衡量
a)汽轮机内部相对效率ηT(简称汽机效率)
T
wt,Tact wt,T
h1 h2act h1 h2
近代大功率汽轮机ηT 在0.92左右
h2act的确定方法:
运行中,测出 p2 及 x2,按 hx= x2h″+ (1-x2)h′
设计中,选定ηT 按 h2act h1T h1h2 h21Th1h2
(h1–h2—理想绝热焓降(ideal enthalpy drop; ihsentropic enthalpy drop ) 11
b)装置内部热效率(internal thermal efficiency)
忽略水泵功:
i w n q e t1 ,a c t w tq ,T 1 a c t h h 1 1 h h 2 2 a c 'tT h 1 h 1 h 2 h '2Tt
I T0 Sg
h
17
3. 循环热效率
w n e t h 1 h 0 1 1 h 0 1 h 2
w n e t 1 h 1 h 2 h 1 h 0 1
q1 h1h01'
q 2 1 h 2 h 2 '
t
w net h 1h 011h 01h 2
q 1
h 1h 01'
t 1q q1 211 h1 h h201 ' h2'
c)装置有效热效率ηe
考虑机械损失
e
Pe q1
Tmt
Pe—有效轴功率 ηm—机械效率
3.实际内部耗汽率di和耗汽量Di
1
dih 1h2act
h 1h2 h 1h2act
1 d0 h 1h2 T
Di diPi
实际内部功率
例A466155
例A460299
h
12
10-2 再热循环(reheat cycle)
回热器两种方式
混合式
h
15
间壁式
h
16
二、回热循环计算
1. 抽汽量
能量方程:
1 h 4h 0 1 h 0 ' 10
忽略泵功 h4 h2'
h01' h2'
h01 h2'
2. 回热器(regenerator)R
熵方程:
1s2' s01s01' Sf Sg
sCV0
S g s0 1 's0 11 s2 '
1)蒸汽是历史上最早广泛使用的工质,19世纪后期 蒸汽动力装置的大量使用,促使生产力飞速发展, 促使资本主义诞生。
2)目前世界约75%电力、国内78%电力来自火电厂,绝 大部分来自蒸汽动力。
3)蒸汽动力装置可利用各种燃料。 4)蒸汽是无污染、价廉、易得的工质。
h
2
二、朗肯循环 (Rankine cycle) 1. 水蒸气的卡诺循环
讨论:
1)抽汽回热ηt 上升;
2)抽汽级数越多ηt 越高 ,若级h 数趋向无穷, ηt =1?
18
思考:1)抽汽回热循环
t
1T放 ? T吸
其中T吸 h1 h01' s1 s01'
T放 h2 h2' s2 s2'

t
1Q2 Q1
1T放S2 T吸S1
1T放1s2 s2' T吸 s1s01'
T T
第十章 蒸汽动力装置循环
Vapor power cycles
10-1 简单蒸汽动力装置循环-朗肯循环 10-2 再热循环 10-3 回热循环 10-4 热电合供 10-5 燃气-蒸汽联合循环
h
1
10-1 简单蒸汽动力装置循环—朗肯循环
一、概述
蒸汽及蒸汽动力装置(steam power plant)
一、设备流程及T-s图
h
13
二、再热对循环效率的影响
忽略泵功:
w net h1h5h6h7
q1h1h3h6h5
t
wnet q1
h1h5h6h7 h1h3h6h5
ηt


其他影响:x末上升(根本目的);
d0下降;
复杂化,投资上升。
h
14
10-3 回热循环(regenerative cycle)
一、抽汽回热循环(regenerative cycle with steam extraction,regenerative cycle with feed-water heater)
t
h1 h2 h1 h3
h1 h2 h1 h2'
4)耗汽率(steam rate)及耗汽量
理想耗汽率(ideal steam rate) d0 —装置每输出单位功量所消耗的蒸汽量
d0
h1
1 h2
k g /J,工 程 上 用 k g /k W h
耗汽量
D 0d 0P 0 h P 0功 率 , W
相关文档
最新文档