[高考数学]08圆锥曲线训练学案

合集下载

圆锥曲线计算技巧(2)直线过圆锥曲线上一已知点——-高三数学二轮复习学案

圆锥曲线计算技巧(2)直线过圆锥曲线上一已知点——-高三数学二轮复习学案

圆锥曲线计算技巧(2)--直线过圆锥曲线上一已知点1、 设椭圆22413y x +=的右顶点为A ,直线:1l x =-上两点P,Q 关于x 轴对称,直线AP与椭圆相交于点B (点B 异于点A ),直线BQ 与x 轴交于点D 。

若APD ∆的面积为2求直线AP 的方程。

2、 已知椭圆22195x y +=的左、右顶点为A ,B ,右焦点为F 。

设过点(9,)T m 的直线,TA TB 与椭圆分别交于点M ,N ,其中0m >。

求证:直线MN 必过x 轴上一定点(其坐标与m 无关)。

3、 已知椭圆2222154x y c c+=的上顶点为B ,左焦点为F 。

设直线BF 与椭圆交于点P (点P 异于点B ),过点B 且垂直于BF 的直线与椭圆交于点Q (点Q 异于点B ),直线PQ 与y 轴交于点M ,||||PM MQ λ=。

(1) 求λ的值;(2) 若||sin 9PM BQP ∠=,求椭圆的方程。

4、 已知椭圆2222143x y c c+=的右顶点为A ,左焦点为F ,点E 的坐标为(0,)c 。

设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,//PM QN ,且直线PM 与直线QN 之间的距离为c ,四边形PQNM 面积为3c 。

(1) 求直线FP 的斜率;(2) 求椭圆的方程。

5、 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B ,已知椭圆短轴长为4,离心率为5。

(1) 求椭圆方程;(2) 设点P 在椭圆上,且异于椭圆的上下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若||||ON OF =,且OP MN ⊥,求直线PB 的斜率。

6、 点P(0,-1)是椭圆221:14x C y +=的一个顶点,圆222:4C x y +=。

12,l l 是过点P 且互相垂直的两条直线,其中1l 与圆2C 交于A ,B 两点,2l 交椭圆1C 于另一点D 。

高考数学圆锥曲线专题训练(附答案解析)

高考数学圆锥曲线专题训练(附答案解析)

高中数学圆锥曲线专题*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡阅卷人一、单选题(共10题;共20分)得分1. ( 2分) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2. ( 2分) 古希腊数学家阿波罗尼奥斯的著作圆锥曲线论中给出了圆的另一种定义:平面内,到两个定点A、B距离之比是常数的点M的轨迹是圆若两定点A、B的距离为3,动点M满足,则M点的轨迹围成区域的面积为A. B. C. D.3. ( 2分) 已知、为双曲线的左、右焦点,过右焦点的直线,交的左、右两支于、两点,若为线段的中点且,则双曲线的离心率为()A. B. C. D.4. ( 2分) 已知双曲线的右焦点为,点,为双曲线左支上的动点,且周长的最小值为16,则双曲线的离心率为()A. 2B.C.D.5. ( 2分) 关于曲线:性质的叙述,正确的是()A. 一定是椭圆B. 可能为抛物线C. 离心率为定值D. 焦点为定点6. ( 2分) 古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9C. (x+5)2+y2=16D. x2+(y+5)2=97. ( 2分) 已知是双曲线上一点,且在轴上方,,分别是双曲线的左、右焦点,,直线的斜率为,的面积为,则双曲线的离心率为()A. 3B. 2C.D.8. ( 2分) 在正四面体中,点为所在平面上的动点,若与所成角为定值,则动点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线9. ( 2分) 已知,及抛物线方程为,点在抛物线上,则使得为直角三角形的点个数为()A. 1个B. 2个C. 3个D. 4个10. ( 2分) 已知双曲线的左、右焦点分别为,,若双曲线上存在点P使,则离心率的取值范围是()A. B. C. D.阅卷人二、填空题(共10题;共10分)得分11. ( 1分) 已知正实数是的等比中项,则圆锥曲线=1的离心率为________12. ( 1分) 设抛物线的焦点为F,过点F的直线l与抛物线交于A,B两点,且,则弦长________.13. ( 1分) 已知双曲线:(,)的左,右焦点分别为,,过右支上一点作双曲线的一条渐近线的垂线,垂足为.若的最小值为,则双曲线的离心率为________.14. ( 1分) 若椭圆的离心率为,则的短轴长为________.15. ( 1分) 从抛物线图象上一点作抛物线准线的垂线,垂足为,且,设为抛物线的焦点,则的面积为________.16. ( 1分) 设抛物线的焦点为,过点的直线与抛物线交于,两点,且,点是坐标原点,则的面积为________17. ( 1分) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.18. ( 1分) 已知为椭圆的左焦点,过点的直线交椭圆于两点,若,则直线的斜率为________.19. ( 1分) 椭圆的左、右焦点分别为、,点P在椭圆C上,已知,则________.20. ( 1分) 已知椭圆的右顶点为A,左,右焦点为F1,F2,过点F2与x轴垂直的直线与椭圆的一个交点为B.若|F1F2|=2,|F2B| ,则点F1到直线AB的距离为________.阅卷人三、解答题(共30题;共280分)得分21. ( 10分) 已知椭圆E:=1(a>b>0)的上、下焦点分别为F1,F2,点D在椭圆上,DF2⊥F1F2,△F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.(1)求椭圆E与抛物线C的方程;(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.22. ( 10分) 椭圆C1:+y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.23. ( 10分) 已知A(1,)是离心率为的椭圆E:+ =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.(1)求椭圆E的方程;(2)试证明直线BC的斜率为定值,并求出这个定值;(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.24. ( 10分) 设抛物线C1:y2=8x的准线与x轴交于点F1,焦点为F2.以F1,F2为焦点,离心率为的椭圆记为C2.(Ⅰ)求椭圆C2的方程;(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.(ⅰ)若直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.25. ( 10分) 在平面直角坐标系xOy中,椭圆:的离心率为,y轴于椭圆相交于A、B两点,,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.(1)求椭圆的方程;(2)求直线MN的斜率.26. ( 10分) 已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且• =0,△GF1F2的面积为2.(1)求椭圆C的方程;(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.27. ( 10分) 已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,且,点在椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程.28. ( 10分) 设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.29. ( 10分) 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.30. ( 10分) 已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C 相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.31. ( 10分) 已知椭圆的长轴长为4,离心率为.(I)求C的方程;(II)设直线交C于A,B两点,点A在第一象限, 轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.32. ( 10分) 已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由33. ( 5分) 已知点P(x,y)满足条件.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若,求直线l的斜率.34. ( 5分) 设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(Ⅰ)证明:a2>;(Ⅱ)若,求△OAB的面积取得最大值时的椭圆方程.35. ( 15分) 已知点在抛物线上,是直线上的两个不同的点,且线段的中点都在抛物线上.(Ⅰ)求的取值范围;(Ⅱ)若的面积等于,求的值.36. ( 5分) 如图,曲线Γ由曲线C1:(a>b>0,y≤0)和曲线C2:(a>0,b>0,y>0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.37. ( 5分) 已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.(Ⅰ)求椭圆的方程(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.38. ( 10分) 如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.39. ( 10分) 已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.40. ( 5分) 已知椭圆E: 过点(0,1)且离心率.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.41. ( 10分) 已知抛物线,抛物线与圆的相交弦长为4. (1)求抛物线的标准方程;(2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.42. ( 10分) 设椭圆的左、右焦点分别为,、,,点在椭圆上,为原点.(1)若,,求椭圆的离心率;(2)若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).①求椭圆的方程;②设直线:与椭圆相交于、两点,若的面积为1,求实数的值.43. ( 10分) 已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.44. ( 10分) 在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.(1)求曲线的方程;(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.45. ( 10分) 已知点,分别是椭圆的长轴端点、短轴端点,为坐标原点,若,.(1)求椭圆的标准方程;(2)如果斜率为的直线交椭圆于不同的两点(都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.46. ( 10分) 已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.47. ( 10分) 已知椭圆C:=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C 上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.48. ( 10分) 已知椭圆C:+ =1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:• 为定值.49. ( 10分) 已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.50. ( 10分) 如图,中心为坐标原点O的两圆半径分别为,,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线、,交于点P.(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;(2)直线l:与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为时,求的取值范围.答案解析部分一、单选题1.【答案】D【考点】椭圆的简单性质【解析】【解答】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则 =2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故答案为:D.【分析】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则利用两点距离公式得出,∵△MAB面积的最大值为8,△MCD面积的最小值为1,利用三角形面积公式求出a,b的值,再利用椭圆中a,b,c三者的关系式结合离心率公式变形求出椭圆的离心率。

高考数学 圆锥曲线的综合问题(学案)绝密资料

高考数学 圆锥曲线的综合问题(学案)绝密资料

圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。

(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。

3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。

★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28yx =的准线2x =-与x 轴的交点为Q (-2 , 0),于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩ 其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C.【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x (2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OMK , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程; (Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BMk k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11(),(,2222C D ,它的中点不是N ,不合题意 设直线l 的方程为11()2y k x -=-将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得 221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,(,2222C D , 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-, 将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-,将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。

人教版高中数学 教案+学案综合汇编 第6章:圆锥曲线和方程式 课时6

人教版高中数学 教案+学案综合汇编 第6章:圆锥曲线和方程式  课时6

人教版高中数学教案+学案综合汇编第6章椭圆及其它第 6 课时抛物线的几何性质一、教学目标(一)知识教学点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.(二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题.二、教材分析1.重点:抛物线的几何性质及初步运用.(解决办法:引导学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.(解决办法:通过几个典型例题的讲解,使学生掌握几何性质的应用.)3.疑点:抛物线的焦半径和焦点弦长公式.(解决办法:引导学生证明并加以记忆.)三、活动设计提问、填表、讲解、演板、口答.四、教学过程(一)复习1.抛物线的定义是什么?请一同学回答.应为:“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.”2.抛物线的标准方程是什么?再请一同学回答.应为:抛物线的标准方程是y2=2px(p>0),y2=-2px(p>0),x2=2py(p>0)和x2=-2py(p>0).下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p>0)出发来研究它的几何性质.(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p>0)为例,用小黑板给出下表,请学生对比、研究和填写.填写完毕后,再向学生提出问题:和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但是没有渐近线.(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与顶点和焦点的连线重合,抛物线没有中心.(3)抛物线只有一个顶点,它是焦点和焦点在准线上射影的中点.(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较.其结果是应规定抛物线的离心率为1.注意:这样不仅引入了抛物线离心率的概念,而且把圆锥曲线作为点的轨迹统一起来了.(三)应用举例为了加深对抛物线的几何性质的认识,掌握描点法画图的基本方法,给出如下例1.例1 已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点解:因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点程是y2=4x.后一部分由学生演板,检查一下学生对用描点法画图的基本方法掌握情况.第一象限内的几个点的坐标,得:(2)描点作图描点画出抛物线在第一象限内的一部分,再利用对称性,就可以画出抛物线的另一部分(如图2-33).例2 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.解法一:由焦半径关系,设抛物线方程为y2=-2px(p>0),则准线方因为抛物线上的点M(-3,m)到焦点的距离|MF|与到准线的距离得p=4.因此,所求抛物线方程为y2=-8x.又点M(-3,m)在此抛物线上,故m2=-8(-3).解法二:由题设列两个方程,可求得p和m.由学生演板.由题意在抛物线上且|MF|=5,故本例小结:(1)解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离.可得焦半径公式:设P(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握.(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p.特别地:当AB⊥x轴,抛物线的通径|AB|=2p(详见课本习题).例3 过抛物线y2=2px(p>0)的焦点F的一条直线与这抛物线相交于A、B 两点,且A(x1,y1)、B(x2,y2)(图2-34).证明:(1)当AB与x轴不垂直时,设AB方程为:此方程的两根y1、y2分别是A、B两点的纵坐标,则有y1y2=-p2.或y1=-p,y2=p,故y1y2=-p2.综合上述有y1y2=-p2又∵A(x1,y1)、B(x2,y2)是抛物线上的两点,本例小结:(1)涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法.(2)本例命题1是课本习题中结论,要求学生记忆.(四)练习1.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=6,求|AB|的值.由学生练习后口答.由焦半径公式得:|AB|=x1+x2+p=82.证明:与抛物线的轴平行的直线和抛物线只有一个交点.请一同学演板,其他同学练习,教师巡视.证明:可设抛物线方程故抛物线y2=2px与平行于其轴的直线只有一个交点.(五)全课小结1.抛物线的几何性质;2.抛物线的应用.五、布置作业1.在抛物线y2=12x上,求和焦点的距离等于9的点的坐标.2.有一正三角形的两个顶点在抛物线y2=2px上,另一顶点在原点,求这个三角形的边长.3.图2-35是抛物线拱桥的示意图,当水面在l时,拱顶高水面2m,水面宽4m,水下降11m后,水面宽多少?4.求证:以抛物线的焦点弦为直径的圆,必与抛物线的准线相切.作业答案:3.建立直角坐标系,设拱桥的抛物线方程为x2=-2py,可得抛物线4.由抛物线的定义不难证明六、板书设计。

高三数学一轮 8.3 圆锥曲线精品复习学案

高三数学一轮 8.3 圆锥曲线精品复习学案

高三数学一轮 8.3 圆锥曲线精品复习学案【高考目标导航】一、曲线与方程1.考纲点击(1)了解方程的曲线与曲线的方程的对应关系;(2)了解解析几何的基本思想和利用坐标法研究几何问题的基本方法;(3)能够根据所给条件选择适当的方法求曲线的轨迹方程.2.热点提示(1)求轨迹方程是高考的重点和热点;(2)常以解答题的第一问的形式出现. 一般用直接法、定义法或相关点法求解,所求轨迹一般为圆锥曲线,属中低档题。

二、椭圆1.考纲点击(1)掌握椭圆的定义、几何图形、标准方程及简单性质;(2)了解椭圆的实际背景及椭圆的简单应用。

(3)理解数形结合的思想2.热点提示(1)椭圆的定义、标准方程和几何性质是高考重点考查的内容;直线和椭圆的位置关系是高考考查的热点。

(2)定义、标准方程和几何性质常以选择题、填空题的形式考查,而直线与椭圆位置关系以及与向量、方程、不等式等的综合题常以解答题的形式考查,属中高档题目。

三、双曲线1.考纲点击(1)了解双曲线的定义、几何图形和标准方程,知道双曲线的简单几何性质。

(2)了解双曲线的实际背景及双曲线的简单应用。

(3)理解数形结合的思想。

2.热点提示(1)双曲线的定义、标准方程和离心率、渐近线等知识是高考考查的重点;双曲线与其他圆锥曲线的交汇命题是热点。

(2)主要以选择、填空题的形式考查,属于中低档题。

四、抛物线1.考纲点击(1)掌握抛物线的定义、几何图形、标准方程及简单性质。

(2)理解数形结合的思想。

(3)了解抛物线的实际背景及抛物线的简单应用。

2.热点提示(1)抛物线的定义、标准方程及性质是高考考查的重点,抛物线与直线、椭圆、双曲线的交汇综合题是考查的热点。

(2)多以选择、填空题为主,多为中低档题。

有时也与直线、椭圆、双曲线交汇考查的解答题,此时属中高档题。

【考纲知识梳理】一、曲线与方程1.一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解。

圆锥曲线学案

圆锥曲线学案

圆锥曲线学案:圆锥曲线复习题例1 根据下列条件,写出椭圆方程.(1) 中心在原点、以对称轴为坐标轴、离心率为12、长轴长为8;(2) 和椭圆9x 2+4y 2=36有相同的焦点,且经过点(2,-3);(3) 中心在原点,焦点在x 轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的距离是510-.例2 从椭圆12222=+b y a x,( a >b >0)上一点M 向x 轴所作垂线恰好通过椭圆的左焦点F 1,A 、B 分别是椭圆长、短轴的端点,AB ∥OM.设Q 是椭圆上任意一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若⊿F 2PQ 的面积为203,求此时椭圆的方程.例3 中心在原点,一个焦点为F 1(0,50)的椭圆截直线23-=x y 所得弦的中点横坐标为21,求椭圆的方程.例4 直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上?例5 已知双曲线1222=-y x ,过点 A (2,1)的直线与已知双曲线交于P 、Q 两点.(1)求PQ 中点的轨迹方程;(2)过B (1,1)能否作直线l ,使l 与所给双曲线交于两点M 、N ,且B 为MN 的中点,若存在,求出l 的方程,不存在说明理由.例6.顶点在原点,焦点在x 轴上的抛物线,截直线42-=x y 所得的弦长为53,求抛物线的方程.例7.过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为E、G,则EFG∠等于()A.45︒ B.90︒ C.60︒ D.120︒例8:已知椭圆C:3x2+4y2=12,试确定m的取值范围,使得对于直线l:y=4x+m,椭圆C上有不同两点关于这条直线对称.例9已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1. (I)求椭圆C的标准方程;(II)若直线:l y kx m=+与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.圆锥曲线部分练习题1.求以抛物线214y x =的焦点为圆心,且与抛物线的准线相切的圆的方程.2.直线1+=kx y 与双曲线122=-y x 的左支仅有一个公共点,求K 的取值范围.3.已知双曲线1222=-y x 与点P (1,2),过P 点作直线L 与双曲线交于A 、B 两点,若P 为AB 的中点,求直线AB 的方程.4.过点()6,1--的直线l 与抛物线x y 42=交于A 、B 两点,求直线l 的斜率K 的取值范围.5.设椭圆中心在原点O,焦点在x2,椭圆上一点P1)求椭圆方程;2)若直线0x y m++=交椭圆于A、B两点,且OA⊥OB,求m的值。

2014年高考数学二轮复习精品资料-高效整合篇专题08 圆锥曲线(理)(教学案)

2014年高考数学二轮复习精品资料-高效整合篇专题08 圆锥曲线(理)(教学案)

【高效整合篇】一.考场传真1.【2012年高考浙江卷理科】设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.【2012年高考湖南卷理科】已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1 B.25x -220y =1 C.280x -220y =1 D.220x -280y =13.【2012年高考天津卷理科】设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是()(A )[1 (B)(,1)-∞-∞(C)[2- (D)(,2)-∞-∞4.【2013年普通高等学校统一考试试题大纲全国理科】已知抛物线2:8C y x =与点(2,2)M -,过C 的焦点且斜率为k 的直线与C 交于A B 、两点,若0MA MB ∙=,则k =( )A .12B .2CD .25.【2013年普通高等学校招生全国统一考试(湖南卷)】设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___.6.【2012年高考辽宁卷理科】已知P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于A ,则点A 的纵坐标为__________。

7.【2012年高考辽宁卷理科】 (本小题满分12分)如图,椭圆()22022:+=1>b>0,a,b x y C a a b为常数,动圆222111:+=,<<C x y t b t a .点12,A A 分别为0C 的左、右顶点,1C 与0C 相交于,,,A B C D 四点 (1)求直线1AA 与直线2A B 交点M 的轨迹方程;(2)设动圆22222:+=C x y t 与0C 相交于',',','A B C D 四点,其中2<<b t a ,12t t ≠.若矩形ABCD 与矩形''''ABCD 的面积相等,证明:2212+t t 为定值8.【2013年普通高等学校统一考试试题新课标数学(理)卷】平面直角坐标系xOy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线0x y +-=交M 于A,B 两点,P 为AB的中点,且OP 的斜率为12. (Ι)求M 的方程;(Ⅱ)C,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形面积的最大值二.高考研究1.考纲要求.(1)直线方程:①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。

2014年高考数学二轮复习精品资料-高效整合篇专题08 圆锥曲线(文)(测试)

2014年高考数学二轮复习精品资料-高效整合篇专题08 圆锥曲线(文)(测试)

(一) 选择题(12*5=60分)1. 【陕西省长安一中 高新一中 交大附中 师大附中 西安中学(五校)2013届高三第三次模拟】“1=a ”是“直线1l 012=-+y ax 与2l 04)1(=+++y a x 平行”的( ). A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件2. 【改编自广东省惠州市2014届高三第一次调研考试】已知直线l 与直线01=--y x 垂直,则直线l 的倾斜角=α( ) A .4π B.3π C. 23π D. 34π3.【改编自2013年普通高等学校招生全国统一考试(广东卷)文科】平行于直线1y x =-+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +=B .10x y ++=C .10x y +-=D .0x y +=4.【安徽省六校教育研究会2014届高三素质测试文】与圆222212:26260,:4240C x y x y C x y x y ++--=+-++=都相切的直线有( )A 、1条B 、2条C 、3条D 、4条5.【广东省六校2014届高三第一次联考试题】若动圆的圆心在抛物线212x y =上,且与直线30y +=相切,则此圆恒过定点( ) A.(0,2)B.(0,3)-C.(0,3)D.(0,6)6.【河北省唐山市2013-2014学年度高三年级摸底考试文科】已知双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A .221169x y -= B .22134x y -= C .221916x y -= D .22143x y -=7.【2014届吉林市普通高中高中毕业班复习检测】中心为)00(,, 一个焦点为)25,0(F 的椭圆,截直线23-=x y 所得弦中点的横坐标为21,则该椭圆方程是( ) A.125275222=+y xB.1257522=+y x C.1752522=+y x D.175225222=+y x8.【安康市2014届高三第一次检测】若[]3,3-∈k ,则k 的值使得过)1,1(A 可以做两条直线与圆2)(22=+-y k x 相切的概率等于( ) A .21 B .31 C .32 D .439.【改编自2012年高考辽宁卷文科】已知P,Q 为抛物线22x y =上两点,点F 是抛物线的焦点,且()175,0,022P Q FP FQ x x ==><,过P,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( ) (A) 1 (B) 3 (C)-4 (D) -810.【2013—2014学年第一学期赣州市十二县(市)期中联考】设1F ,2F 分别为双曲线22221x y a b-=(0,0)a b >>的左,右焦点.若在双曲线右支上存在一点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率为( ) A.35 B . 34 C.45D. 2511.【景德镇市2014届高三第一次质检试卷】已知双曲线C :22221x y a b-=,若存在过右焦点F 的直线与双曲线C 相交于A B 、两点且3AF BF =,则双曲线离心率的最小值为( )A B .2 D .12.【江西师大附中高三年级2013-2014开学考试】抛物线22y px =(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为( )A .2BC .1 D(二)填空题(4*5=20分)13. 【江西抚州一中2013-2014学年高三年级第四次同步考试】已知实数y x ,满足01422=+-+x y x ,则xy的最大值为 .14.【陕西宝鸡市金台区2014届高三会考试题】设0x y x y +≥⎧⎨-≥⎩与抛物线24y x =-的准线围成的三角形区域(包含边界)为D ,),(y x P 为D 内的一个动点,则目标函数2z x y =-的最大值为 .15.【江苏省苏州市2014届高三九月测试试卷】已知P 是直线:40(0)l kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B .若四边形PACB 的最小面积为2,则k = .16.【2014年湖北七市高三年级联合考试文科数学】若直线1x my =-与圆C :220x y mx ny p ++++=交于A 、B 两点,且A 、B 两点关于直线y x =对称,则实数p的取值范围为_______.(三)解答题(10+5*12=70分)17. 【安徽省池州一中2014届高三第一次月考】已知椭圆C :()222210x y a b a b+=>>的离心率为2,左焦点为)0,2(-F .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线y x m =+与曲线C 交于不同的A 、B 两点,且线段AB 的中点M 在圆221x y += 上,求m 的值.18.【陕西宝鸡金台区2014届高三会考试题】已知椭圆1,C 抛物线2C 的焦点均在y 轴上,1C 的中心和2C的顶点均为坐标原点,O 从每条曲线上取两个点,将其坐标记录于下表中:(Ⅰ)求分别适合12,C C 的方程的点的坐标; (Ⅱ)求12,C C 的标准方程.19.【浙江温州市十校联合体2014届高三上学期期初联考数学(文科)】已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴距离的差都等于1. (1)求曲线C的方程;(2)若过点M(1,0)-的直线与曲线C有两个交点A,B ,且FA FB ⊥,求直线l 的斜率.20.【江西师大附中高三年级开学考试】已知椭圆C 的中心为原点O ,焦点在x 轴上,离心,且点在该椭圆上. (Ⅰ)求椭圆C 的方程;(Ⅱ)如图,椭圆C 的长轴为AB ,设P 是椭圆上异于,A B 的任意一点,PH x ⊥轴,H 为垂足,点Q 满足PQ HP = ,直线AQ 与过点B 且垂直于x 轴的直线交于点M ,4BM BN = .求证:OQN ∠为锐角.00(,2)Q x y ,∴直线AQ 的方程为002(2)2y y x x =++, 令2x =,得008(2,)2y M x +,由(2,0)B ,21.【陕西省陕科大附中2014届高三8月月考(Ⅰ)求椭圆的方程;(Ⅱ)若过点C (-1,0)且斜率为k 的直线l 与椭圆相交于不同的两点B A ,,试问在x 轴上是否存在点M,是与k无关的常数?若存在,求出点M的坐标;若不存在,请说明理由.22.【景德镇市2014届高三第一次质检试卷】已知椭圆C 的中心在原点,焦点F 在x 轴上,离心率2e =)2Q , 在椭圆C 上. (1)求椭圆C 的标准方程;(2)若斜率为k (0)k ≠的直线n 交椭圆C 与A 、B 两点,且OA k 、k 、OB k 成等差数列, 点M (1,1),求ABM S ∆的最大值.【解析】(四)附加题(15分)23. 【2013---2014学年第一学期赣州市十二县(市)期中联考】已知抛物线24y x =的焦点为F 2,点F 1与F 2关于坐标原点对称,以F 1,F 2为焦点的椭圆C 过点⎛ ⎝⎭. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设点T )0,2(,过点F 2作直线l 与椭圆C 交于A,B 两点,且22F A F B λ= ,若[]2,1,TA TB λ∈--+ 求的取值范围.。

人教版高中数学 教案+学案综合汇编 第6章:圆锥曲线和方程式 课时0

人教版高中数学 教案+学案综合汇编 第6章:圆锥曲线和方程式  课时0

人教版高中数学教案+学案综合汇编第6章椭圆及其它第 1 课时椭圆及其标准方程一、教学目标(一)知识教学点使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.(二)能力训练点通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.(三)学科渗透点通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.二、教材分析1.重点:椭圆的定义和椭圆的标准方程.(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.)3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.)三、活动设计提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.四、教学过程(一)椭圆概念的引入前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.提出这一问题以便说明标准方程推导中一个同解变形.问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹.”“到两定点距离平方差等于常数的点的轨迹.”“到两定点距离之差等于常数的点的轨迹.”教师要加以肯定,以鼓励同学们的探索精神.比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……在此基础上,引导学生概括椭圆的定义:平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导1.标准方程的推导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要(a>b>0).关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)0)、F2(c,0),这里c2=a2-b2;-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与练习例题平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程.解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.∵2a=10,2c=8.∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3因此,这个椭圆的标准方程是请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分练习1 写出适合下列条件的椭圆的标准方程:练习2 下列各组两个椭圆中,其焦点相同的是[ ]由学生口答,答案为D.(四)小结1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.3.图形如图2-15、2-16.4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).五、布置作业1.如图2-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1|=2,A2F1的距离最大,|A2F1|=14,求椭圆的标准方程.3.求适合下列条件的椭圆的标准方程:是过F1的直线被椭圆截得的线段长,求△ABF2的周长.作业答案:4.由椭圆定义易得,△ABF2的周长为4a.六、板书设计第2课时椭圆的几何性质一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1.重点:椭圆的几何性质及初步运用.(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.)2.难点:椭圆离心率的概念的理解.(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.(解决办法:利用方程分析椭圆性质之前就先给学生说明.)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?学生口述,教师板书.(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.范围即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2.设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称.最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.4.离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e的几何意义.先分析椭圆的离心率e的取值范围:∵a>c>0,∴ 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.(三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:(2)描点作图.先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19).要强调:利用对称性可以使计算量大大减少.本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合P={M将上式化简,得:(a2-c2)x2+a2y2=a2(a2-c2).这是椭圆的标准方程,所以点M的轨迹是椭圆.由此例不难归纳出椭圆的第二定义.(四)椭圆的第二定义1.定义平面内点M与一个定点的距离和它到一定直线的距离的比是常数线叫做椭圆的准线,常数e是椭圆的离心率.2.说明这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比.(五)小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:五、布置作业1.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x2+4y2-100=0,(2)x2+4y2-1=0.2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.3.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形.的方程.作业答案:4.顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:六、板书设计第3 课时双曲线及其标准方程一、教学目标(一)知识教学点使学生掌握双曲线的定义和标准方程,以及标准方程的推导.(二)能力训练点在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力.(三)学科渗透点本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识.二、教材分析1.重点:双曲线的定义和双曲线的标准方程.(解决办法:通过一个简单实验得出双曲线,再通过设问给出双曲线的定义;对于双曲线的标准方程通过比较加深认识.)2.难点:双曲线的标准方程的推导.(解决办法:引导学生完成,提醒学生与椭圆标准方程的推导类比.)3.疑点:双曲线的方程是二次函数关系吗?(解决办法:教师可以从引导学生回忆函数定义和观察双曲线图形来解决,同时让学生在课外去研究在什么附加条件下,双曲线方程可以转化为函数式.)三、活动设计提问、实验、设问、归纳定义、讲解、演板、口答、重点讲解、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?(学生回答,教师板书)平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.教师要强调条件:(1)平面内;(2)到两定点F1、F2的距离的和等于常数;(3)常数2a>|F1F2|.2.椭圆的标准方程是什么?(学生口答,教师板书)(二)双曲线的概念把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?它的方程是怎样的呢?1.简单实验(边演示、边说明)如图2-23,定点F1、F2是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出曲线的一支;由|MF2|-|MF1|是同一常数,可以画出另一支.注意:常数要小于|F1F2|,否则作不出图形.这样作出的曲线就叫做双曲线.2.设问问题1:定点F1、F2与动点M不在平面上,能否得到双曲线?请学生回答,不能.强调“在平面内”.问题2:|MF1|与|MF2|哪个大?请学生回答,不定:当M在双曲线右支上时,|MF1|>|MF2|;当点M在双曲线左支上时,|MF1|<|MF2|.问题3:点M与定点F1、F2距离的差是否就是|MF1|-|MF2|?请学生回答,不一定,也可以是|MF2|-|MF1|.正确表示为||MF2|-|MF1||.问题4:这个常数是否会大于等于|F1F2|?请学生回答,应小于|F1F2|且大于零.当常数=|F1F2|时,轨迹是以F1、F2为端点的两条射线;当常数>|F1F2|时,无轨迹.3.定义在上述基础上,引导学生概括双曲线的定义:平面内与两定点F1、F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点F1、F2叫做双曲线的焦点,两个焦点之间的距离叫做焦距.教师指出:双曲线的定义可以与椭圆相对照来记忆,不要死记.(三)双曲线的标准方程现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导学生给出双曲线的方程的推导.标准方程的推导:(1)建系设点取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴(如图2-24)建立直角坐标系.设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0).又设点M与F1、F2的距离的差的绝对值等于常数.(2)点的集合由定义可知,双曲线就是集合:P={M||MF1|-|MF2||=2a}={M|MF1|-|MF2|=±2a}.(3)代数方程(4)化简方程(由学生演板)将这个方程移项,两边平方得:化简得:两边再平方,整理得:(c2-a2)x2-a2y2=a2(c2-a2).(以上推导完全可以仿照椭圆方程的推导.)由双曲线定义,2c>2a 即c>a,所以c2-a2>0.设c2-a2=b2(b>0),代入上式得:b2x2-a2y2=a2b2.这就是双曲线的标准方程.两种标准方程的比较(引导学生归纳):教师指出:(1)双曲线标准方程中,a>0,b>0,但a不一定大于b;(2)如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y 轴上.注意有别于椭圆通过比较分母的大小来判定焦点在哪一坐标轴上.(3)双曲线标准方程中a、b、c的关系是c2=a2+b2,不同于椭圆方程中c2=a2-b2.(四)练习与例题1.求满足下列的双曲线的标准方程:焦点F1(-3,0)、F2(3,0),且2a=4;3.已知两点F1(-5,0)、F2(5,0),求与它们的距离的差的绝对值是6的点的轨迹方程.如果把这里的数字6改为12,其他条件不变,会出现什么情况?由教师讲解:按定义,所求点的轨迹是双曲线,因为c=5,a=3,所以b2=c2-a2=52-32=42.因为2a=12,2c=10,且2a>2c.所以动点无轨迹.(五)小结1.定义:平面内与两定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.3.图形(见图2-25):4.焦点:F1(-c,0)、F2(c,0);F1(0,-c)、F2(0,c).5.a、b、c的关系:c2=a2+b2;c=a2+b2.五、布置作业1.根据下列条件,求双曲线的标准方程:(1)焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2);3.已知圆锥曲线的方程为mx2+ny2=m+n(m<0<m+n),求其焦点坐标.作业答案:2.由(1+k)(1-k)<0解得:k<-1或k>1六、板书设计第 4 课时双曲线的几何性质一、教学目标(一)知识教学点使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.(二)能力训练点在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题.二、教材分析1.重点:双曲线的几何性质及初步运用.(解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.)2.难点:双曲线的渐近线方程的导出和论证.(解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.)3.疑点:双曲线的渐近线的证明.(解决办法:通过详细讲解.)三、活动设计提问、类比、重点讲解、演板、讲解并归纳、小结.四、教学过程(一)复习提问引入新课1.椭圆有哪些几何性质,是如何探讨的?请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.2.双曲线的两种标准方程是什么?再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标下面我们类比椭圆的几何性质来研究它的几何性质.(二)类比联想得出性质(性质1~3)引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页>(三)问题之中导出渐近线(性质4)在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想.接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?下面,我们来证明它:双曲线在第一象限的部分可写成:当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.在其他象限内也可以证明类似的情况.现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精再描几个点,就可以随后画出比较精确的双曲线.(四)顺其自然介绍离心率(性质5)由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.(五)练习与例题1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.请一学生演板,其他同学练习,教师巡视,练习毕予以订正.由此可知,实半轴长a=4,虚半轴长b=3.焦点坐标是(0,-5),(0,5).本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结.解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:化简得:(c2-a2)x2-a2y2=a2(c2-a2).这就是双曲线的标准方程.由此例不难归纳出双曲线的第二定义.(六)双曲线的第二定义1.定义(由学生归纳给出)平面内点M与一定点的距离和它到一条直线的距离的比是常数e=叫做双曲线的准线,常数e是双曲线的离心率.2.说明(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结.五、布置作业1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)16x2-9y2=144;(2)16x2-9y2=-144.2.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程.点到两准线及右焦点的距离.作业答案:距离为7六、板书设计第 5 课时抛物线及其标准方程一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.(解决办法:通过一个简单实验与椭圆、双曲线的定义相比较引入抛物线的定义;通过一些例题加深对标准方程的认识.)2.难点:抛物线的标准方程的推导.(解决办法:由三种建立坐标系的方法中选出一种最佳方法,避免了硬性规定坐标系.) 3.疑点:抛物线的定义中需要加上“定点F不在定直线l上”的限制.(解决办法:向学生加以说明.)三、活动设计提问、回顾、实验、讲解、演板、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思考两个问题:问题1:同学们对抛物线已有了哪些认识?在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题2:在二次函数中研究的抛物线有什么特征?在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.(二)抛物线的定义1.回顾平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?2.简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A 到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.3.定义这样,可以把抛物线的定义概括成:平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l 上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(三)抛物线的标准方程设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?。

圆锥曲线与直线(一)

圆锥曲线与直线(一)

《圆锥曲线与直线》学案(一)学习目标:1.能够把研究直线与圆锥曲线位置关系的问题转化为方程组解的问题;2.能够使用数形结合的方法,迅速判断某些直线与圆锥曲线的公共点个数.1.回忆在直线和圆的位置关系中,怎样判断有几个公共点.2.你能否用作图的方法粗略地探究直线与椭圆、双曲线有几种位置关系,分别有几个公共点,3.怎样能准确地判断我们的探究结果是否准确?4.你能同样画出直线与双曲线的各种位置关系吗?分别有几个公共点?并试着举出实例证明自己的观点。

问题探究:以上各种情况中的公共点能否说成是交点,为什么?课堂训练:1.判断直线01=+-y x 与椭圆1162522=+y x 、双曲线122=-y x 、抛物线x y 42=公共点的个数,并说出位置关系。

2.过点P(1,1)与双曲线116922=-y x 只有一个交点的直线共有几条?<变式>:若将点P(1,1)改为(1)A(3,4) (2)B(3,0) (3)C(4,0) (4)D(0,0). 3.3.(04全国)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是4.(04全国)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有 条5.过点)2,0(M 与抛物线x y 82=只有一个公共点的直线的方程是6.直线1-=kx y 与双曲线122=-y x 只有一个公共点,则k 的取值是7.直线1+=kx y 与椭圆13422=+y x 的交点个数是 ><变式:若直线1+=kx y 与椭圆12522=+my x 恒有公共点,则m 的范围是8.直线3-=x y 与曲线1492=-x x y 的交点个数为 ><变式:若方程24x -=2+kx 恰好有两个实数根,则实数k 的取值范围是9.已知双曲线以两条坐标轴为对称轴,且与x 2+y 2=17圆相交于A(4,-1),若圆在点A 的切线与双曲线的一条渐近线平行,求双曲线的方程.10.已知抛物线)0(22>=p px y ,过动点)0,(a M ,且斜率为1的直线l 与该抛物线交于不同的两点,p AB 2≤,(1) 求a 的取值范围。

新教材高考数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册

新教材高考数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册

章末复习一、圆锥曲线的定义及标准方程 1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数. 2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1 (1)已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .以上都不对答案 C解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与它到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.(2)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解 方法一 由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上, 所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1.方法二 设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0), 由PD →=2MD →,得x 0=x ,y 0=2y , 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4, 所以曲线C 的方程为x 24+y 2=1.反思感悟 (1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1 (1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 答案 x 2-y 23=1解析 由题意得⎩⎪⎨⎪⎧c =2,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3,因此双曲线方程为x 2-y 23=1.(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解 抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小, 且最小值为|MD |=2-(-2)=4, 所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2 (1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4, 所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8, 所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±ba x =±22x , 即x ±2y =0.反思感悟 求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2 (1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是( ) A.12 B.32 C.22 D.33 答案 A解析 12ab =3c 2,即a 2(a 2-c 2)=12c 4,所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为_________. 答案 x ±y =0 解析 c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎪⎫c ,-p 2,即c 2a 2-p 24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④将④代入②,得c 2a 2=2.∴a 2+b 2a 2=2,即ba=1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1, ∴椭圆的方程为x 24+y 23=1.(2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2. 由|AB ||CD |=534,得 4-m25-4m2=1, 解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.反思感悟 (1)直线与圆锥曲线的位置关系可以通过代数法判断. (2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x+2y -2=0与x 轴,y 轴分别交于点A ,B . (1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围. 解 (1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2, ∴c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,设椭圆方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f 0≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是⎣⎢⎡⎦⎥⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4 已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA ⊥OB ,求△AOB 面积的最小值.解 (1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1. 则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.(2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a . 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-4. 所以-2a =-4,解得a =2.所以直线AB :x =ty +2. 所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4. 当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立. 所以△AOB 面积的最小值为4.反思感悟 (1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4 已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解 由题意可知,动圆圆心P 到点⎝ ⎛⎭⎪⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝ ⎛⎭⎪⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x .(2)证明 易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧x =my +b ,y 2=2x ,得y 2-2my -2b =0,所以⎩⎪⎨⎪⎧y 1+y 2=2m ,y 1y 2=-2b ,所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2,因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0, 所以(b -1)2=(2m -1)2, 所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去; 当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50°D.1cos 50°答案 D解析 由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p 等于( )A .2B .3C .4D .8 答案 D解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0), 所以p2=2p ,解得p =8,故选D.3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a =1a.在等腰三角形ABF 1中,cos 2θ=2m2+3m 2-3m 22×2m ·3m=13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝ ⎛⎭⎪⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B.4.(2019·北京)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k t -1x 1+x 2+t -12=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).。

2008高考数学专题圆锥曲线(解答题)

2008高考数学专题圆锥曲线(解答题)

全国名校高考数学专题训练08圆锥曲线(解答题1)1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴===设P (x ,y ),则1),1(),1(2221-+=--⋅---=⋅y x y x y x PF PF 3511544222+=--+x x x ]5,5[-∈x ,0=∴x 当,即点P 为椭圆短轴端点时,21PF ⋅有最小值3;当5±=x ,即点P 为椭圆长轴端点时,21PF ⋅有最大值4(Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y由方程组2222221(54)5012520054(5)x y k x k x k y k x ⎧+=⎪+-+-=⎨⎪=-⎩,得依题意220(1680)055k k ∆=->-<<,得 当5555<<-k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则45252,4550222102221+=+=+=+k k x x x k k x x.4520)54525()5(22200+-=-+=-=∴k kk k k x k y又|F 2C|=|F 2D|122-=⋅⇔⊥⇔R F k k l R F12042045251)4520(0222222-=-=+-+--⋅=⋅∴k k k k k kk k k RF ∴20k 2=20k 2-4,而20k 2=20k 2-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D|2、(江苏省启东中学高三综合测试二)已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上.(1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点-(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.解:(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x.:y x4y )1x (3y )1x (3y :AB ,)i )(2(2得消去由的方程为直线由题意得⎩⎨⎧=--=--=.3162x x |AB |),32,3(B ),332,31(A .3x ,31x ,03x 10x 321212=++=-===+-所以解得假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即),(9314y ,)332y ()34()32y (4:)316()32y ()131(,)316()32y ()13(2222222222舍不符解得相减得-=-+=++⎪⎩⎪⎨⎧=-++=+++因此,直线l 上不存在点C ,使得△ABC 是正三角形. (ii )解法一:设C (-1,y )使△ABC 成钝角三角形,.32y ,C ,B ,A ,32y 1x )1x (3y ≠=⎩⎨⎧-=--=故三点共线此时得由,9256)316(|AB |,y 3y 34928)332y ()311(|AC |222222==+-=-+--=又, , 392y ,9256y y 334928y y 3428,|AB ||AC ||BC |22222时即即当>++->+++>∠CAB 为钝角.9256y y 3428y y 334928,|AB ||BC ||AC |22222+++>+-+>即当.CBA 3310y 为钝角时∠-<22222y y 3428y 3y349289256,|BC ||AC ||AB |++++->+>即又0)32y (,034y 334y :22<+<++即.该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:)32(9323310≠>-<y y y 或.解法二: 以AB 为直径的圆的方程为:38 1x :L )332,35()38()332y ()35x (222的距离为到直线圆心-=-=++-. ).332,1(G L AB ,--相切于点为直径的圆与直线以所以当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A , B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 932y 1x ).31x (33332y :AB A =-=-=-得令垂直的直线为且与过点.3310y 1x ),3x (3332y :AB B -=-=-=+得令垂直的直线为且与过点.,)32,1(C ,,32y x )1x (3y 时的坐标为当点所以解得又由-=⎩⎨⎧-=--= A ,B ,C 三点共 线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:).32(9323310≠>-<y y y 或3、(江苏省启东中学高三综合测试三)(1)在双曲线xy=1上任取不同三点A 、B 、C ,证明:⊿ABC 的垂心H 也在该双曲线上;(2)若正三角形ABC 的一个顶点为C(―1,―1),另两个顶点A 、B 在双曲线xy=1另一支上,求顶点A 、B 的坐标。

高考数学压轴题突破训练——圆锥曲线(含详解)

高考数学压轴题突破训练——圆锥曲线(含详解)
14. 已知双曲线 的左右两个焦点分别为 ,点P在双曲线右支上.
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①


由方程①知 > <
, < < , .
7.解:解:令
则 即

又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为

∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.

【高考数学尖子生辅导专题】专题08 圆锥曲线中的“定”问题

【高考数学尖子生辅导专题】专题08 圆锥曲线中的“定”问题
例1
椭圆有两顶点 A1,0 、 B 1,0 ,过其焦点 F 0,1 的斜
率为 k 的直线 l 与椭圆交于 C 、 D 两点,并与 x 轴交于点 P , 直线 AC 与直线 BD 交于点 Q .
(1)当 CD 3 2 时,求直线 l 的方程; 2
1
专题八 圆锥曲线中的“定”问题
uuur uuur (2)当点 P 异于 A 、 B 两点时,求证: OP OQ 为定值.
1
0
,整理可得
m2
3x02 2 x0
4
m
x02 2
2
n2
n
ny 0
y0
0
,因为
y0
x02 4
,所以
m 3x02 4 1 n x02
2 x0
4
n2 n m2 2
0
,该式子要对任意的满足
y0
x02 ( 4
x0
0
)的
x0
m 0
恒成立,所以
1 n
n2
0 n
m2
2
0
,由此解得
m 0 n 1
,所以以
PQ
为直径的圆恒过定点
0,1

法 2:由对称性可知该定点必在 y 轴上,设为 M 0,n .
由(1)知
y
1 4
x2
,所以
y
1 2
x
.设点
P x0 ,
y0
,Q
x1, 1
高考数学尖子锥生曲线辅中导的专“定题”问题
专题八 圆锥曲线中的“定”问题
近些年,关于圆锥曲线的命题,不管是高考真题还是高考模拟题,都不约而同地大量涌 现出一类“定”问题,即定值、定点以及定直线问题,考生遇见这样的问题都因不得要领, 从而内心感到惧怕,但因为这类题在解答之前并不知道其定值、定点之结果,更增添了它的 难度,有着很好的区分度,于是这一类题就成为了命题者们青睐的考题,相信在今年或往后 的高考中会成为一种趋势.

高二期末圆锥曲线复习学案汇编

高二期末圆锥曲线复习学案汇编

圆锥曲线复习学案(一)一、基础知识1、三种圆锥曲线的研究(1)当0<e<1时,点P 轨迹是椭圆;当e>1时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。

(2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。

(3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。

①定性:焦点在与准线垂直的对称轴上椭圆及双曲线中:中心为两焦点中点;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。

②定量:椭 圆 双 曲 线 抛 物 线焦 距无 长轴长 无 无 实轴长 无无 短轴长 无 通径长 离心率基本量关系无(4)圆锥曲线的标准方程及解析量(随坐标改变而变),当焦点在x 轴上的方程如下:椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2222=+(a>b>0)1b y a x 2222=-(a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b )(±a ,0)(0,0) 焦 点 (±c ,0) (2p,0) 中 心 (0,0)范 围 |x|≤a |y|≤b|x|≥a x ≥0 焦半径————|PF|=x 0+2p总之研究圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。

二、常见结论:1、与双曲线22221x y a b-=(a>0,b>0), 有共同渐近线的双曲线系方程为等轴双曲线的性质: 离心率为 ,渐近线方程为 ,等轴双曲线可以设为x 2-y 2=λ≠02、焦点弦的性质 焦点弦 过px y22=()0>p 的焦点弦AB,A(1x ,1y )B(2x ,2y )(1)AB = ;(2)12y y = ,12x x = ,(3)以AB 为直径的圆与准线相切(4)抛物线的通径:通过焦点并且垂直于对称轴的直线与抛物线两交点之间的线段叫做抛物线的通径.通径的长为2p ,通径是过焦点最短的弦. 三、典例剖析题型一:圆锥曲线的定义及方程例1根据下列条件,求双曲线方程: (1)已知双曲线的一条渐进线方程为12y x =,且通过点(3,3)A ,则该双曲线的标准方程为 .(2) 与双曲线116922=-y x 有共同渐近线,且过点)32,3(-;例2(1)设12,F F 分别是椭圆2212516x y +=的左、右焦点,P 为椭圆上任一点,点M 的坐标为(3,1),则2||||PM PF +的最大值为 .(2)设点P 在双曲线116922=-y x 上,若F 1、F 2为此双曲线的两个焦点,且|PF 1|∶|PF 2|=1∶3,求△F 1PF 2的周长。

2025届高中数学高考复习学案:圆锥曲线中的证明与探索性问题

2025届高中数学高考复习学案:圆锥曲线中的证明与探索性问题

圆锥曲线中的证明与探索性问题会用直线与圆锥曲线中有关知识解决证明与探索性问题,提高学生分析问题、解决问题的能力.关键能力·题型剖析题型一证明问题例1(12分)[2023·新课标Ⅱ卷]已知双曲线C的中心为坐标原点,左焦点为(-25,0),离心率为5.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.思路导引(1)由题意求出a,b→C的方程(2)设直线方程→与C联立→消去y→韦达定理→写出直线MA1,NA2的方程→联立消去y→解得x,即交点的横坐标为定值→点P在定直线上.[满分答卷·评分细则]解析:(1)设双曲线方程为x2a2−y2b2=1(a>0,b>0),由焦点坐标得c=25,由e=c a=5得a=2,b=c2−a2=4,→正确求出a,b,c得2分∴双曲线方程为x24−y216=1.→正确写出双曲线方程得1分2由1可得A1−2,0,A22,0,→正确写出左、右顶点A1,A2的坐标得1分设M(x1,y1),N(x2,y2),显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12.→正确设出直线MN的方程得1分my−4−y216=1得(4m2-1)y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2−1,y1y2=484m2−1,→正确消去x得到关于y的一元二次方程,写出Δ及y1+y2、y1y2的表达式得2分直线MA1的方程为y=y1x1+2(x+2),直线NA2的方程为y=y2x2−2(x-2)→正确写出直线MA1,NA2的方程得1分联立直线方程y=+2,y2消去y得x+2x−2=121=m·484m2−1−2·32m4m2−1+2y1m×484m2−1−6y1=−16m4m2−1+2y148m4m2−1−6y1=-13,→正确得出x+2x−2=-13得3分可得x=−1,即x p=−1,@所以点P在定直线x=−1上.→正确解出x=-1,下结论得1分题后师说圆锥曲线证明问题的类型及求解策略(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何要素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直;二是证明直线与圆锥曲线中的一些数量关系相等或不等.(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.巩固训练1[2023·北京卷]已知椭圆E:x2a2+y2b2=1(a>b>0)A、C分别是E的上、下顶点,B,D分别是E的左、右顶点,|AC|=4.(1)求E的方程;(2)设P为第一象限内E上的动点,直线PD与直线BC交于点M,直线PA与直线y=-2交于点N.求证:MN∥CD.题型二探索性问题例2[2024·河南郑州模拟]已知椭圆x2a2+y2b2=1(a>b>0)的离心率为12,F为椭圆的右焦点,A 为椭圆的下顶点,A与圆x2+(y-2)2=1上任意点距离的最大值为3+3.(1)求椭圆的方程;(2)设点D在直线x=1上,过D的两条直线分别交椭圆于M,N两点和P,Q两点,点F到直线MN和PQ的距离相等,是否存在实数λ,使得|DM|·|DN|=λ|DP|·|DQ|?若存在,求出λ的值,若不存在,请说明理由.题后师说存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.巩固训练2[2024·江西南昌模拟]已知抛物线C:y2=2px(p>0)的焦点为F,A,B分别为C上两个不同的动点,O为坐标原点,当△OAB为等边三角形时,|AB|=83.(1)求C的标准方程;(2)抛物线C在第一象限的部分是否存在点P,使得点P满足PA +PB =4PF ,且点P到直线AB的距离为2?若存在,求出点P的坐标及直线AB的方程;若不存在,请说明理由.高考大题研究课十圆锥曲线中的证明与探索性问题关键能力·题型剖析巩固训练1解析:依题意,得e =ca=53,则c =53a ,又A ,C 分别为椭圆上、下顶点,|AC |=4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.解析:因为椭圆E 的方程为x 29+y 24=1,所以A (0,2),C (0,-2),B (-3,0),D (3,0),因为P 为第一象限E 上的动点,设P (m ,n )(0<m <3,0<n <2),则m 29+n 24=1,易得k BC =0+2−3−0=-23,则直线BC 的方程为y =-23x -2,k PD =n−0m−3=nm−3,则直线PD 的方程为y =n(x -3),联立y 23−2,y 3解得x =3n+2m−6y =−12n 3n+2m−6,即而k P A =n−2m−0=n−2m,则直线PA 的方程为y =n−2mx +2,令y =-2,则-2=n−2mx +2,解得x =−4m n−2,即−2,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN −12n3n+2m−6+2=−6n 2+4mn−8m+249n 2+8m 2+6mn−12m−36=−6n 2+4mn−8m+249n 2+72−18n 2+6mn−12m−36=−6n2+4mn−8m+242=23,又k CD=0+23−0=23,即k MN=k CD,显然,MN与CD不重合,所以MN∥CD.例2解析:由题意可知e=c a=12,A(0,-b),又A到圆上距离最大值为2-(-b)+1=3+b=3+3,∴b=3.又a2=b2+c2,c a=12,解得a2=4,b2=3.故椭圆方程为x24+y23=1.解析:若D点与F点重合,则λ不存在,若D点与F点不重合,∵点F到直线MN和PQ的距离相等,且F在直线x=1上,∴k MN+k PQ=0,设D(1,m),由题意可知直线MN,PQ的斜率均存在且不为0,设直线MN的方程为y-m=k1(x-1),(k1≠0),由y−m=k1x−1,3x2+4y2=12,得412+3x2+(8k1m-8k2)x+412+4m2-8k1m-12=0,设M(x M,y M),N(x N,y N),则x M+x N=812−812,x M·x N=412+42-81-12412+3,又|DM|-1,D=1+12|x N-1|,|DM|·|DN|=(1+k12)|(x M-1)(x N-1)|=(1+k12)|x M x N-(x M+x N)+1|=1+12设直线PQ的方程为y-m=k2(x-1)(k2≠0),同理可得|DP|·|DQ|=1+22又k1=-k2,∴|DM|·|DN|=|DP|·|DQ|,故λ=1.所以存在这样的λ=1,使得|DM |·|DN |=λ|DP |·|DQ |.巩固训练2解析:由对称性可知当△OAB 为等边三角形时,A ,B 两点关于x 轴对称,当△OAB 为等边三角形时,△OAB |=12,由题意知点(12,43)在C 上,代入y 2=2px ,得(43)2=24p ,解得p =2,所以C 的标准方程为y 2=4x .解析:由(1)知F (1,0),根据题意可知直线AB 的斜率不为0,设直线AB 的方程为x =ky +m ,A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),联立x =ky +m ,y 2=4x ,得y 2-4ky -4m =0,所以Δ=16k 2+16m >0,即k 2+m >0,且y 1+y 2=4k ,y 1y 2=-4m ,所以x 1+x 2=k (y 1+y 2)+2m =4k 2+2m ,由PA +PB =4PF ,得(x 1-x 0,y 1-y 0)+(x 2-x 0,y 2-y 0)=4(1-x 0,-y 0),所以x 1+x 2−4=−2x 0,y 1+y 2=−2y 0,所以x 0=2−m −2k 2,y 0=−2k ,即P (2-m -2k 2,-2k ),又点P 在C 上,所以4k 2=4(2-m -2k 2),即3k 2+m =2,①所以k 2+m =k 2+2-3k 2=2(1-k 2)>0,解得-1<k <1,又点P 在第一象限,所以-2k >0,所以-1<k <0.又点P 到直线AB 的距离d 1+k 2,化简得m 2-2m =k 2,②联立①②解得m 13,k 或m 13k =(舍去),或m =2k =0(舍去).此时点P (79,直线AB 的方程为3x +7y +1=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线
一、选择题:
1.已知抛物线)0(22
>=p px y 上一点),1(m M )0(>m 到其焦点的距离为5,双曲线122=-y a
x 的左顶点为A ,若双曲线一条渐近线与直线AM 平行,则实数a 等于( ) A .
9
1 B .
4
1 C .
3
1
D .
2
1
2.若双曲线的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A .
5 B .5 C .2 D .2
3.若R k ∈,则方程12
322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( ) A .23-<<
-k B .3-<k
C .3-<k 或2->k
D .2->k
4.已知双曲线)0(14
2
2
2>=-a y a x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的离心率为( )
A .
5
9 B .
5
53 C .
2
3 D .
3
5 5.已知抛物线22(0)y px p =>与双曲线22
22
1(,0)x y a b a b
-=>有相同的焦点F ,点
A 是两曲线的一个交
点,且AF x ⊥轴,若l 为双曲线的一条渐近线,则l 的倾斜角所在的区间可能是( ) A .(0,
4
π
B .(,64ππ
C .(,)43ππ
D .(,32ππ
6.若双曲线221x ky +=的离心率是2,则实数k 的值是( ) A .3- B . 1
3
- C . 3 D .
13
二、填空题:
7.若抛物线22y px =的焦点与双曲线22
195
x y -=的右焦点重合,则
p 的值为________。

8.已知抛物线x y 42
=焦点F 恰好是双曲线12
2
22=-b y a x 的右焦点,且双曲线过点),23(2
b a 则该双曲线的渐近线方程为 . 三、解答题
9.设椭圆C:)0(12
2
22>>=+b a b
y a x 的左、右焦点分别为12,F F ,上顶点为A ,过点A 与2AF 垂直的直
线交x 轴负半轴于点Q ,且2221=+F F F . (Ⅰ)求椭圆C 的离心率;
(Ⅱ)若过A 、Q 、2F 三点的圆恰好与直线l :33--y x 切,求椭圆C 的方程;
(III )在(Ⅱ)的条件下,过右焦点2F 作斜率为k 的直线l 圆C 交于M 、N 两点,在x 轴上是否存在点)0,(m P 使得以边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由.
10.如图,椭圆12
2
22=+b
y a x (0>>b a )的左、右焦点分别为
F 1(-1,0)、F 2(1,0),M 、N 是直
线2a x
=上的两个动点,且0F F
21=∙。

(1)设曲线C 是以MN 为直径的圆,试判断原点O 与圆C 的位置关系; (2)若以MN 为直径的圆中,最小圆的半径为22,求椭圆的方程。

11.已知椭圆)0(1:2
2221>>=+b a b
y a x C 的左、右焦点分别为F 1、F 2,其中F 2也是抛物线x y C 4:22=的
焦点,M 是C 1与C 2在第一象限的交点,且.35||2
=MF
(I )求椭圆C 1的方程;
(II )已知菱形ABCD 的顶点A 、C 在椭圆C 1上,顶点B 、D 在直线0177=+-y x 上,求直线AC 的方程.
12.已知椭圆)0(12
2
22>>=+b a b
y a x 过点)1,2(-,长轴长为52,过点C (-1,0)且斜率为k 的直线l
与椭圆相交于不同的两点A 、B. (1)求椭圆的方程;
(2)若线段AB 中点的横坐标是,2
1
-
求直线l 的斜率; (3)在x 轴上是否存在点M ,使1
352++⋅k 是与k 无关的常数?若存在,求出点M 的坐标;
若不存在,请说明理由.
13.如图所示,已知圆,8)1(:22
=++y x C 定点A (1,0)
,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足0,2=⋅=,点N 的轨迹为曲线E 。

(1)求曲线E 的方程;
(2)若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λλ求,=的取值范围。

相关文档
最新文档