牛顿第二定律各种典型题型

合集下载

必修一牛顿第二定律典型例题(含答案)

必修一牛顿第二定律典型例题(含答案)

【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.重力和斜面支持力 B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ]A.不断增大 B.不断减少C.先增大后减少D.先增大到一定数值后保持不变【例5】如图,质量为M的凹形槽沿斜面匀速下滑,现将质量为m的砝码轻轻放入槽中,下列说法中正确的是 [ ]A.M和m一起加速下滑B.M和m一起减速下滑C.M和m仍一起匀速下滑【例6】图1表示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。

【例7】在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量m1和m2的木块,m1>m2,如图1所示。

已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块[ ]A.有摩擦力作用,摩擦力方向水平向右B.有摩擦力作用,摩擦力方向水平向左C.有摩擦力作用,但摩擦力方向不能确定D.以上结论都不对【例8】质量分别为m A和m B的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下(图1),当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 [ ]A.a A=a B=0 B.a A=a B=gC.a A>g,a B=0 D.a A<g,a B=0【例9】在车箱的顶板上用细线挂着一个小球(图1),在下列情况下可对车厢的运动情况得出怎样的判断:(1)细线竖直悬挂:______;(2)细线向图中左方偏斜:___;(3)细线向图中右方偏斜:___________ 。

牛顿第二定律典型题型

牛顿第二定律典型题型

牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。

在解题时,可以利用正交分解法进行求解。

1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。

2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。

选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。

而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。

由矢量合成法则,得F总=,因此答案C正确。

例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。

物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(带详解)一、牛顿第二定律与斜面结合1.如图所示,一足够长的固定在水平面上的斜面,倾角37θ= ,斜面BC 与水平面AB 平滑连接,质量2kg m =的物体静止于水平面上的M 点,M 点与B 点之间的距离9m L =,物体与水平面和斜面间的动摩擦因数均为0.5μ=,现物体受到一水平向右的恒力14N F =作用,运动至B 点时撤去该力,B 点有一小圆弧,使得物体经过B 点时只有速度方向发生改变,速度大小不变,重力加速度210m/s g =,则:(1)物体到达B 点时的速度大小;(2)物体沿斜面向上滑行的最远距离。

(3)物体从开始运动到最后停止运动的总时间。

解得212m/s a =由M 到B 有212B v a L=解得6m/sB v =(2)沿斜面上滑时,根据牛顿第二定律得2sin37cos37mg mg ma μ︒+︒=解得2210m/s a =沿斜面运动的最远距离为(3)从M 点运动到B 点的时间为从B点运动到斜面最高点的时间为沿斜面下滑时的加速度为3sin37cos37mg mg ma μ︒-︒=解得232m/s a =沿斜面下滑的时间为解得下滑到B点时的速度为在水平面上运动的加速度大小为4mg ma μ=解得245m/s a =从B点到静止的时间为物体从开始运动到最后停止运动的总时间为1234t t t t t =+++解得2.一质量m =2kg 小物块从斜面上A 点由静止开始滑下,滑到斜面底端B 点后沿水平面再滑行一段距离停下来。

若物块与斜面、水平面间的动摩擦因数均为μ=0.25。

斜面A、B 两点之间的距离s =18m,斜面倾角θ=37°(sin37°=0.6;cos37°=0.8)斜面与水平面间平滑连接,不计空气阻力,g =10m/s 2。

求:(1)物块在斜面上下滑过程中的加速度大小;(2)物块滑到B 点时的速度大小;(3)物块在水平面上滑行的时间。

牛顿第二定律的应用(包含各种题型)

牛顿第二定律的应用(包含各种题型)

练习: 一木箱质量为m,与水平地面 间的动摩擦因数为μ,现用斜向右下方 与水平方向成θ角的力F推木箱,求经 过 t 秒时木箱的加速度。
N
竖直方向 N– Fsinθ- G = 0 ①
V0= 0
Vt=? 水平方向 Fcosθ- f = ma ②
Fcosθ f
二者联系 f=μN

θ
Fsinθ
F
G
a F cos (mg F sin )
37 °
总结
传送带问题的分析思路:
初始条件→相对运动→判断滑动摩擦力的大小 和方向→分析出物体受的合外力和加速度大小 和方向→由物体速度变化再分析相对运动来判 断以后的受力及运动状态的改变。
难点是当物体与皮带速度出现大小相等、方向 相同时,物体能否与皮带保持相对静止。一般 采用假设法,假使能否成立关键看F静是否在 0- Fmax之间
θ
以整体为对象, 受力如图, 则
F (M m)a........(2)
由(1)(2)有
F (M m)g tan
5.四个相同的木块并排放 在光滑的水平地面上, 当 用力F推A使它们共同加 速运动时, A对B的作用力 是多少?

ABCDΒιβλιοθήκη .如图所示,在光滑的地面上,水平外力F拉动小车和木块一起做加速
代入数据可得: F阻=67.5N
FN
F阻
F1 θ
θ
F2
mg
2 m(x -v0t) t2
F阻 方向沿斜面向上
二、从运动情况确定受力
已知物体运动情况确定受力情况,指的是在运动情 况(知道三个运动学量)已知的条件下,要求得出物体 所受的力或者相关物理量(如动摩擦因数等)。
处理这类问题的基本思路是:先分析物体的运动情 况,据运动学公式求加速度,再在分析物体受力情况的

牛顿第二定律25种题型

牛顿第二定律25种题型

牛顿第二定律25种题型牛顿第二定律是一个非常重要的物理定律,可以应用到各种不同的题型中。

以下是一些可能的题型:1. 计算给定物体的质量和加速度,求解作用力的大小。

2. 给定物体的质量和作用力的大小,求解加速度。

3. 给定物体的质量和加速度,求解作用力的方向。

4. 考虑多个作用力作用在物体上,求解物体的加速度。

5. 考虑摩擦力对物体运动的影响,求解加速度。

6. 考虑空气阻力对物体自由落体的影响,求解加速度。

7. 考虑弹簧力对物体振动的影响,求解加速度。

8. 考虑物体在斜面上的运动,求解加速度。

9. 考虑物体在圆周运动中的加速度。

10. 考虑物体的质量随时间变化,求解加速度。

11. 考虑非惯性系中的物体运动,求解加速度。

12. 考虑相对论效应对物体运动的影响,求解加速度。

13. 考虑电磁力对带电粒子的影响,求解加速度。

14. 考虑磁场对带电粒子的影响,求解加速度。

15. 考虑引力对天体运动的影响,求解加速度。

16. 考虑光子动量对物体的影响,求解加速度。

17. 考虑量子力学效应对微观粒子的影响,求解加速度。

18. 考虑弯曲时空对物体运动的影响,求解加速度。

19. 考虑黑洞的引力对物体的影响,求解加速度。

20. 考虑物体受到辐射的影响,求解加速度。

21. 考虑物体在非常高温或低温环境中的运动,求解加速度。

22. 考虑物体在高速运动中的加速度。

23. 考虑物体在微重力环境中的运动,求解加速度。

24. 考虑物体受到外部激励力的影响,求解加速度。

25. 考虑物体在复杂场景中的运动,求解加速度。

这些题型涵盖了牛顿第二定律在不同情景下的应用,从基本的直线运动到相对论和量子力学等高级领域。

每种题型都需要根据具体情况进行分析和计算,以求得正确的加速度。

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。

根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。

2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。

2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。

1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。

将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。

2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。

将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。

3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。

掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。

牛顿第二定律应用的常见题型

牛顿第二定律应用的常见题型

牛顿第二定律应用的常见题型以牛顿第二定律为核心的动力学是力学的重要组成部分,也是高考中的考查热点,学习时我们一定要深刻理解牛顿第二定律,并能熟练应用牛顿第二定律求解相关问题,下面介绍牛顿第二定律应用的几类典型问题。

一、连接体问题此类问题高考仅限于几个物体的加速度相同的情形,求解此类问题需灵活运用整体法和隔离法。

求解“内力”问题通常先对整体运用牛顿第二定律,求出系统的加速度,再用隔离法研究连接体中一个物体,即可求出物体间的相互作用力;求解“外力”问题,需先分析连接体中的一个物体,确定系统的加速度,再对整体运用牛顿第二定律,即可求出“外力”。

例l. 如下图所示,质量为2m的物体A与水平地面的摩擦可忽略不计,质量为m 物块B与地面间的动摩擦因数为,在已知水平推力F作用下,AB一起做加速运动,A和B间的作用力为______________。

解析:先把AB看作一个整体,系统受到的合外力为,系统的加速度为,再对物体B分析,由牛顿第二定律有,解得。

二. 瞬时问题牛顿第二定律反映了物体所受合外力与加速度的瞬时对应关系,当物体所受外力突然发生变化时,物体的加速度也会随之变化。

求解此类问题,需分别分析物体受力变化前和变化后的受力情况,确定物体受力是如何发生突变的,再分别应用牛顿第二定律列式求解。

例2. 木块A、B的质量分别为。

两木块之间用一轻弹簧相连接后放在光滑水平桌面上,用F=10N的水平恒力沿AB连线方向拉A,使A和B 沿桌面滑动,如下图所示,滑动中A、B具有相同的加速度时突然撤去拉力F,求撤去拉力F的瞬间,A和B的加速度各多大?解析:撤去拉力F时,A和B有相同加速度,对A、B整体分析,由牛顿第二定律有,得;研究木块B,它受到的弹力为,撤去拉力F的瞬间,轻弹簧的形变量没有变化,木块B受力不变,此时B的加速度与原来相同仍为;撤去拉力F的瞬间,木块A受弹簧拉力大小仍为6N,此时A的加速度为,方向向左。

三. 临界与极值问题当物体从一种物理现象转变为另一种物理现象,或从一个物理过程转入另一个物理过程,此时往往有一个临界状态,而极值问题也伴随临界问题的出现而出现。

牛顿第二定律典型题型分类

牛顿第二定律典型题型分类

牛顿第二定律题型总结一、整体法与隔离法:1、 A 、B 两物体靠在一起,放在光滑水平面上,它们的质量分别为 mA=3kg , m B =6kg ,今用水平力F A = 6N 推、用水平力FB=3N 拉B , A 、B 间的作用力有多大?F A F B A BZ Z z z Z Z Z ZZ Z Z X Z Z. Z ■■- /■ ZZ Z Z X / ■■- /2、 如图所示,质量为 M 的斜面A 置于粗糙水平地面上,动摩擦因数为 *,物体B 与斜 面间无摩擦。

在水平向左的推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。

已知斜面的倾角为e ,物体B 的质量为m 则它们的加速度 a 及推力F 的大小为()A a=gsinO,F=(M +m)g(H+sin!3)iBFL —B a =g cos0, F =(M +m)g cosH9A,r z Zz _7^77~/, /~~.广,~~C a =g tan 0, F =(M +m)g( P +tan 0)D a = g cot 6, F = H ( M 十 m) g3、如图所示,质量为 m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量 为m 的物体,与物体1相连接的绳与竖直方向成&角,则( )A .车厢的加速度为g sinemgB, 绳对物体1的拉力为cos 。

C.底板对物体2的支持力为(m2 -m°gD .物体2所受底板的摩擦力为m 2g tan96、在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意 志和自强不息的精神。

为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化。

一根不可伸缩的轻绳跨过4、如图所示,一只质量为 m 的小猴抓住用绳吊在大花板上的一根质量为 M 的竖直杆。

当悬绳突然断裂时,小猴急速沿 杆竖直上爬,以保持它离地面的高度不变。

牛顿第二定律各种典型题型

牛顿第二定律各种典型题型

牛顿第二定律牛顿第二定律11.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。

2.表达式F=ma。

3.“五个”性质1.一般思路:分析物体该时的受力情况—由牛顿第二定律列方程一瞬时加速度2.两种模型(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。

(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。

[例](多选)(2014 •南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为B的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是()A.两个小球的瞬时加速度均沿斜面向下,大小均为85吊eB.B球的受力情况未变,瞬时加速度为零C. A球的瞬时加速度沿斜面向下,大小为2gsin eD.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零[例](2013吉林模拟)在动摩擦因数U =0.2的水平面上有一个质量为m=2 kg 的小球, 小球与水平轻弹簧及与竖直方向成0=45°角的不可伸长的轻绳一端相连,如图所示,此时 小球处于静止平衡状态,且水平面对小球的弹力恰好为零。

当剪断轻绳的瞬间,取g=10 m/s 2,以下说法正确的是()若剪断弹簧,则剪断的瞬间小球的加速度大小为10巾〃2,方向向右针对练习:(2014 •苏州第三中学质检)如图所示,质量分别为m 、2m 的小球A 、B,由 轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中 的拉力为F,此时突然剪断细线。

在线断的瞬间,弹簧的弹力的大小和小琳的加速度的大小分别为( 4. (2014•宁夏银川一中一模)如图所示,A 、B 两小球分别连在轻线两端,B 球另一端解决两类动力学问题两个关键点 ⑴把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。

高中物理牛顿第二定律经典习题训练含答案

高中物理牛顿第二定律经典习题训练含答案

牛顿第二定律典型题型及练习一、巧用牛顿第二定律解决连接体问题所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系。

1、连接体与隔离体:两个或几个物体相连接组成的物体系统为连接体。

如果把其中某个物体隔离出来,该物体即为隔离体。

2、连接体问题的处理方法(1)整体法:连接体的各物体如果有共同的加速度,求加速度可把连接体作为一个整体,运用牛顿第二定律列方程求解。

(2)隔离法:如果要求连接体间的相互作用力,必须隔离出其中一个物体,对该物体应用牛顿第二定律求解,此方法为隔离法。

隔离法目的是实现内力转外力的,解题要注意判明每一隔离体的运动方向和加速度方向。

(3)整体法解题或隔离法解题,一般都选取地面为参照系。

例题1 跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图1所示. 已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为( )A.a=1.0m/s,F=260N B.a=1.0m/s,F=330NC.a=3.0m/s,F=110N D.a=3.0m/s,F=50N二、巧用牛顿第二定律解决瞬时性问题当一个物体(或系统)的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统)对和它有联系的物体(或系统)的受力发生变化。

例题2如图4所示,木块A与B用一轻弹簧相连,竖直放在木块C上。

三者静置于地面,它们的质量之比是1∶2∶3。

设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度a A、a B分别是多少?题型一 对牛顿第二定律的理解1、关于牛顿第二定律,下列说法正确的是( )A .公式F =ma 中,各量的单位可以任意选取B .某一瞬间的加速度只决定于这一瞬间物体所受合外力,而与这之前或之后的受力无关C .公式F =ma 中,a 实际上是作用于该物体上每一个力所产生的加速度的矢量和D .物体的运动方向一定与它所受合外力方向一致【变式】.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为( )A .牛顿的第二定律不适用于静止物体B .桌子的加速度很小,速度增量极小,眼睛不易觉察到C .推力小于静摩擦力,加速度是负的D .桌子所受的合力为零题型二 牛顿第二定律的瞬时性2、如图所示,质量均为m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态.如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少?【变式】.(2010·全国卷Ⅰ)如图4—3—3,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )A.a1=0,a2=gB. a1=g, a2=gC. a1=0, a2=(m+M)g/MD. a1=g, a2=(m+M)g/M题型三 牛顿第二定律的独立性3 如图所示,质量m =2 kg 的物体放在光滑水平面上,受到水平且相互垂直的两个力F 1、F 2的作用,且F 1=3 N ,F 2=4 N .试求物体的加速度大小.【变式】.如图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?题型四 运动和力的关系4 如图所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( )A .物体从A 到B 速度越来越大B .物体从A 到B 速度先增加后减小C .物体从A 到B 加速度越来越小D .物体从A 到B 加速度先减小后增加【变式】.(2010·福建理综高考)质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m题型五 牛顿第二定律的应用5、质量为2 kg 的物体与水平面的动摩擦因数为0.2,现对物体用一向右与水平方向成37°、大小为10 N 的斜向上拉力F ,使之向右做匀加速直线运动,如图甲所示,求物体运动的加速度的大小.(g 取10 m/s.)【变式】.一只装有工件的木箱,质量m =40 kg.木箱与水平地面的动摩擦因数μ=0.3,现用200N 的斜向右下方的力F 推木箱,推力的方向与水平面成θ=30°角,如下图所示.求木箱的加速度大小.(g 取9.8 m/s 2)强化练习一、选择题1.下列说法中正确的是( )A .物体所受合外力为零,物体的速度必为零B .物体所受合外力越大,物体的加速度越大,速度也越大C .物体的速度方向一定与物体受到的合外力的方向一致D .物体的加速度方向一定与物体所受到的合外力方向一致2.关于力的单位“牛顿”,下列说法正确的是( )A .使2 kg 的物体产生2 m/s 2加速度的力,叫做1 NB .使质量是0.5 kg 的物体产生1.5 m/s 2的加速度的力,叫做1 NC .使质量是1 kg 的物体产生1 m/s 2的加速度的力,叫做1 ND .使质量是2 kg 的物体产生1 m/s 2的加速度的力,叫做1 N3.关于牛顿第二定律,下列说法中正确的是( )A .加速度和力的关系是瞬时对应关系,即a 与F 是同时产生,同时变化,同时消失B .物体只有受到力作用时,才有加速度,但不一定有速度C .任何情况下,加速度的方向总与合外力方向相同,但与速度v 不一定同向D .当物体受到几个力作用时,可把物体的加速度看成是各个力单独作用所产生的分加速度的合成4.质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为F f ,加速度a =13g ,则F f 的大小是( ) A .F f =13mg B .F f =23mg C .F f =mg D .F f =43mg 5.如图1所示,底板光滑的小车上用两个量程为20 N 、完全相同的弹簧测力计甲和乙系住一个质量为1 kg 的物块,在水平地面上当小车做匀速直线运动时,两弹簧测力计的示数均为10 N ,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8 N ,这时小车运动的加速度大小是( ) A .2 m/s 2 B .4 m/s 2C .6 m/s 2D .8 m/s 26.搬运工人沿粗糙斜面把一物体拉上卡车,当力沿斜面向上,大小为F 时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则( )A .a 1=a 2B .a 1<a 2<2a 1C .a 2=2a 1D .a 2>2a 1二、非选择题7.如图2所示,三物体A 、B 、C 的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把A 、B 之间的细绳剪断的瞬间,求三物体的加速度大小为a A 、a B 、a C .8.甲、乙、丙三物体质量之比为5∶3∶2,所受合外力之比为2∶3∶5,则甲、乙、丙三物体加速度大小之比为________.9.质量为2 kg 的物体,运动的加速度为1 m/s 2,则所受合外力大小为多大?若物体所受合外力大小为8N ,那么,物体的加速度大小为多大?10.质量为6×103kg 的车,在水平力F =3×104N 的牵引下,沿水平地面前进,如果阻力为车重的0.05倍,求车获得的加速度是多少?(g 取10 m/s 2)11.质量为2 kg 物体静止在光滑的水平面上,若有大小均为10 2 N 的两个外力同时作用于它,一个力水平向东,另一个力水平向南,求它的加速度.12.质量m 1=10 kg 的物体在竖直向上的恒定拉力F 作用下,以a 1=2m/s 2的加速度匀加速上升,拉力F 多大?若将拉力F 作用在另一物体上,物体能以a 2=2 m/s 2的加速度匀加速下降,该物体的质量m 2应为多大?(g 取10m/s 2,空气阻力不计)13.在无风的天气里,一质量为0.2 g的雨滴在空中竖直下落,由于受到空气的阻力,最后以某一恒定的速度下落,这个恒定的速度通常叫收尾速度.(1)雨滴达到收尾速度时受到的空气阻力是多大?(g =10m/s 2)(2)若空气阻力与雨滴的速度成正比,试定性分析雨滴下落过程中加速度和速度如何变化.参考答案1【答案】 BC 答案:D2答案:B 球瞬间加速度aB =0. aA =2g ,方向向下.答案c3 2.5 m/s 2 答案4、【答案】 BD 答案:B5、【答案】 2.6 m/s 2强化练习1析:物体所受的合外力产生物体的加速度,两者是瞬时对应关系,方向总是一致的.力的作用产生的效果与速度没有直接关系.答案:D2、答案:C3、解析:有力的作用,才产生加速度;力与加速度的方向总相同;力和加速度都是矢量,都可合成.答案:ABCD4、解析:由牛顿第二定律a =F 合m =mg -F f m =13g 可得空气阻力大小F f =23mg ,B 选项正确. 答案:B5、解析:因弹簧的弹力与其形变量成正比,当弹簧测力计甲的示数由10 N 变为8 N 时,其形变量减少,则弹簧测力计乙的形变量必增大,且甲、乙两弹簧测力计形变量变化的大小相等,所以,弹簧测力计乙的示数应为12 N ,物体在水平方向受到的合外力F =F T 乙-F T 甲=12N -8 N =4 N .根据牛顿第二定律,得物块的加速度为4 m/s 2. 答案:B6、解析:根据牛顿第二定律F -mgsin θ-μmgcos θ=ma 1①2F -mgsin θ-μmgcos θ=ma 2②由①②两式可解得:a 2=2a 1+gsin θ+μgcos θ,所以a 2>2a 1. 答案:D7、解析:剪断A 、B 间的细绳时,两弹簧的弹力瞬时不变,故C 所受的合力为零,a C =0.A物体受重力和下方弹簧对它的拉力,大小都为mg ,合力为2mg ,故a A =2mg m=2g ,方向向下.对于B 物体来说,受到向上的弹力,大小为3mg ,重为mg ,合力为2mg ,所以a B =2mg m=2g ,方向向上. 答案:2g 2g 08、解析:由牛顿第二定律,得a 甲∶a 乙∶a 丙=25∶33∶52=4∶10∶25. 答案:4∶10∶259、解析:直接运用牛顿第二定律来处理求解.答案:2N 4 m/s210、解析:直接运用牛顿第二定律来处理求解.答案:4.5 m/s211、解析:求合力,用牛顿第二定律直接求解.答案:a=10 m/s2,方向东偏南45°12、解析:由牛顿第二定律F-m1g=m1a1,代入数据得F=120N.若作用在另一物体上m2g-F=m2a2,代入数据得m2=15 kg. 答案:120N 15kg13、(1)雨滴达到收尾速度时受到的空气阻力和重力是一对平衡力,所以F f=mg=2×10-3N.(2)雨滴刚开始下落的瞬间,速度为零,因而阻力也为零,加速度为重力加速度g;随着速度的增大,阻力也逐渐增大,合力减小,加速度也减小;当速度增大到某一值时,阻力的大小增大到等于重力,雨滴所受合力也为零,速度将不再增大,雨滴匀速下落.答案:(1)2×10-3N (2)加速度由g逐渐减小直至为零,速度从零增大直至最后不变。

牛顿第二定律25种题型

牛顿第二定律25种题型

牛顿第二定律25种题型牛顿第二定律是物理学中的基本定律之一,它描述了物体受力时的加速度与力的关系。

下面将详细介绍牛顿第二定律的25种题型。

1. 计算物体的加速度:根据牛顿第二定律,加速度与物体所受力成正比,与物体的质量成反比。

因此,可以通过已知的力和质量来计算物体的加速度。

2. 计算物体所受的力:根据牛顿第二定律,力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的力。

3. 计算物体的质量:根据牛顿第二定律,质量与力和加速度的比值成正比。

因此,可以通过已知的力和加速度来计算物体的质量。

4. 计算物体的重力:根据牛顿第二定律,物体所受的重力与物体的质量成正比。

因此,可以通过已知的质量和加速度(通常为重力加速度)来计算物体的重力。

5. 计算物体所受的摩擦力:根据牛顿第二定律,物体所受的摩擦力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的摩擦力。

6. 计算物体所受的弹力:根据牛顿第二定律,物体所受的弹力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的弹力。

7. 计算物体所受的拉力:根据牛顿第二定律,物体所受的拉力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的拉力。

8. 计算物体所受的斜面力:当物体沿斜面运动时,可以通过分解力的成分来计算物体所受的斜面力。

9. 计算物体所受的空气阻力:当物体在空气中运动时,可以通过已知的速度和物体的形状来计算物体所受的空气阻力。

10. 计算物体所受的浮力:当物体浸没在液体中时,可以通过已知的液体密度、物体的体积和重力加速度来计算物体所受的浮力。

11. 计算物体所受的离心力:当物体在旋转的平台上运动时,可以通过已知的物体质量、旋转半径和角速度来计算物体所受的离心力。

12. 计算物体所受的引力:当两个物体之间存在引力时,可以通过已知的物体质量和距离来计算物体所受的引力。

牛顿第二定律题型归类

牛顿第二定律题型归类

牛顿定律类型题归类一、瞬时性问题1、刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。

2、轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。

例题分析:例1.如图所示,小球 A 、B 的质量分别 为m 和 2m ,用轻弹簧相连,然后用 细线悬挂而静止,在剪断弹簧的瞬间,求 A 和 B 的加速度各为多少? 例2.如图所示,木块A 和B 用一弹簧相连,竖直放在木板C 上,三者静止于 地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅 速抽出木块C 的瞬时,A 和B 的加速度 a A = ,a B = 。

例3.如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度【 】 A .0B .大小为233g ,方向竖直向下C .大小为233g ,方向垂直于木板向下D .大小为33g ,方向水平向右 【练习】:1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:【 】 A.g B.mmM - g C.0 D.mmM +g2.如图所示,A 、B 两小球质量分别为M A 和M B 连在弹簧两端, B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为:【 】 A.都等于2g B. 2g和0 C.2g M M M B B A ⋅+和0 D.0和2g M M M B B A ⋅+图3 ABC图2-81题图 图2-92题图 图1B A3.一根轻弹簧上端固定同上端挂一质量为m o 的平盘,盘中有一质量为m 的物体(如图3-3-13)当盘静止时,弹簧的长度比其自然长度伸长为l ,今向下拉盘使弹簧再伸长∆l 后停止,然后松手放开,则刚松手时盘对物体的弹力等于(设弹簧处在弹性限度以内):【 】A .mg l l )1(Λ+B .g m m l l))(1(+∆+ C .mg l l ∆ D .g m m ll )(+∆4.如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水平恒力推木块A ,则弹簧在第一次压缩到最短的过程中 :【 】 A .A 、B 速度相同时,加速度a A = a B B .A 、B 速度相同时,加速度a A >a BC .A 、B 加速度相同时,速度υA <υBD .A 、B 加速度相同时,速度υA >υB5.如图所示,小球质量为m,被三根质量不计的弹簧A 、B 、C 拉住,弹簧间的夹角均为1200,小球平衡时, A 、B 、C 的弹力大小之比为3:3:1,当剪断C 瞬间,小球的加速度大小及方向可能为:【 】A .g/2,竖直向下;B .g/2,竖直向上;C .g/4,竖直向下;D .g/4,竖直向上;6.如图4-20所示,A 、B 、C 、D 、E 、F 六个小球分别用弹簧、细绳和细杆联结,挂于水平天花板上,若某一瞬间同时在a 、b 、c 处将悬挂的细绳剪断,比较各球下落瞬间的加速度,下列说法中正确的是( )A .所有小球都以g 的加速度下落B .A 球的加速度为2g ,B 球的加速度为gC . C 、D 、E 、F 球的加速度均为g D .E 球的加速度大于F 球的加速度7:如图所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ, l 2水平拉直,物体处于平衡状态,现将l 2线剪断 (1)求剪断瞬时物体的加速度.(2)若将上图中的细线l 1改变为长度相同、质量不计的轻弹簧,如图所示,其他条件不变,现将l 2剪断,求剪断瞬时物体的加速度.二、动态分析问题1、速度变化叛断:若速度与加速度方向相同则速度增大,反之减小。

牛顿第二定律典型例题

牛顿第二定律典型例题

牛顿运动定律典型问题一、共点力平衡及动态平衡【例1】如图(甲)质量为m的物体,用水平细绳AB拉住,静止在倾角为θ的固定斜面上,求物体对斜面压力的大小。

【例2】如图所示,用竖直档板将小球夹在档板和光滑斜面之间,若缓慢转动挡板,使其由竖直转至水平的过程中,分析球对挡板的压力和对斜面的压力如何变化.【例3】如图所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P上系一轻绳经C固定于墙上A点。

若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,绳的拉力和BC杆受到的压力如何变化?【练习】1.如图所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?2.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。

3.如图所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。

当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少?(2)圆环将要开始滑动时,重物G的质量是多少?4.如图,A、B两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。

A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。

5.如图所示,用两根绳子系住一重物,绳OA与天花板夹角θ不变,且θ>45°,当用手拉住绳OB,使绳OB由水平慢慢转向OB′过程中,OB绳所受拉力将()A.始终减少B.始终增大C.先增大后减少D.先减少后增大6.如图所示,一重球用细线悬于O点,一光滑斜面将重球支持于A点,现将斜面沿水平面向右慢慢移动,那么细线对重球的拉力T及斜面对重球的支持力N的变化情况是:()A.T逐渐增大,N逐渐减小;B.T逐渐减小,N逐渐增大;C.T先变小后变大,N逐渐减小;D.T逐渐增大,N先变大后变小。

牛顿第二定律常见题型和解题方法

牛顿第二定律常见题型和解题方法

牛顿第二定律常见题型和解题方法一、求加速度1、瞬时加速度的求法例1、12.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断的瞬间,吊篮P和物体Q的加速度大小是()A.a P = a Q = gB.a P =2 g,a Q = gC.a P = g,a Q =2 gD.a P = 2g,a Q = 02、二力合成法求加速度例2、一辆小车在水平地面上行驶,悬挂的摆球相对小车静止并与竖直方向成α角(如下图所示)下列关于小车运动情况,说法正确的是A.加速度方向向左,大小为g tanα。

B.加速度方向向右,大小为g tanαC.加速度方向向左,大小为g sinαD.加速度方向向右,大小为g sinα3、正交分解法求加速度例3、在长木板上放有一物体,从水平位置开始慢慢地抬起木板的一端,当木板与水平面的夹角α=30°时,物体恰好匀速下滑,那么当α=60°时,求物体下滑的加速度大小二、程序法结合两类基本问题例4、如图所示,一弹簧一端系在墙上O点,自由伸长到B点。

今将一小物体m压着弹簧,将弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面的摩擦系数恒定。

试判断下列说法中正确的是()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B,先加速后减速,从B到C一直减速运动D.物体从B点受合外力为零例5、用平行于斜面的力推动一个质量为m 的物体,沿倾角为a 的光滑斜面向上运动,当物体运动到斜面的中点时撤去推力,物体恰能滑到斜面顶点,由此可断定推力F 的大小为?例6、水平传送带长度为20 m ,以2 m/s 的速度作匀速运动,已知某物体与传送带的动摩 擦因数为0.1,该物体放在传送带的某一端开始,到达另一端所需的时间为例7、小球质量m=1kg ,穿在与水平面成300的斜杆上,如图,小球与杆之间动摩擦因数为 =6/3小球受竖直向上的拉力F=20牛,从静止开始经2秒钟,求小球沿杆移动多大的距离?(g 取10米/秒2)三、整体法和隔离法应用例8、如图,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为A .2g sin α B .gsin α C .23gsin α D .2gsin α 例9、如图所示,跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg ,吊板的质量为10 kg ,绳及定滑轮的质量、滑轮的摩擦均可不计,取重力加速度g =10m/s 2。

应用牛顿第二定律解题的几种题型

应用牛顿第二定律解题的几种题型

应用牛顿第二定律解题的几种题型牛顿第二定律是一个重要的物理学定律,用于解释物体运动中加速度变化的原理。

它主要用于描述物体受外力时会发生的加速或减速过程,可用来解决许多实际问题。

本文将介绍应用牛顿第二定律解题的几种典型题型,以及如何解答这些题型。

一、牛顿运动速度题第一种典型题目是根据牛顿第二定律求解运动速度的题型。

例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,距离原点s米。

请求出t时刻物体的速度v?解题思路:物体由v0开始加速,到t时刻,它的速度是v=v0+at。

由于物体从原点出发,则v0=0。

所以,在t时刻,物体的速度是v=at。

二、牛顿运动加速度题第二种典型题目是根据牛顿第二定律求解加速度的题型。

例如:一个物体从原点出发,在t时刻后,距离原点s米,且物体的速度为v米/秒。

请求出加速度a?解题思路:由于物体从原点出发,则v0=0。

根据牛顿第二定律,v=v0+at,即v=at。

解出a=v/t。

三、牛顿运动时间题第三种典型题目是根据牛顿第二定律求解运动时间的题型。

例如:一个物体从原点出发,受一个匀加速度a作用,距离原点s米。

请求出物体从原点出发到s米的运动时间t?解题思路:根据牛顿第二定律,v=v0+at,解出t=v/a。

由于物体从原点出发,则v0=0,即t=s/a。

四、牛顿运动位移题第四种典型题目是根据牛顿第二定律求解位移的题型。

例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,其速度是v米/秒。

请求出物体从原点出发到t时刻时的位移s?解题思路:根据牛顿第二定律,s=v0t+at^2/2。

由于物体从原点出发,则v0=0,即s=at^2/2。

到此,本文介绍了应用牛顿第二定律解题的几种典型题型,以及解答这些题型的解题思路。

熟练掌握牛顿第二定律,并灵活运用,可以很好地解决实际问题。

牛顿第二定律典型题型

牛顿第二定律典型题型

【典型题型】例1.如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。

用水平力F 拉B ,当拉力大小分别是F =10N 和F =20N 时,A 、B 的加速度各多大?例2.如图所示,m =4kg 的小球挂在小车后壁上,细线与竖直方向成37°角。

当:⑴小车以a=g 向右加速;⑵小车以a=g 向右减速时,分别求细线对小球的拉力F 1和后壁对小球的压力F 2各多大?例3.如图所示,在箱内的固定光滑斜面(倾角为α)上用平行于斜面的细线固定一木块,木块质量为m 。

当⑴箱以加速度a 匀加速上升时,⑵箱以加速度a 匀加速向左时,分别求线对木块的拉力F 1和斜面对箱的压力F 2例4.如图所示,质量为m =4kg 的物体与地面间的动摩擦因数为μ=0.5,在与水平成θ=37°角的恒力F 作用下,从静止起向右前进t 1=2s 后撤去F ,又经过t 2=4s 物体刚好停下。

求:F 的大小、最大速度v m 、总位移s例5.如图A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。

例6.如图,倾角为α的斜面与水平面间、斜面与质量为m 的木块间的动摩擦因数均为μ,木块由静止开始沿斜面加速下滑时斜面仍保持静止。

求水平面给斜面的摩擦力大小和方向。

1.关于物体运动状态的改变,下列说法中正确的是[ ]A .物体运动的速率不变,其运动状态就不变B .物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止C .物体运动的加速度不变,其运动状态就不变D .物体的运动速度不变,我们就说它的运动状态不变2.关于运动和力,正确的说法是 [ ]A .物体速度为零时,合外力一定为零B .物体作曲线运动,合外力一定是变力C .物体作直线运动,合外力一定是恒力D .物体作匀速直线运动,合外力一定为零vF3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ]A.在任何情况下都等于1B.k值是由质量、加速度和力的大小决定的C.k值是由质量、加速度和力的单位决定的D.在国际单位制中,k的数值一定等于15.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ]A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处D.接触后,小球速度最大的地方就是加速度等于零的地方6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ]A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左C.没有摩擦力作用 D.无法判断7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况[ ]A.先加速后减速,最后静止 B.先加速后匀速C.先加速后减速直至匀速 D.加速度逐渐减小到零8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ]A.a′=a B.a<a′<2a C.a′=2a D.a′>2a9.一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F的值逐渐减小到零,又马上使其恢复到原值(方向不变),则 [ ]A.物体始终向西运动 B.物体先向西运动后向东运动 C.物体的加速度先增大后减小D.物体的速度先增大后减小10.下面几个说法中正确的是 [ ]A.静止或作匀速直线运动的物体,一定不受外力的作用. B.当物体的速度等于零时,物体一定处于平衡状态.C.当物体的运动状态发生变化时,物体一定受到外力作用. D.物体的运动方向一定是物体所受合外力的方向.11.关于惯性的下列说法中正确的是 [ ]A.物体能够保持原有运动状态的性质叫惯性. B.物体不受外力作用时才有惯性.C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性.D.物体静止时没有惯性,只有始终保持运动状态才有惯性.12. 一个在水平地面上做直线运动的物体,在水平方面只受摩擦力f的作用,当对这个物体施加一个水平向右的推力F作用时,下面叙述的四种情况,不可能出现的是 [ ]A. 物体向右运动,加速度为零B. 物体向左运动,加速度为零C. 物体加速度的方向向右D. 物体加速度的方向向左13.一人在车厢中把物体抛出.下列哪种情况,乘客在运动车厢里观察到的现象和在静止车厢里观察到的现象一样[ ] A.车厢加速行驶时. B.车厢减速行驶时.C.车厢转弯时. D.车厢匀速直线行驶时.14.在火车的车厢内,有一个自来水龙头C.第一段时间内,水滴落在水龙头的正下方B点,第二段时间内,水滴落在B点的右方A点,如图3-1所示.那么火车可能的运动是 [ ]A.先静止,后向右作加速运动. B.先作匀速运动,后作加速运动.C.先作匀速运动,后作减速运动 D.上述三种情况都有可能.15、如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用P N的拉力,结果物体上升的加速度为a,后来将P N的力改为重力为P N的物体,m向上的加速度为a2则()A.a1=a2;B.a1>a2;C、a1<a2;D.无法判断。

牛顿第二定律典型例题分类

牛顿第二定律典型例题分类

专题(4)牛顿第二定律常见题型1、质量分别为m A 和m B 的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,如图所示,当细线被剪断的瞬间。

关于两球下落加速度的说法中,正确的是 ( )A 、a A =aB =0 B 、a A =a B =gC 、a A >g ,a B =0D 、a A <g ,a B =02、如图所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直线的夹角都是600,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度.3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?4.一物体放置在倾角为 的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是()A .当θ一定时,a 越大,斜面对物体的正压力越大B .当θ一定时,a 越大,斜面对物体的摩擦力越大C .当θ一定时,a 越大,斜面对物体的正压力越小D .当θ一定时,a 越大,斜面对物体的摩擦力越小5、如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的?(按论述题要求解答)6、如图所示,一轻质弹簧一端系在墙上的O 点,自由伸长到B 点,今用一小物体m 把弹簧压缩到A 点,然后释放,小物体能运动到C 点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是:()A .物体从A 到B 速度越来越大,从B 到C 速度越来越小B .物体从A 到B 速度越来越小,从B 到C 速度不变C .物体从A 到B 先加速后减速,从B 到C 一直减速运动D .物体在B 点受合外力为零7、为了测量木板和斜面间的动摩擦因数,某同学设计这样一个实验。

高中物理牛顿第二定律经典例题

高中物理牛顿第二定律经典例题

牛顿第二运动定律【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A 点物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回,则以下说法正确的是:A 、物体从A 下降和到B 的过程中,速率不断变小B 、物体从B 上升到A 的过程中,速率不断变大C 、物体从A 下降B ,以及从B 上升到A 的过程中,速率都是先增大,后减小D 、物体在B 点时,所受合力为零【解析】本题主要研究a 与F 合的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。

对物体运动过程及状态分析清楚,同时对物体正确的受力分析,是解决本题的关键,找出AB 之间的C 位置,此时F 合=0,由A →C 的过程中,由mg>kx 1,得a=g-kx 1/m ,物体做a 减小的变加速直线运动。

在C 位置mg=kx c ,a=0,物体速度达最大。

由C →B 的过程中,由于mg<kx 2,a=kx 2/m-g ,物体做a 增加的减速直线运动。

同理,当物体从B →A 时,可以分析B →C 做加速度度越来越小的变加速直线运动;从C →A 做加速度越来越大的减速直线运动。

C 正确。

例2如图3-10所示,在原来静止的木箱内,放有A 物体,A 被一伸长的弹簧拉住且恰好静止,现突然发现A 被弹簧拉动,则木箱的运动情况可能是 A 、加速下降 B 、减速上升肥 C 、匀速向右运动 D 、加速向左运动【解析】木箱未运动前,A 物体处于受力平衡状态,受力情况为:重力mg ,箱底的支持力N ,弹簧拉力F 和最大的静摩擦力f m (向左)由平衡条件知:N=mg F=f m 。

由于发现A 弹簧向右拉动(已知),可能有两种原因,一种是由A 向右被拉动推知,F>f m ′,(新情况下的最大静摩擦力),可见f m >f m ′即是最大静摩擦力减小了,由f m =μN 知正压力N 减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A 、B 正确。

高中物理经典:牛顿第二定律 经典例题

高中物理经典:牛顿第二定律 经典例题

牛顿第二定律授课内容:例题1、一个空心小球从距离地面16m的高处由静止开始落下,经2s小球落地,已知球的质量为0.4kg,求它下落过程中所受空气阻力多大?(g=10m/s2)例题2、质量为10kg的物体放在水平面上,物体与水平面间的动摩擦因数为0.2,如果用大小40N,方向斜向上与水平方向的夹角为37°的恒力作用,使物体沿水平面向右运动,求(1)物体运动的加速度大小;(2)若物体由静止开始运动,需要多长时间速度达到8.4m/s,物体的位移多大?例题3、如图所示,质量为m=10kg的物体在水平面上向左运动,物体与水平面之间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的推力F=20N的作用,则物体产生的加速度为: ( )A. 0B. 4m/s2 , 水平向右C. 2m/s2 , 水平向左D. 2m/s2 , 水平向右例题4、一根质量不计的弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4㎝。

再将重物向下拉1㎝,然后放手,则在刚释放瞬间,重物的重力加速度和速度的情况是()A、a=g/4向上,v=0;B、a=g/4向上,v向上;C、a=g向上,v向上;D、a=5g/4向上,v=0。

例题5、一木块在倾角为37°的斜面上, g=10m/s2。

(1)若斜面光滑,求木块下滑时加速度大小;(2)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,则当木块以某一初速度下滑时,其加速度的大小;(3)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,则当木块以某一初速度上滑时,其加速度的大小。

(4)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,木块质量为3Kg,木块受到沿斜面向上的大小为25.8N的推力作用,则木块由静止开始运动的加速度大小为多少?知识的力量Tel:页眉页脚双击鼠标左键删除。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律牛顿第二定律1.容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。

2.表达式F=ma。

3.“五个”性质考点一| 瞬时加速度问题1.一般思路:分析物体该时的受力情况―→由牛顿第二定律列方程―→瞬时加速度2.两种模型(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。

(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。

[例] (多选)(2014·第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说确的是( )A.两个小球的瞬时加速度均沿斜面向下,大小均为g sin θB.B球的受力情况未变,瞬时加速度为零C.A球的瞬时加速度沿斜面向下,大小为2g sin θD.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零[例](2013·模拟)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零。

当剪断轻绳的瞬间,取g =10 m/s 2,以下说确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0针对练习:(2014·第三中学质检)如图所示,质量分别为m 、2m 的小球A 、B ,由轻质弹簧相连后再用细线悬挂在电梯,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F ,此时突然剪断细线。

在线断的瞬间,弹簧的弹力的大小和小球A 的加速度的大小分别为( )A.2F 3,2F 3m +gB.F 3,2F 3m +gC.2F 3,F 3m +gD.F 3,F 3m+g 4.(2014·一中一模)如图所示,A 、B 两小球分别连在轻线两端,B 球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度大小分别为( )A .都等于g 2B.g 2和0C.g 2和m A mB ·g 2D.m A m B ·g 2和g 2考点二| 动力学的两类基本问题分析解决两类动力学问题两个关键点(1)把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。

一个桥梁:物体运动的加速度是联系运动和力的桥梁。

(2)寻找多过程运动问题中各过程间的相互联系。

如第一个过程的末速度就是下一个过程的初速度,画图找出各过程间的位移联系。

[例](2012·高考)如图所示,将质量m=0.1 kg的圆环套在固定的水平直杆上。

环的直径略大于杆的截面直径,环与杆间动摩擦因数μ=0.8。

对环施加一位于竖直平面斜向上,与杆夹角θ=53°的拉力F,使圆环以a=4.4 m/s2的加速度沿杆运动,求F的大小。

(取sin 53°=0.8,cos 53°=0.6,g=10 m/s2)。

[例] 如图所示,质量m=2 kg的物体静止于水平地面的A处,A、B间距L=20 m,用大小为30 N,沿水平方向的外力拉此物体,经t0=2 s拉至B处。

(已知cos 37°=0.8,sin 37°=0.6,取g=10 m/s2)(1)求物体与地面间的动摩擦因数;(2)用大小为30 N,与水平方向成37°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t。

针对练习:(江阴市2013~2014学年高一上学期期末)冰壶比赛是在水平冰面上进行的体育项目。

比赛场地示意图如图所示,比赛时,运动员从起滑架处推着冰壶出发,在投掷线AB处放手让冰壶以一定的速度滑出,使冰壶的停止位置尽量靠近30m处的圆心O,设冰壶与冰面间的动摩擦因数为μ1=0.008,在某次比赛中,运动员使冰壶C在投掷线中点处以2m/s 的速度沿虚线滑出。

(1)求冰壶的加速度大小?并通过计算说明冰壶能否到达圆心O。

(2)为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小,用毛刷擦冰面后动摩擦因数减小至μ2=0.004。

为使冰壶C能够沿虚线恰好到达圆心O点,运动员用毛刷擦冰面的长度应为多少?(g取10m/s2)第5讲牛顿第二定律的综合问题考点三| 牛顿第二定律与图像的综合问题1.常见的两类动力学图像问题(1)已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运动情况。

(2)已知物体在某一过程中速度、加速度随时间的变化图线,要求分析物体的受力情况。

[例] 如图甲所示,水平地面上轻弹簧左端固定,右端通过滑块压缩0.4 m锁定。

t=0时解除锁定释放滑块。

计算机通过滑块上的速度传感器描绘出滑块的速度图像如图乙所示,其中Oab段为曲线,bc段为直线,倾斜直线Od是t=0时的速度图线的切线,已知滑块质量m=2.0 kg,取g=10 m/s2。

求:(1)滑块与地面间的动摩擦因数;(2)弹簧的劲度系数。

针对练习:(2012·模拟)某研究小组利用如图甲所示装置探究物块在方向始终平行于斜面、大小为F=8 N的力作用下加速度与斜面倾角的关系。

木板OA可绕轴O在竖直平面转动,已知物块的质量m=1 kg,通过DIS实验,得到如图乙所示的加速度与斜面倾角的关系图线。

假定物块与木板间的最大静摩擦力等于滑动摩擦力,g取10 m/s2。

试问:(1)图乙中图线与θ轴交点坐标分别为θ1和θ2,木板处于这两个角度时物块所受摩擦力指向何方?(2)如果木板长L=3 m,倾角为30°,若物块与木板间的动摩擦因数为315,物块在F的作用下由O点开始运动,为保证物块不冲出木板顶端,力F最多作用多长时间?考点四| 超重与失重[例] (2014·海淀)如图所示,将物体A放在容器B中,以某一速度把容器B竖直上抛,不计空气阻力,运动过程中容器B的底面始终保持水平,下列说确的是( )A.在上升和下降过程中A对B的压力都一定为零B.上升过程中A对B的压力大于物体A受到的重力C.下降过程中A对B的压力大于物体A受到的重力D.在上升和下降过程中A对B的压力都等于物体A受到的重力考点五| 整体法与隔离法的灵活应用[例] (2012·高考)如图所示,一夹子夹住木块,在力F作用下向上提升。

夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦力均为f。

若木块不滑动,力F的最大值是( )A.2f m+MMB.2f m+MmC.2f m+MM-(m+M)g D.2f m+Mm+(m+M)g1.(2014·江阴市长泾中学质检)如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端静止放着小物块A。

某时刻,A受到水平向右的外力F作用,F 随时间t的变化规律如图乙所示,即F=kt,其中k为已知常数。

设物体A、B之间滑动摩擦力大小等于最大静摩擦力F f,且A、B的质量相等,则下列可以定性描述长木板B运动的v­t图像是( )2.(多选)(2014·三中月考)如图所示,质量为m1和m2的两物块放在光滑的水平地面上。

用轻质弹簧将两物块连接在一起。

当用水平力F作用在m1上时,两物块均以加速度a做匀加速运动,此时,弹簧伸长量为x,若用水平力F′作用在m1上时,两物块均以加速度a′=2a做匀加速运动。

此时弹簧伸长量为x′。

则下列关系正确的是( )A.F′=2F B.x′=2x C.F′>2F D.x′<2x第6讲牛顿第二定律的典型问题专题:物体在传送带上运动的情形统称为传送带模型。

因物体与传送带间的动摩擦因数、斜面倾角、传送带速度、传送方向、滑块初速度的大小和方向的不同,传送带问题往往存在多种可能,因此对传送带问题做出准确的动力学过程分析,是解决此类问题的关键。

下面介绍两种常见的传送带模型。

1.水平传送带模型项目图示滑块可能的运动情况情景1情景2情景32.倾斜传送带模型项目图示滑块可能的运动情况情景1情景2情景3情景4[典例] 如图所示为上、下两端相距L=5 m,倾角α=30°,始终以v=3 m/s的速率顺时针转动的传送带(传送带始终绷紧)。

将一物体放在传送带的上端由静止释放滑下,经过t=2 s到达下端,重力加速度g取10 m/s2,求:(1)传送带与物体间的动摩擦因数;(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端。

1.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v­t图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离达到最大C.0~t2时间,小物块受到的摩擦力方向先向右后向左D.0~t3时间,小物块始终受到大小不变的摩擦力作用2.如图所示,传送带水平部分x ab=2 m,斜面部分x bc=4 m,bc与水平方向夹角α=37°,一个小物体A与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v=2 m/s运动,若把物体A轻放到a处,它将被传送带送到c点,且物体A不脱离传送带,求物体A从a 点被传送到c点所用的时间.(取g=10 m/s2,sin 37°=0.6)[对点训练]1.如图所示,A、B为两个质量相等的小球,由细线相连,再用轻质弹簧悬挂起来,在A、B间细线烧断后的瞬间,A、B的加速度分别是( )A.A、B的加速度大小均为g,方向都竖直向下B.A的加速度0,B的加速度大小为g、竖直向下C.A的加速度大小为g、竖直向上,B的加速度大小为g、竖直向下D.A的加速度大于g、竖直向上,B的加速度大小为g、竖直向下2.(多选))如图所示,当小车向右加速运动时,物块M相对车厢静止于竖直车厢壁上,当车的加速度增大时( )A.M受静摩擦增大 B.M对车厢壁的压力增大C.M仍相对于车厢静止 D.M受静摩擦力不变3.一枚火箭由地面竖直向上发射,其速度和时间的关系图线如图所示,则( )A.t3时刻火箭距地面最远B.t2~t3的时间,火箭在向下降落C.t1~t2的时间,火箭处于失重状态D.0~t3的时间,火箭始终处于失重状态4.如图所示,质量M,中空为半球形的光滑凹槽放置于光滑水平地面上,光滑槽有一质量为m的小铁球,现用一水平向右的推力F推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心和小铁球的连线与竖直方向成α角。

相关文档
最新文档