路由信息协议(RIP)实验

合集下载

实验二 路由协议实验

实验二 路由协议实验

实验二路由协议实验(RIP、OSPF)一、实验目的常见的路由协议有静态,RIP,OSPF等,静态路由一般用于较小的网络环境,RIP 一般用于不超过15台路由器的环境,OSPF常用于大型的网络环境,是目前主流的网络路由协议之一。

二、实验内容和要求1、如何配置路由器,并掌握基本的命令2、学习常见的网络路由协议配置方法三、实验主要仪器设备和材料AR28路由器、AR18路由器,一台PC机器。

为了方便测试,本实验需要借助另一小组的一台PC做测试,因此需要把相邻两个小组的设备连接起来。

同时需要添加一些为了测试方便而做的配置,这些配置用斜体字加粗表示,具体见拓扑图。

四、实验方法、步骤及结果测试实验拓扑结构和连线图:如下:其中实验PC1用网线接到AR18-1路由器的1-24口中的任意一口。

其中实验PC2用网线接到AR18-2路由器的1-24口中的任意一口。

AR28-1的LAN1口用网线接到AR18-2路由器的1-24口中的任意一口。

AR28-2的LAN1口用网线接到AR18-1路由器的1-24口中的任意一口。

注意:AR28的LAN0口与本小组的AR18的WAN0口相连采用交叉线。

PC1的网关为AR18的E3/0的接口地址192.168.1.254;PC2的网关为AR18的E3/0的接口地址192.168.2.254,子网掩码均为255.255.255.0。

1) RIP路由协议实验:第1小组配置:(粗体字部分)AR18-1配置:<quidway>Sys //进入系统视图[quidway] Sysname ar18-1 //更改路由器名字为ar18-1[ar18-1] interface e3/0 //进入e3/0接口并配置IP地址Ip address 192.168.1.254 255.255.255.0Rip version 2Quit[ar18-1] Interface e1/0 //进入1/0接口并配置IP地址Ip address 172.16.1.253 255.255.255.0Rip version 2Quit[ar18-1] Rip //起用RIP路由协议Network 172.16.1.0 //发布网段172.16.1.0Network 192.168.1.0 //发布网段192.168.1.0Undo summary //去掉RIP协议的自动汇总,RIP的自动汇总常常会导致路由故障AR28-1配置:<quidway>Sys //进入系统视图[quidway] Sysname ar28-1 //更改路由器名字为ar28-1 [ar28-1] interface e0/0 //进入e0/0接口并配置IP地址Ip address 172.16.1.254 255.255.255.0Rip version 2Quit[ar28-1] Interface e0/1 //进入e0/1接口并配置IP地址Ip address 192.168.2.253 255.255.255.0Rip version 2Quit[ar28-1] RipNetwork 172.16.1.0 //发布网段172.16.1.0Network 192.168.2.0 //为了方便测试添加的配置Undo summary第2小组配置:(粗体字部分)AR18-2配置:<quidway>Sys //进入系统视图[quidway] Sysname ar18-2 //更改路由器名字为ar18-2[ar18-2] interface e3/0 //进入e3/0接口并配置IP地址Ip address 192.168.2.254 255.255.255.0Rip version 2Quit[ar18-2] Interface e1/0 //进入e1/0接口并配置IP地址Ip address 172.16.2.253 255.255.255.0Rip version 2Quit[ar18-2] RipNetwork 172.16.2.0Network 192.168.2.0Undo summaryAR28-2配置:<quidway>Sys //进入系统视图[quidway]Sysname ar28-2 //更改路由器名字为ar28-2[ar28-2]interface e0/0 //进入e0/0接口并配置IP地址Ip address 172.16.2.254 255.255.255.0Rip version 2Quit[ar28-2]Interface e0/1 //进入e0/1接口并配置IP地址Ip address 192.168.1.253 255.255.255.0Rip version 2Quit[ar28-2]RipNetwork 172.16.2.0Network 192.168.1.0 //为了方便测试添加的配置Undo summary测试:1、用dis ip routing-table查看是否有路由信息2、PC1的网关为AR18的E3/0的接口地址192.168.1.254/24,PC2的网关为AR18的E3/0的接口地址192.168.2.254/24 ,看PC1能否PING 通PC2,这两台PC是否可以PING 通网络中的任何一个接口的IP地址。

实验六:RIP协议

实验六:RIP协议

实验六:RIP协议一、理论基础1、RIP简介RIP是Routing Information Protocol(路由信息协议)的简称。

它是一种相对简单的动态路由协议,在实践中被广泛的应用。

RIP是基于距离向量路由算法。

这种算法提供了互联网与运行RIP的路由器的有限拓扑网络视图。

在相邻的路由器之间进行广播,以(几乎)完全路由表的形式作周期性的更新。

它通过UDP(User Datagram Protocol)报文交换路由信息,使用跳数(Hop Count)来衡量到达目的地的距离(被称为路由权-Routing cost)。

RIP允许的最大跳数为15,任何大于15的目标地址节点都将视为不可访问的。

RIP最大节点数在大型网络中很大程度上限制它的使用,但是却防止了无限计数问题,从而避免了引起无止境的网络路由环路。

所以RIP一般用于采用同类技术的中等规模的网络,如校园网及一个地区范围内的网络,RIP并非为复杂、大型的网络而设计。

运行RIP协议的路由器间以30秒为间隔周期性的交换路由表信息。

在一个RIP广播信息中,包含了每个IP网络中RIP信息能到达的网络以及此网络的距离(以跳计数)的列表对。

在RIP中,路由器定义为到直接链路网络为一跳,到另一个路由器可达的网络为两跳,如此继续下去。

为提高性能,防止产生路由环,RIP支持水平分割(Split Horizon)、毒性逆转(Poison Reverse),并采用触发更新(Triggered Update)。

RIP的缺点:因为跳数的最大值是15,所以不适合于大型网络。

因为仅依据Hop Count(跳数)作为路由选择的度量标准,所以会选择距离最近的路径,不一定会选择最快的路径。

因为每30秒更新路由信息,所以产生大量的广播,消耗带宽资源。

RIP启动和运行的整个过程可描述如下:(1)某路由器刚启动RIP时,以广播形式向其相邻路由器发送请求报文,相邻路由器收到请求报文后,响应该请求,并回送包含本地路由信息的响应报文。

路由协议实验(RIP,OSPF)

路由协议实验(RIP,OSPF)

实验二、路由协议实验(RIP,OSPF)
一.实验目的
常见的路由协议有静态RIP,OSPF等,静态路由一般用于较小的网络环境,RIP一般用于不超过15台路由器的环境,OSPF常用于大型的网络环境,是目前主流的网络路由协议之一。

二.实验内容和要求
1.如何配置路由器,并掌握基本的命令
2.学习常见的网络路由协议配置方法
三.实验主要仪器设备和材料
AR28路由器、AR18路由器,一台PC机。

四.实验结果截图
组别为13组,我们作为分组1
(1)RIP实验
1.AR28-1路由表
3.可以PING 通
(2)OSPF实验
1.AR28-1路由表
2.可以PING 通
五、RIP,OSPF的工作原理
RIP是距离矢量路由协议,它通过交换明确的路由来达到全网互通,即是说他所获得的路由都是通过邻居发送过来的。

类似于问路的时候沿路打听。

OSPF是链路状态路由协议,他不发送路由信息。

而是通过发送链路状态LSA来独自计算路由条目。

类似GPS发送给对方方位后具体怎么走是本地系统计算出来的。

六、思考题
1、答:可以同时配置。

OSPF的优先级较高,所以OSPF协议生效。

RIP-路由协议实验报告

RIP-路由协议实验报告
Router2(config-router)#network 172.16.3.0
Router2(config-router)#version2
Router2(config-router)#no auto-summary
步骤4.验证三台路由设备的路由表,查看是否自动学习了其他网段的路由信息。
S3550#show ip route
操作方法与实验步骤
三层交换机基本配置
验证测试(showvlan)
路由器基本配置
验证测试:验证路由器接口的配置和状态。
配置RIP v2路由协议
验证三台路由设备的路由表,查看是否自动学习了其他网段的路由信息。
测试网络的连通性。
实验内容及实验数据记录
步骤1.三层交换机基本配置
switch#configure terminal
S3550(config-if)#exit
S3550(config)#interface f0/5
S3550(config-if)#switchport access vlan 50
S3550(config-if)#exit
S3550(config)#interface vlan 10 !创建VLAN虚接口,并配置IP
Router1(config-if)# no shutdown
Router1(config-if)#exit
Router1(config)# interface serial 1/2
Router1(config-if)# ip address 172.16.2.1 255.255.255.0
Router1(config-if)#clock rate 64000
S3550(config-if)#ip address 172.16.1.2 255.255.255.0

PT 实验(九) 路由器RIP动态路由配置

PT 实验(九) 路由器RIP动态路由配置

PT 实验(九) 路由器RIP动态路由配置一、实验目标●掌握RIP协议的配置方法;●掌握查看通过动态路由协议RIP学习产生的路由;●熟悉广域网线缆的连接方式;二、实验背景假设校园网通过一台三层交换机连到校园网出口路由器上,路由器再和校园外的另一台路由器连接。

现要做适当配置,实现校园网内部主机与校园网外部主机之间的相互通信。

为了简化网管的管理维护工作,学校决定采用RIP V2协议实现互通。

三、技术原理RIP(Routing Information Protocols),路由信息协议,是应用较早、使用较普通的IGP内部网关协议,适用于小型同类网络,是距离矢量协议;RIP协议以跳数衡量路径开销,RIP协议里规定最大跳数为15;RIP协议有两个版本:RIPv1和RIPv2,RIPv1属于有类路由协议,不支持VLSM,以广播形式进行路由信息的更新,更新周期为30秒;RIPv2属于无类路由协议,支持VLSM,以组播形式进行路由更新。

四、实验步骤实验拓扑1、在三层交换机上划分VLAN10和VLAN20,其中VLAN10用于连接校园网主机,VLAN20用于连接R1;2、路由器之间通过V.35电缆通过串口连接,DCE端连接在R1上,配置其时间频率为64000;3、主机和交换机通过直连线连接,主机与路由器通过交叉线连接;4、在S3560上配置RIPv2路由协议;5、在路由器R1、R2上配置RIPv2路由协议;6、将PC1、PC2主机默认网关分别设置为与直连网络设备接口IP地址;7、验证PC1、PC2主机之间可以互相通信;S3560:Switch>Switch>enSwitch#conf tEnter configuration commands, one per line. End with CNTL/Z.Switch(config)#hostname S3560S3560(config)#vlan 10S3560(config-vlan)#exitS3560(config)#vlan 20S3560(config-vlan)#exitS3560(config)#interface fa0/10S3560(config-if)#switchport access vlan 10S3560(config-if)#exitS3560(config)#interface fa0/20S3560(config-if)#switchport access vlan 20S3560(config-if)#exitS3560(config)#interface vlan 10%LINK-5-CHANGED: Interface Vlan10, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan10, changed state to up S3560(config-if)#ip address 192.168.1.1 255.255.255.0S3560(config-if)#exitS3560(config)#interface vlan 20%LINK-5-CHANGED: Interface Vlan20, changed state to upS3560(config-if)#ip address 192.168.3.1 255.255.255.0S3560(config-if)#exitS3560#%SYS-5-CONFIG_I: Configured from console by consoleS3560#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 192.168.1.0/24 is directly connected, Vlan10S3560(config)#router rip //配置rip路由协议S3560(config-router)#network 192.168.1.0S3560(config-router)#network 192.168.3.0S3560(config-router)#version 2S3560(config-router)#endS3560#%LINK-5-CHANGED: Interface FastEthernet0/20, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/20, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan20, changed state to up //当配置好所有RIPv2后,再查看路由信息S3560#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 192.168.1.0/24 is directly connected, Vlan10R 192.168.2.0/24 [120/2] via 192.168.3.2, 00:00:01, Vlan20C 192.168.3.0/24 is directly connected, Vlan20R 192.168.4.0/24 [120/1] via 192.168.3.2, 00:00:01, Vlan20S3560#R1:Router>enRouter#conf tEnter configuration commands, one per line. End with CNTL/Z.Router(config)#hostname R1R1(config)#interface fa0/0R1(config-if)#ip address 192.168.3.2 255.255.255.0R1(config-if)#no shutdown%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up R1(config-if)#exitR1(config)#interface serial 0/0R1(config-if)#ip address 192.168.4.1 255.255.255.0R1(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0, changed state to downR1(config-if)#clock rate 64000R1(config-if)#exitR1#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setR 192.168.1.0/24 [120/1] via 192.168.3.1, 00:00:15, FastEthernet0/0C 192.168.3.0/24 is directly connected, FastEthernet0/0R1(config)#router rip //配置rip路由协议R1(config-router)#network 192.168.3.0R1(config-router)#network 192.168.4.0R1(config-router)#version 2R1(config-router)#end%SYS-5-CONFIG_I: Configured from console by console%LINK-5-CHANGED: Interface Serial0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0, changed state to up //当配置好所有RIPv2后,再查看路由信息R1#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setR 192.168.1.0/24 [120/1] via 192.168.3.1, 00:00:19, FastEthernet0/0R 192.168.2.0/24 [120/1] via 192.168.4.2, 00:00:11, Serial0/0C 192.168.3.0/24 is directly connected, FastEthernet0/0C 192.168.4.0/24 is directly connected, Serial0/0R1#R2:Router>enRouter#conf tEnter configuration commands, one per line. End with CNTL/Z.Router(config)#hostname R2R2(config)#interface fa0/0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#no shutdown%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up R2(config-if)#exitR2(config)#interface Serial 0/0R2(config-if)#ip address 192.168.4.2 255.255.255.0R2(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0, changed state to upR2(config-if)#exitR2(config)#end%SYS-5-CONFIG_I: Configured from console by consoleR2#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 192.168.2.0/24 is directly connected, FastEthernet0/0C 192.168.4.0/24 is directly connected, Serial0/0R2#conf tEnter configuration commands, one per line. End with CNTL/Z.R2(config)#router ripR2(config-router)#network 192.168.2.0R2(config-router)#network 192.168.4.0R2(config-router)#version 2R2(config-router)#end%SYS-5-CONFIG_I: Configured from console by console//当配置好所有RIPv2后,再查看路由信息R2#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setR 192.168.1.0/24 [120/2] via 192.168.4.1, 00:00:00, Serial0/0C 192.168.2.0/24 is directly connected, FastEthernet0/0R 192.168.3.0/24 [120/1] via 192.168.4.1, 00:00:00, Serial0/0C 192.168.4.0/24 is directly connected, Serial0/0R2#五、测试Packet Tracer PC Command Line 1.0PC>ipconfigIP Address......................: 192.168.2.2Subnet Mask.....................: 255.255.255.0Default Gateway.................: 192.168.2.1PC>ping 192.168.1.2Pinging 192.168.1.2 with 32 bytes of data:Request timed out.Request timed out.Reply from 192.168.1.2: bytes=32 time=16ms TTL=125Reply from 192.168.1.2: bytes=32 time=17ms TTL=125Ping statistics for 192.168.1.2:Packets: Sent = 4, Received = 2, Lost = 2 (50% loss), Approximate round trip times in milli-seconds:Minimum = 16ms, Maximum = 17ms, Average = 16ms PC>ping 192.168.1.2Pinging 192.168.1.2 with 32 bytes of data:Reply from 192.168.1.2: bytes=32 time=19ms TTL=125Reply from 192.168.1.2: bytes=32 time=16ms TTL=125Reply from 192.168.1.2: bytes=32 time=13ms TTL=125Reply from 192.168.1.2: bytes=32 time=15ms TTL=125Ping statistics for 192.168.1.2:Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:Minimum = 13ms, Maximum = 19ms, Average = 15ms PC>。

路由信息协议rip实验报告

路由信息协议rip实验报告

路由信息协议rip实验报告路由信息协议RIP实验报告一、双方的基本信息甲方:网络技术有限公司地址:XX省XX市XX区XX路XX号电话:XXXXXXXXXXX邮箱:*************乙方:通信技术有限公司地址:XX省XX市XX区XX路XX号电话:XXXXXXXXXXX邮箱:*************二、各方身份、权利、义务、履行方式、期限、违约责任甲方的身份:网络技术有限公司是一家专业从事网络技术开发和应用的公司。

乙方的身份:通信技术有限公司是一家从事通信技术开发和应用的公司。

甲方的权利和义务:1. 甲方负责设计和开发路由信息协议RIP,确保协议的可靠性和稳定性。

2. 甲方应按照约定的价格和期限向乙方提供RIP服务。

3. 在RIP服务过程中发现问题,甲方应及时向乙方汇报并协商解决方案。

4. 甲方向乙方提供的服务应符合中国相关法律法规的要求和标准。

乙方的权利和义务:1. 乙方可以使用甲方提供的RIP服务,确保网络数据传输的可靠性和安全性。

2. 乙方应按照约定的价格和期限支付RIP服务费用。

3. 在RIP服务过程中,乙方应遵守相关协议规定,并确保网络安全。

4. 乙方应合法使用RIP服务,不得向他人泄露相关机密信息。

履行方式:甲方应在约定的期限内设计并开发RIP服务,经过测试后向乙方提供服务。

乙方应按照约定的价格支付服务费用,并按照约定的期限使用RIP服务。

期限:本合同自双方签署之日起生效,有效期为一年。

双方可以根据需要商议续签合同。

违约责任:1. 如果甲方不能按照约定向乙方提供RIP服务,应承担违约责任,并赔偿乙方因此而遭受的损失。

2. 如果乙方不能按照约定支付服务费用,应承担违约责任,并赔偿甲方因此而遭受的损失。

三、需遵守中国的相关法律法规本协议的各项条款与中国的相关法律法规相符合,如有不符合的地方,应按照中国相关法律法规进行调整。

四、明确各方的权力和义务本协议将甲方和乙方的权力和义务进行明确规定,确保双方权益得到保护,协议执行更加顺畅。

rip实验原理与实验步骤

rip实验原理与实验步骤

rip实验原理与实验步骤RIP(Routing Information Protocol)是一种基于距离向量算法的路由协议,它通过交换路由信息来更新网络的路由表。

本实验将介绍RIP协议的原理和实验步骤。

1. 实验原理RIP协议采用距离向量算法,每个路由器通过向相邻路由器发送自己的路由表来获取网络拓扑信息。

路由器收到路由表后,更新自己的路由表,并将更新后的路由表发送给相邻路由器。

通过不断地交换路由信息,整个网络构建一个路由信息表,路由器就可以根据该表选择最优路径进行数据传输。

RIP协议使用了Hop Count(跳数)作为度量单位,即每个数据包经过的路由器数。

默认情况下,RIP协议的最大跳数限制是15,超过这个跳数的数据包将会被丢弃。

RIP协议还具有自适应能力,如果某个路由器网络的拓扑结构发生了改变,RIP协议将会相应地调整路由表。

2. 实验步骤步骤一:准备实验环境为了进行实验,需要组建一个网络实验环境。

可以通过模拟器或者真实的设备来实现。

在实验环境搭建完成后需要确认网络连接正确,并确保所有路由器和主机设备能够相互通信。

步骤二:启用RIP协议在每个路由器上启用RIP协议,设置相应的参数。

启用RIP协议后,路由器将会开始收集并更新路由信息表。

步骤三:测试路由为了测试RIP协议的工作效果,需要利用ping命令或者traceroute命令来测试路由。

在测试过程中要尽量模拟实际网络环境,进行多次测试并记录测试结果,可以根据测试结果来调整路由器的设置和参数。

步骤四:观察路由信息表在测试过程中需要不断地观察路由信息表,确保路由器的路由信息表与实际网络拓扑相符。

如果出现不符合的情况,需要及时进行调整和更新。

步骤五:调整RIP协议参数在测试中,可能需要调整RIP协议的参数,比如更新频率、路由收敛时间等,来改善网络的质量。

同时也需要关注资源消耗,保证网络的高效性和可靠性。

通过以上实验步骤,可以深入了解RIP协议的工作原理,并且对网络拓扑结构进行更加细致的优化和管理。

实验六RIP路由协议

实验六RIP路由协议

实验六路由信息协议RIP一、RIP协议的基本配置1、实验目的(1)理解动态路由协议的基本原理(2)理解RIP协议的工作过程,了解RIP协议的报文结构(3)理解RIP协议中的定时器的用途(4)掌握RIPv1的配置(5)掌握RIPv2的配置2、实验拓扑3、实验步骤(1)配置网络基本信息及检查路由器接口是否被正确激活R1#show ip interface brief注:如果Status和Protocol都是up,说明端口已经被激活,可以进行路由协议的配置,否则检查故障并确保端口处于正常工作状态(2)RIP路由协议配置R1(config)#router ripR1(config-router)#network192.168.10.0R1(config-router)#network172.16.0.0R1(config-router)#version2R2参考R1配置(3)检查配置结果与测试①在PC0上ping PC1,测试结果:②查看R1路由表R1#show ip route通过以上内容可以看出,R1上存在到192.168.2.0的路由,路由项前面的R表示该路由是通过RIP得到的,[120/1]中的120表示管理距离,RIP路由协议的管理距离为120;1表示时度量值,在RIP中为跳数,表示R1到达该网络的跳数为1,。

③查看R1路由协议配置R1#show ip protocols③使用debug调试输出RIP报文信息R1#debug ip ripR1#undebug all//关闭调试二、不连续子网中的RIP及计时器的配置1、使用目的(1)理解不连续子网RIP配置(2)理解RIP四大计时器的作用(3)掌握四大计时器的配置(4)理解四大计时器配置对RIP的影响2、实验拓扑3、实验步骤(1)网络配置和RIP的配置参考上面(2)查看两路由器汇总R1#sh ip routeR2#sh ip route通过查看路由表可以看出R1并没有得到PC1的网络172.16.20.0/24的路由,而是得到了进行汇总之后的路由172.16.0.0/16,说明在R2的边界进行了路由汇总.通过查看R2的路由表可以看出,R2并没有得到PC0网络10.10.10.0/24的路由,而是得到了进行汇总之后的路由10.0.0.0/8,说明在R1的边界也进行了路由汇总(3)配置RIPv2和关闭路由汇总R1(config)#router ripR1(config-router)#version2R1(config-router)#no auto-summaryR2参考此配置(4)结果验证R1#sh ip routeR2#sh ip route比较两次的不同(5)使用R2#debug ip rip可以查看RIP路由项的接收和发送情况(6)关闭调试,将R2的fa0/0接口关闭180s后继续观察R1的路由表,在R1上使用show ip route命令观察路由表的变化。

实验五 RIP路由的配置

实验五  RIP路由的配置

实验五 RIP路由协议配置【实验目的】1.掌握RIP协议的工作原理。

2. 掌握RIP协议的配置方法。

【实验原理】1.路由信息协议RIP路由信息协议(Routing Information Protocol,RIP)是内部网关协议中最先得到广泛应用的协议。

RIP是一种基于距离向量的路由协议,其最大优点就是简单,开销小。

(1)距离RIP协议要求网络中每一个路由器都维护从它自己到每一个目的网络的距离记录,这个距离作为衡量路由优劣的度量值。

RIP中的“距离”也称为“跳数”,路由器到直连网络的距离定义为“0”,到非直连网络的距离定义为所经过的路由器的个数。

RIP规定,当距离等于16时,表示该目的网络不可达,所以RIP仅适用于小型网络。

(2)工作原理每个运行RIP协议的路由器都周期性地向其直接相连的邻居路由器发送自己完全的路由表的信息(路由信息是封装在RIP报文中发送的,主要包括目的网络,下一跳路由器,距离等信息),同时也从邻居路由器接收路由更新信息,并按照距离向量算法更新自己的路由表。

路由器刚开始工作时,仅知道自己的直连网络及其距离,接着路由器向邻居路由器交换并更新路由信息,经过若干次的更新后,所有的路由器最终都会知道到达本自治系统中任何一个网络的最短距离和下一跳路由器。

(3)距离向量算法邻居发来的路由更新报文中包括了很重要的信息:目的网络,其距离(即最短距离),下一跳地址。

RIP路由器必须根据更新报文和自己当前路由表的内容找出到每一个目的网络的最短距离和正确的下一跳。

这种更新算法称为距离向量算法。

对每一个相邻路由器发来的更新报文,进行以下步骤处理:○1对地址为X的相邻路由器发来的更新报文,先修改报文中的项目:“下一跳”均修改为X,“距离”均加1。

○2对修改后的报文的每一项(这里为了叙述清楚,用项目A来表示)进行以下处理:若本路由器路由表中没有项目A的目的网络,则把项目A添加到路由表中。

若本路由器中某个路由的目的网络和下一跳地址均与项目A相同,则用项目A的距离更新本路由。

计算机网络-RIP路由协议基本配置

计算机网络-RIP路由协议基本配置

实验报告2.进入PC0/PC1主机进行IP配置3.进入S3560交换机配置3.1划分VLAN10 和VLAN203.2Fa0/10端口绑定VLAN10, Fa0/20端口绑定VLAN20 3.3分别为Vlan10/20配置步骤规划好的ip3.4配置RIP路由协议(router rip 前先执行开启路由: ip routing)输入:router rip(进入路由进程)输入:network 192.168.1.0(宣告直连网段)输入:network 192.168.2.0(宣告直连网段)输入:version 2(启用版本2)输入:no auto-summary(关闭路由汇总)输入:ex(退出)4.进入路由器1配置4.1 配置ip及时钟频率4.2 配置RIP路由协议输入:router rip(进入路由进程)输入:network 192.168.2.0(宣告直连网段)输入:network 192.168.3.0(宣告直连网段)输入:version 2(启用版本2)输入:no auto-summary(关闭路由汇总)输入:ex(退出)5.路由器0同理6.查看路由器0/1, S3560 路由表do show ip route结合实验拓扑图可知它们通过RIP协议相互学习到了地址并存储在路由表内.7.全部配置结束之后,测试PC0中与PC1的互通七、实验结果八、实验总结RIP 特性包括:1.有类, 距离矢量2.跳数为度量值3.不支持可变长子网掩码或不连续子网4.每30秒更新一次5.Rip被封装在UDP分段中,源目的端口号520通过本次实验我掌握了路由器RIP协议的配置方法,以及如何查看通过动态路由协议RIP 学习产生的路由,并熟悉广域网线缆的链接方式。

实验过程中我由于不细心造成几次配置失败,在以后的学习中我将会更加仔细,避免出现类似的低级错误。

这次实验也是收获满满的。

九、教师评阅意见。

网络路由协议实验结果分析

网络路由协议实验结果分析

网络路由协议实验结果分析近年来,随着互联网的快速发展,网络路由协议成为了保障网络通信的重要技术之一。

在网络中,路由协议负责确定数据包传输的最佳路径,确保网络的高效运行。

本文将就网络路由协议实验结果进行详细分析,探讨其在实际应用中的优缺点及改进方向。

一、实验环境概述本次实验采用了常见的路由器设备和网络模拟器软件搭建了一个小规模网络环境。

在该环境下,使用了多种常见的路由协议,包括RIP、OSPF和BGP等,分别在不同拓扑结构下进行了实验。

二、实验结果分析1. RIP协议实验结果分析RIP(Routing Information Protocol)是一种基于距离向量的内部网关协议,其路由选择依据跳数。

实验结果显示,RIP协议在小规模网络中运行良好,具有较低的计算复杂度,并且对于网络拓扑变化能够快速适应。

然而,由于其传输的只是路由表中的距离信息,无法满足大规模网络中的高效路由需求。

2. OSPF协议实验结果分析OSPF(Open Shortest Path First)协议是一种链路状态协议,通过收集邻居节点的链路状态信息来构建网络拓扑,通过计算最短路径来进行路由选择。

实验结果表明,OSPF协议在大规模网络中的性能较好,具有较低的路由计算复杂度和较快的收敛速度。

但是,OSPF协议对网络资源的开销较大,需要额外的带宽和路由器计算资源。

3. BGP协议实验结果分析BGP(Border Gateway Protocol)协议是一种用于互联网自治系统之间的路由选择协议,其路由策略基于路径。

实验结果显示,BGP协议适用于大规模互联网环境中,能够提供高度的可靠性和灵活性,能够根据策略来选择最佳的路径。

然而,BGP协议的路由选择时间较长,收敛速度较慢,存在一定的安全风险。

三、实验结论及改进方向通过实验结果的分析,我们可以得出以下结论:首先,不同的路由协议适用于不同规模和需求的网络环境。

RIP协议适用于小规模网络,OSPF协议适用于大规模网络,而BGP协议适用于互联网环境。

rip路由协议配置实验小结

rip路由协议配置实验小结

rip路由协议配置实验小结RIP(Routing Information Protocol)路由协议是一种基于距离向量算法的动态路由协议,可用于IPv4网络中。

在本次实验中,我们学习了如何使用RIP协议进行路由配置。

我们需要了解RIP协议的基本原理。

RIP协议通过将路由表中的路由信息发送给相邻路由器,以便相邻路由器可以更新它们的路由表。

RIP协议使用跳数作为度量,即通过几个路由器可以到达目标网络。

RIP协议支持最多15个跳数,超过15个跳数的网络将被认为是不可达的。

接下来,我们需要了解RIP协议的配置方法。

具体步骤如下:1. 配置IP地址和子网掩码。

在路由器上配置IP地址和子网掩码,确保所有路由器都在同一个子网中。

2. 开启RIP协议。

在路由器上开启RIP协议,使用命令“router rip”进入RIP协议配置模式。

3. 配置网络。

使用命令“network 网络地址”将本地网络添加到RIP协议中。

4. 配置路由。

使用命令“ip route 目标网络地址子网掩码下一跳地址”配置路由。

5. 配置默认路由。

使用命令“ip route 0.0.0.0 0.0.0.0 下一跳地址”配置默认路由。

6. 保存配置。

使用命令“write”将配置保存到路由器中。

在实验中,我们使用Packet Tracer模拟器进行了RIP协议的配置。

我们配置了三台路由器R1、R2和R3,它们分别连接两个局域网。

具体配置如下:1. 配置IP地址和子网掩码。

我们将R1、R2和R3的IP地址分别设置为192.168.1.1/24、192.168.2.1/24和192.168.3.1/24,子网掩码均为255.255.255.0。

2. 开启RIP协议。

我们在R1、R2和R3上分别使用命令“router rip”进入RIP协议配置模式。

3. 配置网络。

我们在R1、R2和R3上分别使用命令“network 192.168.x.0”将本地网络添加到RIP协议中(其中x分别为1、2和3)。

计算机网络RIP路由协议配置实验报告

计算机网络RIP路由协议配置实验报告

课程实验报告
实验课程
实验名称
实验地点
实验时间
学生班级
学生学号
学生姓名
XXXX年 XX 月 XX 日
(1)理解RIP路由的原理;
(2)掌握RIP路由的配置方法。

实验器材:
路由器及PC机,双绞线。

实验内容:
本实验通过配置路由器的RIP路由,使网络畅通,并进一步理解RIP协议的原理。

实验步骤:
1. 配置设备IP地址及路由器的RIP路由
2.查看路由表
3.查看RIP路由的动态更新并停止
实验结果(附数据和图表):
1. 配置设备IP地址及路由器的RIP路由
3.查看RIP路由的动态更新并停止
实验结果分析及结论:
RIP是应用较早、使用较普遍的内部网关协议,适用于小型同类网络,是典型的距离向量协议。

RIP通过广播UDP报文来交换路由信息,每30秒发送一次路由信息更新。

实验心得体会和建议:
RIPv1是有类路由协议,RIPv2是无类路由协议;RIPv1不能支持VLSM,RIPv2可以支持VLSM;RIPv1没有认证的功能,RIPv2可以支持认证,并且有明文和MD5两种认证;RIPv1是广播更新,RIPv2是组播更新。

实验评价及结论:
实验指导老师签字:年月日。

rip路由协议配置实验

rip路由协议配置实验

rip路由协议配置实验RIP路由协议配置实验。

RIP(Routing Information Protocol)是一种基于距离向量的路由协议,用于在小型网络中实现路由信息的交换和更新。

在本实验中,我们将学习如何配置RIP路由协议,并进行一些简单的实验来加深对RIP协议的理解。

首先,我们需要了解RIP路由协议的基本原理。

RIP协议使用跳数(hop count)作为路由选择的度量标准,每经过一个路由器,跳数加1。

RIP协议通过交换路由更新报文来实现路由信息的更新,它使用定时器来触发路由更新,并且具有最大跳数限制,通常为15跳。

在实际网络中,RIP协议通常用于小型网络,因为它的算法相对简单,但是在大型网络中不太适用。

接下来,我们将进行RIP路由协议的配置实验。

首先,我们需要在路由器上进入配置模式,然后使用以下命令开启RIP协议:```。

Router(config)# router rip。

Router(config-router)# network <network-address>。

```。

在上述命令中,`<network-address>`是指本地网络的地址,我们需要将所有的本地网络地址都加入到RIP协议中。

这样,路由器就会开始向相邻路由器发送RIP路由更新报文,并接收相邻路由器发送的路由更新报文。

接着,我们可以使用以下命令查看RIP路由表:```。

Router# show ip route。

```。

通过查看RIP路由表,我们可以清晰地看到当前路由器学习到的所有路由信息,包括目的网络地址、下一跳地址和跳数等信息。

这有助于我们了解RIP协议的路由选择过程。

除了查看RIP路由表,我们还可以使用以下命令查看RIP协议的运行状态:```。

Router# show ip protocols。

```。

通过查看RIP协议的运行状态,我们可以了解到RIP协议的版本、发送/接收的路由更新报文数量、定时器的设置等信息,这有助于我们监控RIP协议的运行情况。

最新实验报告-RIP路由实验二

最新实验报告-RIP路由实验二

最新实验报告-RIP路由实验二在本次的RIP路由实验中,我们深入探讨了RIP(RoutingInformation Protocol)协议的工作原理及其在网络路由选择中的应用。

实验的主要目的是通过模拟网络环境,观察和分析RIP协议在不同网络拓扑下的表现。

实验环境:我们搭建了一个包含五台路由器的模拟网络,每台路由器运行RIP协议。

网络拓扑设计为一个星型结构,中心路由器连接四个边缘路由器,每个边缘路由器又连接到不同的网络段。

实验步骤:1. 配置路由器:首先,我们在每台路由器上配置了RIP协议,并确保它们能够正确地发送和接收路由更新信息。

2. 模拟流量:通过在网络的不同部分生成流量,我们模拟了实际的网络通信情况。

3. 观察路由表变化:在实验过程中,我们定期检查各路由器的路由表,记录路由信息的变化。

4. 分析路由选择:通过对路由表的分析,我们研究了RIP协议如何选择最优路径,以及在网络变化时如何快速收敛。

实验结果:实验显示,RIP协议能够有效地在网络中传播路由信息,并在网络拓扑发生变化时进行快速的路由重新计算。

在稳定的网络环境中,RIP协议能够保持较低的路由表更新频率,减少了网络的开销。

然而,在网络拓扑复杂或者链路成本差异较大的情况下,RIP协议的收敛速度较慢,可能会导致暂时的路由环路。

结论:RIP协议作为一种距离矢量路由协议,适用于小型到中型的网络环境。

它简单易于配置,但在大型网络或频繁变化的网络环境中,可能需要考虑更高级的路由协议,如OSPF或BGP,以提高网络的稳定性和效率。

未来的工作将包括对RIP协议的进一步优化,以及探索其与其他路由协议的协同工作机制。

rip路由协议配置实验心得

rip路由协议配置实验心得

rip路由协议配置实验心得在进行RIP路由协议配置实验的过程中,我深刻认识到了该协议的重要性和应用场景。

通过实验,我学习到了RIP的配置步骤以及其中的注意事项,同时也加深了对路由协议的理解和应用技巧。

1. 实验简介RIP(Routing Information Protocol)是一种基于距离向量的内部网关协议(IGP),它使用跳数(hop count)作为测量路径的标准,并将路由表信息通过周期性广播的方式传播给邻居节点。

该实验旨在配置RIP路由协议,实现路由表的交换与更新。

2. 实验过程2.1 实验环境准备首先,我们需要搭建一个实验环境,包括路由器和主机。

路由器之间通过以太网连接,而主机连接到路由器上。

确保网络连接正常,以便进行后续的RIP路由协议配置和交互。

2.2 RIP配置步骤(1) 进入路由器命令行界面,使用特权EXEC模式下的“configure terminal”命令进入全局配置模式。

(2) 使用“router rip”命令开启RIP进程,并进入RIP配置模式。

(3) 使用“network”命令指定需要进行路由协议交互的网络。

(4) 使用“version”命令设置RIP协议的版本,推荐使用RIPv2。

(5) 使用“passive-interface”命令将不需要进行RIP路由广播的接口设置为被动接口。

(6) 使用“no auto-summary”命令关闭路由表的自动汇总功能。

(7) 使用“exit”命令退出RIP配置模式,返回全局配置模式。

(8) 使用“end”命令返回特权EXEC模式。

3. 实验心得在进行RIP路由协议配置实验的过程中,我遇到了一些问题,并通过实践和调试解决了它们。

以下是我的一些实验心得:3.1 网络拓扑规划在进行RIP路由协议配置实验之前,合理规划网络拓扑是非常重要的。

正确连接路由器和主机,确定好子网划分,避免IP地址冲突,可以提高实验效果和稳定性。

3.2 路由器命令的正确输入在配置RIP路由协议时,命令的格式和参数选择非常关键。

RIP协议原理及配置实验报告

RIP协议原理及配置实验报告

通信网络实验——RIP协议原理及配置实验报告班级:学号:姓名:RIP协议原理及配置实验报告一、实验目的1.掌握动态路由协议的作用及分类2.掌握距离矢量路由协议的简单工作原理3.掌握RIP协议的基本特征4.熟悉RIP的基本工作过程二、实验原理1.动态路由协议概述路由协议是运行在路由器上的软件进程,与其他路由器上相同路由协议之间交换路由信息,学习非直连网络的路由信息,加入路由表。

并且在网络拓扑结构变化时自动调整,维护正确的路由信息。

动态路由协议通过路由信息的交换生成并维护转发引擎需要的路由表。

网络拓扑结构改变时自动更新路由表,并负责决定数据传输最佳路径。

动态路由协议的优点是可以自动适应网络状态的变化,自动维护路由信息而不用网络管理员的参与。

其缺为由于需要相互交换路由信息,需要占用网络带宽,并且要占用系统资源。

另外安全性也不如使用静态路由。

在有冗余连接的复杂网络环境中,适合采用动态路由协议。

目的网络是否可达取决于网络状态动态路由协议分类按路由算法划分:距离-矢量路由协议( 如RIP ) :定期广播整个路由信息,易形成路由环路,收敛慢链路状态路由协议(如OSPF):收集网络拓扑信息,运行协议算法计算最佳路由根本解决路由环路问题,收敛快按应用范围划分:域间路由协议(EGP)和域内路由协议(IGP)自治域系统(AS) 是一组处于相同技术管理的网络的集合。

IGPs 在一个自治域系统内运行。

EGPs 连接不同的自治域系统。

2.RIP协议概述RIP(Routing Information Protocol)路由信息协议最早的动态路由协议,基于距离矢量算法实现使用UDP报文来交换路由信息以跳数多少选择最优路由RIPv1协议报文不携带掩码信息RIP的度量值,如下图所示:RIP一个比较大的缺陷是Metric只是简单的用跳数来表示,并不能准确的反映路径的真实状况。

如图所示,有三条路径的跳数是一样的,所以RIP就认为这三条路径是一样的路径,但实际上三条路径的带宽差异很大。

rip路由配置实验报告

rip路由配置实验报告

rip路由配置实验报告RIP路由配置实验报告引言:在计算机网络中,路由协议是实现网络互联和数据传输的重要组成部分。

其中,RIP(Routing Information Protocol)是一种基于距离向量的内部网关协议,用于在局域网中实现路由选择和转发。

本实验旨在通过配置RIP路由协议,实现网络设备之间的通信,并评估其性能和可靠性。

一、实验目的本实验的主要目的是通过配置RIP路由协议,实现网络设备之间的通信。

具体目标包括:1. 学习和理解RIP协议的基本原理和工作机制。

2. 配置RIP协议,使得网络设备能够相互发现和交换路由信息。

3. 评估RIP协议的性能和可靠性,包括路由选择速度、网络拓扑变化时的适应能力等。

二、实验环境本实验使用了一组实验设备,包括路由器、交换机和主机。

其中,路由器用于实现RIP协议的配置和路由转发,交换机用于连接各个设备,主机用于模拟实际的数据传输。

三、实验步骤1. 配置网络拓扑:根据实验需求,搭建一个包含多个路由器和主机的网络拓扑。

确保每个设备都能够正常通信。

2. 配置RIP协议:在每个路由器上配置RIP协议,并设置相应的参数,如路由器ID、路由更新时间间隔等。

确保RIP协议能够正常运行。

3. 路由信息交换:观察并记录RIP协议在各个路由器之间的路由信息交换情况。

注意观察路由表的变化和更新速度。

4. 网络拓扑变化测试:在网络拓扑中引入一定的变化,如断开某个链路或添加新的设备。

观察RIP协议在网络拓扑变化时的适应能力和路由表的更新情况。

5. 性能评估:通过测试和记录数据包的传输时间、丢包率等指标,评估RIP协议在不同条件下的性能和可靠性。

四、实验结果与讨论在实验过程中,我们成功配置了RIP协议,并实现了设备之间的通信。

观察到RIP协议能够及时发现和更新路由信息,确保数据能够正确传输。

在网络拓扑变化测试中,RIP协议也表现出了较好的适应能力,能够快速更新路由表,保证数据的正常传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
南通大学计算机科学与技术学院软件工程专业**年级*班
实验时间:2019年10月28日
姓名:沈** 学号:**********
实验名称:路由信息协议(RIP)实验
一、实验目的
1.掌握利用路由器划分子网的方法,并对路由器的各个接口设置IP地址。

2.掌握路由信息协议(RIP)的配置方式。

二、实验设备
1.路由器、计算机、直通线、交叉线
2.实验所用的拓扑图如图所示。

三、实验内容
1. 将各类设备进行连接和配置,完成RIP协议的编写
2. 深入理解RIP协议的规则
四、实验步骤
1.按照图8‐1所示进行设备的连接和配置。

2. RouterA的基本配置如下:
3.RouterB的基本配置如下:
4.配置RouterA的RIP路由如下。

5.配置RouterB的静态路由如下。

6.查看配置。

在RouterA运行show ip router命令会显示如下所示的路由信息。

其中,“R192.168.3.0/4[1/0]via192.168.2.2”就是我们加上去的RIP路由。

在上面显示的信息中,C为直连网络,R为RIP路由。

在RouterB运行show ip router命令会显示如下所示的路由信息。

7.测试PC1,PC2,PC3,PC4是否能互相Ping通,如果能,则表示达到了实验的要求。

8.删除路由协议:Router(config)#no router rip
五、实验拓扑结构图
六、实验结果及分析
七、实验总结及体会
通过此次试验,成功掌握了利用路由器划分子网的方法,并对路由器的各个接口设置IP地址。

掌握了路由信息协议(RIP)的配置方式。

相关文档
最新文档